AUXIER & ASSOCIATES, INC. Westlake Landfill Soil STANDARD LEVEL IV REPORT OF ANALYSIS **WORK ORDER #16-03102-OR** **April 28, 2016** EBERLINE ANALYTICAL/OAK RIDGE LABORATORY OAK RIDGE, TN ### TABLE OF CONTENTS | SECTION | DESCRIPTION | PAGE | |--------------|---|------| | I | Chain of Custody | 0004 | | II | Sample Acknowledgement | 0009 | | ш | Case Narrative | 0012 | | IV | Analytical Results Summary | 0016 | | \mathbf{v} | Analytical Standards | 0021 | | VI | Quality Control Sample Results Summary | 0038 | | VII | Laboratory Technician's Notes & Runlogs | 0045 | | VIII | Analytical Data (Isotopic Uranium) | 0062 | | IX | Analytical Data (Isotopic Thorium) | 0112 | | X | Analytical Data (Gamma Spectroscopy) | 0165 | | | Last Page | 0409 | ### STANDARD OPERATING PROCEDURE Sample Receiving MP-001, Rev. 15 Effective: 2/2/15 Page 14 of 15 ### Eberline Services – Oak Ridge Laboratory LABORATORY DATA SUPPORT CHECKLIST MP-001-3 | Date for Partial | Initials | Date | Initials | Checklist Items | | | | |--------------------|-------------|-------------|--------------|---|------------------------|--|--| | | | 3-21-16 | 566 | Sample Log-In | | | | | | | 4/13/14 | , KBS | Data Compilation | n | | | | | | 4-20-16 | MI | First Technical D | ata Review | | | | | : | 4/20/16 | lest | Second Technic | al Data Review | | | | | | 04/201 | 16 Eut | Data Entry/Elect | ronic Deliverable | | | | | | 04(26 | 16 EUT | Case Narrative | | | | | | | 4/27/1 | 6XB1 | Electronic Delive | | | | | | | 4/27/1 | a elsk | Samples Analyz Yes? | ed within Holding Time | | | | | | 4/27/16 | ust | QA/QC Review | | | | | | | 04/13/10 | ENT | Client in Possession of Data
Electronic or Hard Copy | | | | | | | | J | Invoiced by Labo | | | | | Technical/Clerical | Corrections | s, Signatur | es Needed, P | roblems, Etc | Date/Initials | | | | kage approved by: | | | > \ | Al | IBlis | | | | | Laborato | ory Manage | . () | Da
) | te | | | # SECTION I CHAIN OF CUSTODY # **Chain of Custody Record** Nº_____ Eberline Services 601 Scarboro Road Oak Ridge, TN 37830 (865) 481-0683 Phone - (865) 483-4621 Fax | Project Name: Wex Lake NCC Stormwater | Project Nurr | | | | | | 7 | 9/ | 8/8 | | 7 | 7 | 7 | 7 | / | | _ 1 | | |--|----------------|---|--|-------------------------|---------|---|--|----------------|----------------|--------------|---------|-------|---------------------------|----------|---------------------|--------------------------------------|---------------------------------------|--| | Send Report To: Paul Rolasco - EMSI | Sampler (Pr | Sampler (Print Name): Jon Willums / FEI | | | | XXX Analysis Rowester XXX Control Control XXX XX | | | | | Page of | | -of | | | | | | | Address: | Sampler (Pr | Sampler (Print Name): | | | | Trest | () | E C | 极 | s / | / / | | | | | REC'D MAR 1 | /REC'D MAR 1 8 2016 | | | | Shipment M | iethod: Cou | irier | | | œ/ . | येष | /
الخبر | ŧ, | | | | | | \int_{0}^{∞} | $/\sqrt{16-031}$ | | | | | Airbill Numb | oer: No | A | | Pally | | 3/\s | <u>ه</u> / و | | / , | / / | / / | Ι, | / , | / , | Purchase | UZ | | | Phone: | Laboratory | Receiving: | | | 4/ | 4/ | \
`?\ | / | 7 | | | | -/ | | | Order #: | | | | Fax: | | | | | / | Ĭ., | <i>\$</i> | <u>\$</u> / | | / | | | | | | Comments, Special | Lab Samp | le ID | | Field Sample ID | Sample
Date | Sample
Time | Sample
Matrix | Number of
Containers | 11 | Y /> | $/\!\!/ \!\!\! \subset$ | 7 | | / | | / | /_/ | | | Instructions, etc. | (to be complete | | | Sediment 2016-03-16A 4 | 3/16/16 | 13 3 5 | So.1 | 1 | χ. | χ | X | | | | | _ | | | _ | | | | | Sediment 2016-03-16B 5 | 3116/16 | 1355 | Soil | 1 | ý | Ϋ́, | χ | | | | | | | | | | | | | Sediment 2016-03-16B DUP 6 | 3/10/16 | 1355 | So.1 | 1 | X | X | 7 | | | | | | | | | | | | | | | | | <u> </u> | | | | | | , | | | | | | | | | | | | | | | <u></u> | <u> </u> | <u> </u> | -,,,, | - | | | | | | | | | | | | | T | | | | | | | | _ | | | | | | | | | 1 | | T | 1 | | | | | | | | | | | | | <u> </u> | | | | 1 | 1 | | 1 | | | | | | | | | | | | | | | | | 1 | | + | 1 | | | | | | | | | | | | | | | <u> </u> | | - | 1 | 1 | 1 | | | | | | | | | | | | | | 7 | | _ | + | | +- | 1- | | , | | | | <u> </u> | | | | | | Relinquished by: (Signature) | Received by: | (Signature) | <u> </u> | Date: | | Time | e: | ا s | ample | Cus | todiar | n Rer | narks | s (Co | raple | ted By Laboratory): | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | (total desprise m) - (m. 9 - min - 1 - 1 | _ | - | C 20 / | 3](6](
Date: | 4 | 68 | w | i | ONOC | - | | | umar | | L | Sample F | <u> </u> | | | Relinguished by: (Signature) | First Co | (Signature) | · 14 / | Date: | | 6e | | - | 41.00 | 1 | , | [D.w. | utine | ·
~ | - 1 | Total # Containers Received | ? | | | 1 /Mm | Received by: | با منت ما | 2, | (3/12)
Date: | 16 | Si | ?vai | 7 6 | .evel
.evel | | | | utin a
Hour | | | COC Seals Present? COC Seals Intact? | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Rouguished by: (Signature) | Received by: | (Signature) | ~\ | Date | | Tim | e : | ٦ <u>ـ</u> | .evel | | | | Veck | | _ | Received Containers Intact? | | | | | | | | | Ì | Other | | er 🗆 Other | | Temperature? | | | | | | | | | # Internal Chain of Custody | Work Order # | 16-03102 | |---------------|-----------------| | Lab Deadline | 4/12/2016 | | Analysis | UUISO - Level 4 | | Sample Matrix | Soil/Solid | | Sample
Fraction | HP 210 / 270
Detector Activity | Storage
Location |
--|-----------------------------------|--| | 04 | 36 | K1.4 | | 05 | 38 | K1.4 | | 06 | 34 | K1.4 | | | | | | | | | | | | | | VIII - III - AAAAAAAAAAAA | | | | VINITE OF THE PROPERTY | | | | | | ± — i di programma | | AAST PLATE TO THE REST OF THE PARTY P | | | | AND THE PARTY OF T | | As the recognition again | | - AMAINEMAN | | | | | Fraction 04 05 | Fraction Detector Activity 04 36 05 38 | | | | Location | n (circle | one) | | Initials | Date | |-----------------|----------------|------------|-----------|-------------|------------------|--|-------------| | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room 💍 🕻 🌣 | Veryscij | 3-22-16 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room 🕳 🖔 | beng sas | 3-23.16 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | NO17e | 3123/160810 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | LOIR | H1416010 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | THE NO CH | elib our | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | sul Ma | 146 0808 | | Received by . | Sample Storage | Rough Prep | Prep | Separations | Count Room | | VIII Cary | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | VB 4/11/ | 16 our | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | Allian Carlotta and Allian State All | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Ргер | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | # Internal Chain of Custody | Work Order # | 16-03102 | |---------------|-----------------| | Lab Deadline | 4/12/2016 | | Analysis | ThISO - Level 4 | | Sample Matrix | Soil/Solid | | Comments | Sample
Fraction | HP 210 / 270
Detector Activity | Storage
Location | |----------------------------|--------------------|-----------------------------------|--| | | 04 | 36 | K1.4 | | | 05 | 38 | K1.4 | | | 06 | 34 | K1.4 | | | | | | | | | | a de distribit de cela constitución con constitución de consti | 7. W. A. W. | | REPORT ON DRY WEIGHT BASIS | | | | | | | | | | | | | A STEEL OF THE PROPERTY. | | | | Locatio | on (circle | one) | | Initials | Date | |-----------------|----------------|------------|------------|-------------|-----------------|----------|--------------| | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room 0900 | keng sei | 3-22-16 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room Of U | Hungin | 3.23.16 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | MOIR | 3/38/14/08/1 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | Jalle | 4/6/16040 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | my No U | 616 cree | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | TON MY | 46 0957 | | Received by | Sample Storage | Rough Prep | Prep | Separations | ount Room | 70 | <u>_</u> | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | ount Room | KB 413 | luc 1750 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by |
Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | # Internal Chain of Custody | Work Order # | 16-03102 | |---------------|-----------------| | Lab Deadline | 4/12/2016 | | Analysis | Gamma - Level 4 | | Sample Matrix | Soil/Solid | | Comments | Sample
Fraction | HP 210 / 270
Detector Activity | Storage
Location | |--|--------------------|-----------------------------------|---------------------| | | 04 | 36 | K1.4 | | | 05 | 38 | K1.4 | | 21 day ingrowth – Report Ac228, Bi214, K40, Pa231,
b210/212/214, Ra226 from Bi214, Ra228 from Ac228,Tl208 &
Th234. | 06 | 34 | K1.4 | | REPORT ON DRY WEIGHT BASIS | | | | | | | Location | ı (circle d | one) | | Initials | Date | |-----------------|----------------|------------|-------------|-------------|-----------------|---|---------| | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room 0900 | Very Seig | 3-22-46 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room 1235 | Ky sug | 3-23-14 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | 100 3/23 | 16 1240 | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | VB 4/13/19 | 1418 | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | MANAGEMENT AND | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | a garanga a 1/4 anakhiri Mahir Aramin na Amarang anga a a a a ini Mahir Mahimin Amaran ang anga anaka anaka | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Received by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | | Relinquished by | Sample Storage | Rough Prep | Prep | Separations | Count Room | | | # SECTION II SAMPLE ACKNOWLEDGEMENT | • | | | |---|-----|---| | ľ | 111 | | | 1 | 4 | | | | | 1 | | | n d | , | | Č | 4 | | | Aux | Client Name Contract/PO Project Type ier & Associates, Inc. WESTLAKE NCC Environmental Project Name Client WO Sample Disp | | | Date Received 03/21/2016 Lab Deadline 04/12/2016 | | | | | Required Turnaround Days 28 Internal Deadline 04/15/2016 | | | | 16-03102 Client Deadline | | | | | | | | | | | | | | | | | |--|---|--------------------------------|--|---|----------|--------------|-------|--------------|--|-----------------|---------|---|--------------------------|-------|-------|------------|-----|------------------|-----------------|-------|------------|---|---|-----|---|-----------|---------|---|---| | | WESTLAKE NCC | WESTLAKE STORMWATER | | Н | | 0 | 4/ | <u>12</u> | /2 | <u> 1</u> | 6 | | | 0 | 4/ | <u> 15</u> | /20 |)1 | 6 | | 04/18/2016 | | | | | 10.172041 | | | | | Internal ID | Client ID | Sample Date | Matrix | Storage | Gamma | Thiso | osinn | Ē | | 01 | LCS | 03/22/16 | so | K1.4 | х | х | х | | | | | | | | | | | | | | | | | . ! | | | | | 3 | | 02 | BLANK | 03/22/16 | so | K1.4 | X | х | х | 3 | | 03 | DUP | 03/22/16 | 50 | K1.4 | Х | Х | Х | 3 | | 04 | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 50 | K1.4 | х | х | х | | | | | | | | | | | | i | | | | | |] | | | | 3 | | 05 | SEDIMENT 2016-03-16B | 03/16/16 13:55 | so | K1.4 | х | х | х | \perp | | 3 | | 06 | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 50 | K1.4 | Х | х | х | ļ. | | 3 | \perp | | 0 | | | | | | *** | 0 | • | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | 0 | 0 | 0 | 0 | | | | | | | | | | | <u> </u> | 0 | | | | | <u> </u> | | İ | | | | | | | | | | | | | | | - | | | | | | | | | 0 | | <u> </u> | | | ļ | | | 1. | | <u> </u> | 0 | | | | | | | | | | | İ | 0 | | | | <u></u> | | | | | | | | | | <u> </u> | | | _ | - | | | | | | | | | | | | | 0 | | | | | - | | | | | | | | "- | | | | | | | - | | | | <u> </u> | | | | | | | ٥ | | | | | <u> </u> | | | _ | | | | | | | | _ | | | | | | | | | | | | | | | 0 | | | | Totals Per Ana | lysis (n | on QA samples) | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | | | THE REPORT OF AN EASTA (ASSESSED A DESCRIPTION A | | AND THE PROPERTY OF THE PASSES | STATE OF THE PARTY | *************************************** | 1 | nvoic | е | | unts Pa
er & Ass | | s, Inc. | *************************************** | F | Repor | t Dat | a | | Rosasc
Manage | o P.E.
ement | Suppo | rt, Inc. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | EBERLINE
SERVICES | 601 Scar | Oak Ridge Laboratory
601 Scarboro Rd.
Oak Ridge, TN 37830 | | | Voice | | 9821
Knox | Cogdil
ville, TI
375-366 | Drive
N 3793 | #1 | | | | | Voice | | vood, C | CO 802 | | uite 406 | i | | | | | | | | | | Sample Log In Report | Voice: (8
Fax: (8 | | 81-0683
183-4621 | | Fax
Onta | | 865-6 | 375-367
ia Gree | 7 | | | | | | Fax | | | | | | | | | | | <u></u> | | | | | | 1 | | | | Voice
Fax | | | 375-366
375-367 | ### STANDARD OPERATING PROCEDURE Sample Receiving MP-001, Rev. 15 Effective: 2/2/15 Page 13 of 15 ### Eberline Services – Oak Ridge Laboratory SAMPLE RECEIPT CHECKLIST MP-001-2 | AMPLE MATRIX/MATRICES: | (CIRCI | E ONE O | R BOTH) | |--|------------|---------------|-----------------| | | AQUE | ous 👍 | NON-AQUEOUS | | ERE SAMPLES: | (CIRCI | E EITHER | R YES, NO, OR N | | Received in good condition? | Ø | N | | | If aqueous, properly preserved | Υ | N | N/A | | ERE CHAIN OF CUSTODY SEALS: | | | | | Present on outside of package? | Ø | N | | | Unbroken on outside of package? | \bigcirc | N | | | Present on samples? | \bigcirc | N | | | Unbroken en comples? | (P) | N | | | Unbroken on samples? | | | | | Was chain of custody present upon sample receipt? THE RESPONSE TO ANY OF THE ABOVE IS NO, A DISC SR) HAS BEEN ISSUED. | (v) | N
AMPLE RE | ECEIPT REPOR | | Was chain of custody present upon sample receipt? THE RESPONSE TO ANY OF THE ABOVE IS NO, A DISC | (v) | _
. | ECEIPT REPOR | Radiochemistry Services SECTION III CASE NARRATIVE EBERLINE ANALYTICAL CORPORATION 601 SCARBORO ROAD OAK RIDGE, TENNESSEE 37830 PHONE (865) 481-0683 FAX (865) 483-4621 EBS-OR-40649 April 28, 2016 Cecilia Greene Auxier & Associates, Inc. 9821 Cogdill Road #1 Knoxville, TN 37932 ### CASE NARRATIVE Work Order # 16-03102-OR #### SAMPLE RECEIPT This work order contains three sediment samples received 03/18/2016. These samples were analyzed for Isotopic Uranium, Isotopic Thorium and Gamma Spectroscopy. | <u>CLIENT ID</u> | <u>LAB ID</u> | |--------------------------|---------------| | SEDIMENT 2016-03-16A | 16-03102-04 | | SEDIMENT 2016-03-16B | 16-03102-05 | | SEDIMENT 2016-03-16B DUP | 16-03102-06 | ### **ANALYTICAL METHODS** Isotopic Uranium was analyzed using Method EML U-02 Modified. Isotopic Thorium was analyzed using Method EML Th-01 Modified. Gamma Spectroscopy was analyzed using Method LANL ER-130 Modified. #### ANALYTICAL RESULTS Combined Standard Uncertainty is reported at 2-sigma value. Minimum Detectable Activity (MDA) values for data represented in this report are sample-specific. MDA measurements are determined based on factors and conditions including instrument settings, aliquot size and matrix type. ### SPECIAL CIRCUMSTANCES Results are reported on a "dry" weight basis. #### ISOTOPIC URANIUM Samples were prepared by removing representative aliquots from each sample followed by mixed acid digestions as appropriate. Uranium was selectively extracted by ion exchange. Uranium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Uranium-234, Uranium-235 and Uranium-238. Chemical recovery was determined by the use of a Uranium-232 tracer. Activity of the Uranium-232 tracer was determined by alpha spectroscopy using an energy specific region of interest. ### ANALYTICAL RESULTS CONTINUED #### ISOTOPIC URANIUM CONTINUED Samples demonstrated acceptable results for all Uranium analyses. Chemical recovery was acceptable for all samples. The Uranium-234, Uranium-235 and Uranium-238 method blank demonstrated acceptable results. Results for the Uranium-234 and Uranium-238 duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Uranium-235 duplicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Uranium-234 and Uranium-238 laboratory control sample demonstrated an acceptable percent recovery. ### **ISOTOPIC THORIUM** Samples were prepared by removing representative aliquots from each sample followed by mixed acid digestions as appropriate. Thorium was selectively extracted by ion exchange. Thorium was eluted, micro-precipitated and mounted on micro-porous filter media. Sample activities were then determined by alpha spectroscopy using energy specific regions of interest for Thorium-227, Thorium-228, Thorium-230 and Thorium-232. Chemical recovery was determined by the use of a Thorium-229 tracer. Activity of the Thorium-229 tracer was determined by alpha spectroscopy using an energy specific region of interest. Samples demonstrated acceptable results for all Thorium analyses. Actinium-227 results were reported from Thorium-227 assuming secular equilibrium. Chemical recovery was acceptable for all samples. The Thorium-227, Thorium-228, Thorium-230 and Thorium-232 method blank demonstrated acceptable results. Results for the Thorium-228 and Thorium-232 duplicate demonstrated a high relative percent difference; however, normalized difference is within acceptable limits for the analytical technique. Results for the Thorium-230 duplicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Thorium-228, Thorium-230 and Thorium-232 laboratory control sample demonstrated an acceptable percent recovery. ### **GAMMA SPECTROSCOPY** Samples were dried, homogenized and placed into appropriate gamma spectroscopy geometry containers. Samples were then sealed for 21 days to allow for ingrowth of Radon-222 and progeny. Samples were counted on High Purity Germanium (HPGe) gamma ray detectors. Energy lines from Lead-214 and Bismuth-214 were analyzed for determinations of Radium-226 activity. Samples demonstrated acceptable results for all gamma-emitting radionuclides as reported. The method blank demonstrated acceptable results for all radionuclides as reported. Results for the Bismuth-214, Potassium-40 and Lead-214 replicate demonstrated an acceptable relative percent difference and normalized difference. Results for the Cobalt-60 and Cesium-137 laboratory control sample demonstrated an acceptable percent recovery. ### **CERTIFICATION OF ACCURACY** I certify that this data report is in compliance with the terms and conditions of the Purchase Order, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the cognizant project manager or his/her designee to be accurate as verified by the following signature. M.R. McDougall Laboratory Manager Date: 4/28/2016 Eberline Analytical wants and encourages your feedback regarding our performance providing radioanalytical services. Please visit http://www.eberlineservices.com/client.htm to provide us with feedback on our services. # SECTION IV ANALYTICAL RESULTS SUMMARY | | | | | | Report To: | ····· | | | ν | Vork Order L | Details: | | | | |-------------|---------|----------------------|----------------|-----------------|------------------|-------------|------------------|-----------------------|-----------|--------------------------------|---|----------|---|-----------------| | | .15 | Annlystiani | Cecilia | Greene | - | | | SDG: | 16 | -03102 | 2 | | | | | Ebe | riine | Analytical | Auxier | & Assoc | iates. Ind | | | Purchase Order: | WE | STLAKE | NCC | | | | | Eina | l Pan | ort of Analysis | | ogdill Ro | | | | Analysis Category: | EN۱ | /IRONM | ENTAL | | | | | l" II I a | ıı ızeb | OIT OI Allalysis | | lle, TN 3 | | <u> </u> | | Sample Matrix: | SO | .p.a.a. r.a. wardrahad W411711 | | | 4-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 74444444 | | Lab | Sample | Client
ID | Sample
Date | Receipt
Date | Analysis
Date | Batch
ID | Aпаlyte | Method | Result | cu | csu | MDA | cv | Report
Units | | ID | Type | | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Cobalt-60 | LANL ER-130 Modified | 1.37E+02 | 5.48E+00 | | | | pCi/g | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Cesium-137 | LANL ER-130 Modified | 8.69E+01 | 3.48E+00 | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | pCi/g | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Cobalt-60 | LANL ER-130 Modified | 1.38E+02 | 7.79E+00 | 1.05E+01 | 7.44E-01 | 5.62E-01 | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Cesium-137 | LANL ER-130 Modified | 8.88E+01 | 7.27E+00 | 8.58E+00 | 9.37E-01 | 4.64E-01 | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/10 00:00 | 3/2 1/2010 | 411172010 | 10 00 102 | V | | | 1 | | | | | | | | DI ANIZ | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Actinium-228 | LANL ER-130 Modified | 8.69E-02 | 7.85E-02 | 7.86E-02 | 1.64E-01 | 7.23E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Bismuth-214 | LANL ER-130 Modified | -6.16E-04 | 4.64E-02 | 4.64E-02 | 7.39E-02 | 3.29E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Potassium-40 | LANL ER-130 Modified | -3.82E-01 | 3.60E-01 | 3.61E-01 | 3.28Ё-01 | 1.27E-01 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Protactinium-231 | LANL ER-130 Modified | 4.98E-02 | 7.34E-01 | 7.34E-01 | 1.15E+00 | 5.29E-01 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-210 | LANL ER-130 Modified | 4.51E-01 | 4.95E-01 | 4.95E-01 | 7.39E-01 | 3.49E-01 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-212 | LANL ER-130 Modified | 3.90E-02 | 3.50E-02 | 3.50E-02 | 6.07E-02 | 2.84E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-214 | LANL ER-130 Modified | 1.31E-02 | 5.06E-02 | 5.06E-02 | 7.74E-02 | 3.55E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-226 | LANL ER-130 Modified | -6.16E-04 | 4.64E-02 | 4.64E-02 | 7.39E-02 | 3.29E-02 | pCi/g | | 16-03102-02 | MBL. | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-228 | LANL ER-130 Modified | 8.69E-02 | 7.85E-02 | 7.86E-02 | 1.64E-01 | 7.23E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/13/2016 | 16-03102 | Thorium-234 | LANL ER-130 Modified | 1.32E-01 | 4.28E-01 | 4.28E-01 | 5.89E-01 | 2.79E-01 | pCi/g | | 16-03102-02 | MBL | BLANK | | 3/21/2016 | | 16-03102 | Thallium-208 | LANL ER-130 Modified | 3.99E-02 | 5.67E-02 | 5.67E-02 | 1.07E-01 | 4.74E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2010 | 4/13/2010 | 10-00102 | Thansan 200 | | | 1 | | | | | | | | | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Actinium-228 | LANL ER-130 Modified | 9.79E-01 | 3.27E-01 | 3.31E-01 | 5.59E-01 | 2.62E-01 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | - | 16-03102 | Bismuth-214 | LANL ER-130 Modified | 1.86E+00 | 2.34E-01 | 2.53E-01 | 3.73E-01 | 1.79E-01 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | | 3/21/2016 | | | Potassium-40 | LANL ER-130 Modified
| 1.69E+01 | 2.40E+00 | 2.55E+00 | 1,52E+00 | 6.96E-01 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Protactinium-231 | LANL ER-130 Modified | 9.51E-01 | 2.17E+00 | 2.17E+00 | 3.74E+00 | 1.79E+00 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Lead-210 | LANL ER-130 Modified | 4.78E+00 | 1.80E+00 | 1.82E+00 | 2.74E+00 | 1.34E+00 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | 03/16/16 13:35 | | | | Lead-212 | LANL ER-130 Modified | 1.35E+00 | 1.80E-01 | 1.93E-01 | 3.11E-01 | 1.52E-01 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Lead-212 | LANL ER-130 Modified | 1.81E+00 | | 2.58E-01 | 2.92E-01 | 1.41E-01 | pCi/g | | 16-03102-03 | | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Radium-226 | LANL ER-130 Modified | 1.86E+00 | · | 2.53E-01 | 3,73E-01 | 1.79E-01 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Radium-228 | LANL ER-130 Modified | 9.79E-01 | 3.27E-01 | | 5.59E-01 | 2.62E-01 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | Thorium-234 | LANL ER-130 Modified | 2.18E+00 | | | 2.98E+00 | 1.46E+00 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | | | | LANL ER-130 Modified | 1.06E+00 | | 1.99E-01 | 5.65E-02 | -{ | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Thallium-208 | LAIVE EX-130 Modified | 1.002.00 | 1.000 | | | <u>, l</u> | | CU=Counting Uncertainty;CSU=Combined Standard Uncertainty (2-sigma);MDA=Minimal Detected Activity;LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value | | | | | | Report To: | | | | V | Vork Order | Details: | | | | |-------------|----------------|--------------------------|----------------|----------------------------|-------------|----------|---|---|----------|------------|---|----------|----------|--------| | | I | | Cecilia | Greene | | | | SDG: | 16 | -0310 | 2 | | | | | Ebei | riine | Analytical | | | iates, Inc | | | Purchase Order: | WE | STLAKE | NCC | | | | | Fina | I Rand | ort of Analysis | | 9821 Cogdill Road, Suite 1 | | | *************************************** | Analysis Category: | EN\ | /IRONN | IENTAL | | | | | I IIIa | ı ızeb | of of Analysis | | lle, TN 3 | | | | Sample Matrix: | SO | | | | | | | | | Client | Sample | Receipt | Analysis | Batch | | | Daniell | CU | csu | MDA | cv | Report | | Lab
ID | Sample
Type | ID | Date | Date | Date | ID | Analyte | Method | Result | CO | CSU | | | Units | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Actinium-228 | LANL ER-130 Modified | 1.30E+00 | 2.92E-01 | 3.00E-01 | 5.70E-01 | 2.68E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Bismuth-214 | LANL ER-130 Modified | 1.70E+00 | 2.29E-01 | 2.45E-01 | 1.01E-01 | 1.11E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Potassium-40 | LANL ER-130 Modified | 1.59E+01 | 2.22E+00 | *************************************** | 1.00E+00 | 4.36E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Protactinium-231 | LANL ER-130 Modified | 5.84E-01 | 1.00E+00 | ļ | 3.94E+00 | 1.89E+00 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-210 | LANL ER-130 Modified | 3.32E+00 | 1 | | 3.49E+00 | 1.71E+00 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-212 | LANL ER-130 Modified | 1.21E+00 | 1.75E-01 | 1.86E-01 | 3.42E-01 | 1.68E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-214 | LANL ER-130 Modified | 1.86E+00 | 2.42E-01 | 2.60E-01 | 3.36E-01 | 1.63E-01 | pCi/g | | | 00 | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-226 | LANL ER-130 Modified | 1.70E+00 | 2.29E-01 | 2.45E-01 | 1.01E-01 | 1.11E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-228 | LANL ER-130 Modified | 1.30E+00 | 2.92E-01 | 3,00E-01 | 5.70E-01 | 2.68E-01 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Thorium-234 | LANL ER-130 Modified | 1.43E+00 | 1.67E+00 | 1.67E+00 | 2.24E+00 | 1.09E+00 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/13/2016 | 16-03102 | Thallium-208 | LANL ER-130 Modified | 9.38E-01 | 2.15E-01 | 2.20E-01 | 5.65E-02 | 2.13E-01 | pCi/g | | 16-03102-04 | טט | SEDIMENT 2010-03-10A | 20,10,10 10.00 | | | | | *************************************** | | | | | | | | | TD0 | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Actinium-228 | LANL ER-130 Modified | 1.08E+00 | 2.05E-01 | 2.12E-01 | 3.80E-01 | 1.76E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Bismuth-214 | LANL ER-130 Modified | 1.13E+00 | 1.78E-01 | 1.87E-01 | 8.31E-02 | 1,18E-01 | pCi/g. | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Potassium-40 | LANL ER-130 Modified | 1.32E+01 | 1.89E+00 | 2.00E+00 | 1.12E+00 | 5.04E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Protactinium-231 | LANL ER-130 Modified | 1.15E+00 | 1.64E+00 | 1.64E+00 | 2.82E+00 | 1.35E+00 | pCi/g | | 16-03102-05 | TRG | | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-210 | LANL ER-130 Modified | 2.84E+00 | 1.41E+00 | 1.41E+00 | 2.22E+00 | 1.08E+00 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-212 | LANL ER-130 Modified | 9.74E-01 | 1.43E-01 | 1.52E-01 | 2.47E-01 | 1.21E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Lead-214 | LANL ER-130 Modified | 1.20E+00 | 1.50E-01 | 1.62E-01 | 2.48E-01 | 1.19E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-226 | LANL ER-130 Modified | 1.13E+00 | 1.78E-01 | 1.87E-01 | 8.31E-02 | 1.18E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Radium-228 | LANL ER-130 Modified | 1.08E+00 | 2.05E-01 | 2.12E-01 | 3.80E-01 | 1.76E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Thorium-234 | LANL ER-130 Modified | 1.09E+00 | 1.46E+00 | 1.46E+00 | 1.91E+00 | 9.30E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | <u> </u> | 16-03102 | Thallium-208 | LANL ER-130 Modified | 7.01E-01 | 1.50E-01 | 1.54E-01 | 4,67E-02 | 1.91E-01 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/70/10 13:33 | 0,21,2010 | | | | | | | | | | | | | | | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 16-03102 | Actinium-228 | LANL ER-130 Modified | 9.22E-01 | 2.43E-01 | 2.47E-01 | 5.07E-01 | 2.40E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Bismuth-214 | LANL ER-130 Modified | 1.32E+00 | 2.05E-01 | 2.16E-01 | 2.42E-01 | 1.15E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Potassium-40 | LANL ER-130 Modified | 1.43E+01 | 1.91E+00 | 2.05E+00 | 4.63E-01 | 1.78E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | | 3/21/2016 | | 16-03102 | Protactinium-231 | LANL ER-130 Modified | 1.09E+00 | 2.06E+00 | 2.06E+00 | 3.14E+00 | 1.50E+00 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Lead-210 | LANL ER-130 Modified | 1.59E+00 | 1.61E+00 | 1.61E+00 | 2.68E+00 | 1.31E+00 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Lead-212 | LANL ER-130 Modified | 1.09E+00 | | | 2.68E-01 | 1.31E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Lead-214 | LANL ER-130 Modified | 1.38E+00 | | 1.83E-01 | 2.48E-01 | 1.19E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-168 DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Radium-226 | LANL ER-130 Modified | 1.32E+00 | 2.05E-01 | 2.16E-01 | 2.42E-01 | 1.15E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | | | 16-03102 | Radium-228 | LANL ER-130 Modified | 9,22E-01 | | 2.47E-01 | 5.07E-01 | 2.40E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | 16-03102 | Thorium-234 | LANL ER-130 Modified | 2.01E+00 | | 1.71E+00 | 2.83E+00 | 1.39E+00 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | | | Thellium-208 | LANL ER-130 Modified | 7.31E-01 | | - | 4.72E-02 | 1.97E-01 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-168 DUP | 03/16/16 13:55 | 3/21/2016 | 4/13/2016 | 10-03102 | THEIREIN-200 | | | <u> </u> | | | | | CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value | | | | | | | Vork Order I | | | ·. | | | | | | |---------------|-------------|---------------------------|----------------|-----------------|------------------|--------------|---|--------------------|-----------|--------------|----------|----------|---------------|-----------------| | !!!! ! | | Analytical |
Cecilia | Greene | | | | SDG: | 16 | 03102 | 2 | | | | | Epei | riine | Analytical | | & Assoc | iates. Ind | 3. | | Purchase Order: | WE | STLAKE | NCC | | | | | Fina | Ren | ort of Analysis | | ogdill Ro | | | ······································ | Analysis Category: | EΝ\ | /IRONN | IENTAL | AL. | | | | , iiia | i izeb | or or Analysis | | lle, TN 37 | | | | Sample Matrix: | SO | | | | | | | Lab
ID | Sample | Client
ID | Sample
Date | Receipt
Date | Analysis
Date | Batch
ID | Analyte | Method | Result | cu | CSU | MDA | cv | Report
Units | | 16-03102-02 | Type
MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Actinium-227 | EML Th-01 Modified | 1.15E-01 | 8.04E-02 | 8.16E-02 | 7.52E-02 | 1.19E-02 | pCi/g | | 16-03102-02 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Actinium-227 | EML Th-01 Modified | 3.11E-01 | 1.55E-01 | 1.60E-01 | 1.26E-01 | 3.57E-02 | pCi/g | | 16-03102-03 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Actinium-227 | EML Th-01 Modified | 1.95E-01 | 1.03E-01 | 1.05E-01 | 5,96E-02 | 5.60E-03 | pCi/g | | 16-03102-04 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Actinium-227 | EML Th-01 Modified | 3.03E-01 | 1.45E-01 | 1,50E-01 | 7,38E-02 | 6.95E-03 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Actinium-227 | EML Th-01 Modified | 2.01E-01 | 1.26E-01 | 1.28E-01 | 1.26E-01 | 3.57E-02 | pCi/g | | 10-03102-00 | 11.0 | 0 | | | | | *************************************** | | | | | | | | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 4.79E+00 | 1.72E-01 | | | | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 5.32E+00 | 8.03E-01 | 9.47E-01 | 7.41E-02 | 1.16E-02 | pCi/g | | 16-03102-01 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | -1.46E-02 | 2.64E-02 | 2.65E-02 | 8.07E-02 | 1.56E-02 | pCi/g | | 16-03102-02 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 1.06E+00 | 3,15E-01 | 3.30E-01 | 1.25E-01 | 3.52E-02 | | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 6.77E-01 | 2.10E-01 | 2.20E-01 | 8.84E-02 | 1.96E-02 | · | | 16-03102-04 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 1.08E+00 | 3.13E-01 | 3.29E-01 | 8.68E-02 | 1,15E-02 | | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-228 | EML Th-01 Modified | 6.18E-01 | 2.29E-01 | 2.36E-01 | 1.48E-01 | 5.60E-02 | pCi/g | | 16-03102-06 | 1130 | CEDIMENT 2010 TO 152 2 5. | | | | | | | | | | | | | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 5.34E+00 | 1.44E-01 | | | | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 6.13E+00 | 9.00E-01 | 1,18E+00 | 5.92E-02 | 6.50E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 1.65E-01 | 9.38E-02 | 9.60E-02 | 6.44E-02 | 6.61E-02 | <u> </u> | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 8.36E+00 | 1.58E+00 | | | 9.07E-02 | | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 6.98E+00 | <u> </u> | · | | 6.76E-02 | | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 4.53E+00 | 9,21E-01 | 1.08E+00 | | 8.40E-02 | | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-230 | EML Th-01 Modified | 4.39E+00 | 9.09E-01 | 1.06E+00 | 1.13E-01 | 1.01E-01 | pCi/g | | 10-03102-00 | ļ | | | | | | | | | | | | <u> </u> | | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 4.79E+00 | | <u> </u> | ļ | | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 4.78E+00 | | 8,49E-01 | 5.91E-02 | 5.48E-03 | | | 16-03102-01 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | -4.16E-03 | | | | <u> </u> | | | 16-03102-02 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 1.09E+00 | | 3.29E-01 | 9.18E-02 | 1.58E-03 | | | 16-03102-03 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 8.19E-01 | 2.33E-01 | 2.44E-01 | 6.37E-02 | 7.42E-03 | | | 16-03102-04 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 7.36E-01 | 2.42E-01 | 2.51E-01 | 9.01E-02 | - | | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/8/2016 | 16-03102 | Thorium-232 | EML Th-01 Modified | 8.41E-01 | 2.69E-01 | 2.79E-01 | 1.19E-01 | 3.28E-02 | pCi/g | CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value | | | | | | Report To: | | | | · | Nork Order | Details: | | | | |-------------|----------------|--------------------------|---------------------|-----------------|------------------|-------------|--|----------------------------------|----------|------------|----------|----------|----------|-----------------| | Eho | rline | Analytical | Cecilia | Greene | | | | SDG: | 16 | -0310 | 2 | | | | | | | - | Auxier | & Assoc | iates, Inc | 3. | | Purchase Order: | WE | STLAKE | NCC | | | | | Fina | l Rep | ort of Analysis | 9821 C | ogdill Ro | ad, Suite | e 1 | ************************************** | Analysis Category: ENVIRONMENTAL | | | | | | | | | | , | Knoxville, TN 37932 | | | | | Sample Matrix: | so | | | | | | | Lab
ID | Sample
Type | Client
ID | Sample
Date | Receipt
Date | Analysis
Date | Batch
ID | Analyte | Method | Result | cu | csu | MDA | cv | Report
Units | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 7.31E+00 | 2.63E-01 | | | | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 6.27E+00 | 9.07E-01 | 1.01E+00 | 8,21E-02 | 3.18E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 1.01E-01 | 8.04E-02 | 8.08E-02 | 8.61E-02 | 2.12E-02 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 1.17E+00 | 3.15E-01 | 3.26E-01 | 1.03E-01 | 2.54E-02 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 9.48E-01 | 2.56E-01 | 2.64E-01 | 8.19E-02 | 3.14E-02 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 9.34E-01 | 2.66E-01 | 2.74E-01 | 1.05E-01 | 4.23E-02 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-234 | EML U-02 Modified | 9.29E-01 | 2.78E-01 | 2.86E-01 | 1.34E-01 | 6.03E-02 | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 5.13E-01 | 1.94E-01 | 1.97E-01 | 9.54E-02 | 1.14E-02 | pCi/g | | 16-03102-02 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 3.54E-02 | 6.03E-02 | 6.03E-02 | 1.06E-01 | 2.21E-03 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 1.27E-01 | 1.11E-01 | 1.11E-01 | 1.27E-01 | 2.65E-03 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 9.53E-02 | 8.75E-02 | 8.78E-02 | 1.01E-01 | 1.21E-02 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 1.14E-01 | 9.53E-02 | 9.56E-02 | 8.18E-02 | 5.14E-03 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-235 | EML U-02 Modified | 1.55E-01 | 1.20E-01 | 1.21E-01 | 1.20E-01 | 1.43E-02 | pCi/g | | 16-03102-01 | LCS | KNOWN | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 7.08E+00 | 2.55E-01 | | | | pCi/g | | 16-03102-01 | LCS | SPIKE | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 6.17E+00 | 8.95E-01 | 9.98E-01 | 7.70E-02 | 1.50E-02 | pCi/g | | 16-03102-01 | MBL | BLANK | 03/22/16 00:00 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 6.66E-02 | 6.35E-02 | 6.37E-02 | 6.84E-02 | 1.09E-02 | pCi/g | | 16-03102-03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 9.04E-01 | 2.71E-01 | 2.79E-01 | 1.13E-01 | 2.76E-02 | pCi/g | | 16-03102-04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified |
1.11E+00 | 2.79E-01 | 2.90E-01 | 6.03E-02 | 8.56E-03 | pCi/g | | 16-03102-05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 9.96E-01 | 2.75E-01 | 2.84E-01 | 9.48E-02 | 6,65E-03 | pCi/g | | 16-03102-06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 3/21/2016 | 4/11/2016 | 16-03102 | Uranium-238 | EML U-02 Modified | 6.80E-01 | 2.29E-01 | 2.34E-01 | 8.19E-02 | 1.30E-02 | pCi/g | CU=Counting Uncertainty; CSU=Combined Standard Uncertainty (2-sigma); MDA=Minimal Detected Activity; LCS=Laboratory Control Sample; MBL=Blank; DUP=Duplicate; TRG=Normal Sample; DO=Duplicate Original; CV=Critical Value # SECTION V ANALYTICAL STANDARDS # QA/QC REVIEWED ### CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION Radionuclide: U-238NAT Customer: TMA EBERLINE Half Life: $(4.468 \pm 0.005) \times 10^{9}$ years P.O.No.: OR2778 Catalog No.: 7338 Reference Date: January 1 1995 12:00 PST. Source No.: 479-50 Contained Radioactivity: (Total U) 8.016 µCi Contained Radioactivity: (Total U) 297 kBq Description of Solution a. Mass of solution: 65,2896 g in a 50 ml flame sealed ampoule b. Chemical form: Uranyl Nitrate in H2O c. Carrier content: None d. Density: Approximately 1.3202 g/ml @ 20°C. Radioimpurities Refer to attached technical data sheet Radioactive Daughters Refer to attached technical data sheet Radionuclide Concentration (Total U) 0.1228 μCi/g. Method of Calibration Activity calculations are based upon known specific activity and mass. Uncertainty of Measurement a. Systematic uncertainty in instrument calibration: +3.0% b. Random uncertainty in assay: +0.0% c. Random uncertainty in weighing(s): +2.0% d. Total uncertainty at the 99% confidence level: $\pm 3.6\%$ #### NIST Traceability This calibration is implicitly traceable to the National Institute of Standards and Technology. #### Leak Test(s) See reverse side for Leak Test(s) applied to this source. #### Notes - 1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986. - 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15). 29 DECEMBER Date Signed ISOTOPE PRODUCTS LABORATORIES 3017 N. San Fernando Blvd. Burbank, California 91504 818 • 843 • 7000 FAX 818 • 843 • 6168 ### QUALITY CONTROL PROGRAM Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records ### **EBERLINE SERVICES - OAK RIDGE LABORATORY** RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION | · | MP 009 | | |--|---|---| | SOLUTION REFERENCE # IPLA | | ENT DATE 10/1/2015 0:00
DLUTION # U-8 | | Principal Radionuclide Half L | Life, Years
468E+09 | Half Life, Days
1.632E+12 | | Radionuclide ^{224, 235, 238} ⊍
Certified Activity 8,016E+00 μCi
Certified Concentration μCi p | Refe
er gram | rence Date 1/1//1995 0:00 | | | Ampoule 32.5020 Weig ution Net 65.1380 Weig | ht, Grams | | Chemical Composition of Stand
Uranyl nitrate in dilute HNO ₃ | dard Solution | | | Dilution Instructions: | Dilution Solvent Us | ed 1M HNO₃ | | Dilute to a volume of | 000.00 milliliters | | | Certified Total Activity of 8.0160 μCi And after dilution the activity of this s | Which Equals colution is 1.77955E+04 dpm | 1.780E+07 dpm at the date listed above This activity concentration is based on the original imference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software. | | · | Expi | ration Date: July 27, 2016 | | Verified & Approved By QC Approval | James James | Date: 10/1/2015 0:00 Date: 10/1/2015 0:00 | # QUALITY CONTROL PROGRAM MP-009 Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records ### **EBERLINE SERVICES - OAK RIDGE LABORATORY** RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION | SECONDARY | DILOTION RECEIVED TO ATTOM | | |--|----------------------------|--| | Solution Reference # IRE4 | | Date | | Principal Radionuclide Half L | .ife, Years
68E¥09 | Half Life, Days | | Radionuclide of Interest 234, 235, 238 U
Parent Solution Conc. 1,77,96E+04 dpm/ | | Date 1/1/1995 0:00 | | Chemical Composition of Standar
Uraniy Nitrate in 1M HNO ₃ | rd Solution | | | Dilution Instructions: | Dilution Solvent Used | 1M HNO₃ | | SECONDAR | VOLUMETRIC DILUTION | | | Vol. Parent Solution: 4.0000 ml Total Activity: 7.1182E+04 dpm Final Volume: 1000.00 ml | Final Activity Concentra | ation: 7/1182E+01 dpm/ml | | NOTES: | reference date listed a | ation is based on the original
bove. All activities are
and time of analysis by the
ssing software. | | Isotopic Distribution as:
U-238 Atom % = 48.239 | = 1.602 dpm/ml | Date: July 27, 2016 | | Verified & Approved By | | Date: 10/1/2015 0:00 | | QC Approval | | Date: | ### RECORD COPY ### Tracer Solution for Environmental Analysis & Disequilibrium Studies ### **Product Description & Measurement Certificate** Description Principal radionuclide: uranium 232 (U-232) Product code: UDP10050 Daughter Nuclide: Th-228 Batch Number: 92/232/67 Measurement Reference date: Radioactive concentration U-232 01 March 2000 which is equivalent to 6.739E+03 becquerels per gram of solution 1.821E-01 microcuries per gram of solution Mass of solution 5.35£ granus Volume of solution Total activity of U-232 5.035 millilitres 3.61E+04 becquerels which is equivalent to 9.76E-01 microcuries Method of measurement (see reverse of this certificate) Accuracy Random uncertainty is: $\pm 0.7\%$ Systematic uncertainty: ± 0.5% Overall uncertainty in the radioactive concentration quoted above: $\pm 1.7\%$ Overall uncertainty is defined on the reverse of this certificate. Radionuclidic Purity Any radioactive impurities measured are listed below, expressed as percentages of the activity of the principle radionuclide at the reference date. Th-228 and daughter activity removed 2 Feb 2000 U-232 daughters activity will increase with time. By alpha 88% U-232, 12% daughters on 1/3/00 Isotopic The isotopic composition, expressed as atom per cent at the reference date Purity Not measured Chemical Composition Calculated weight of U-232, 4.42E-08 grams, as 2M HNO3 solution in a flame sealed glass vial. This Tracer solution has been produced 'carrier free'. Physical Recommended half life of uranium 232: 6.980E+01 years Data Principle energies of alpha emissions (MeV): 5.263 31.7%, 5.320 68.0% Branching ratio for alpha emission: 100% Calculated specific activity of uranium 232: 8.167E+05 Bq per microgram U-232. Remarks For safety information and notes to ensure correct usage by all persons handling this radioactive Tracer solution please read the instructions accompanying the package. AEA Technology operates a quality management system which has been independently audited and approved to ISO 9001. Approved Signatory Project Ref. AE2315 Roger Wiltshire Prepared and characterised in the UK, for world wide distribution by Isotrak, AEA Technology, QSA. ### **QUALITY CONTROL PROGRAM** MP-009 Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records ### **EBERLINE SERVICES - OAK RIDGE LABORATORY** RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009 | | | HI. 000 | | |---
---|--|--| | SOLUTION RE | FERENCE # AEA/Amersham 92/ | CURRENT D | | | | | | | | Principal Radionuclide | Half Life, Years
7.200E±01 | | Half Life, Days
2.630E+04 | | Radionuclide
Certified Activity
Certified Concentration | ²³² U
99760E-01 μCi
μCi per gram | Reference | Date 3/1/2000 0:00 | | | Ampoule /Solution Gross
Empty Ampoule
Solution Net | Weight, Gr
Weight, Gr
Weight, Gr
0.9760 µCi | ams | | Chemical Con | position of Standard Solution | n | | | ²³² U(NO ₃) ₆ in 2 | | | • | | Q(1403)6 41 2 | WELTINO3 | | | | Dilution Instructions:
Dilute to | Dia volume of 1000:00 m | lution Solvent Used | 2M HNO₃ | | Certified Total Activity of | 0.9760 μ Cl Whic h | Equals 2.167 | E+06 dpm at the date listed above | | And after dilution the | activity of this solution is 2 | 167E+03 dpm/ml re | his activity concentration is based on the original
eference date listed above. All activities are corrected
the date and time of analysis by the laboratory data
rocessing software. | | . • | | Expiration | Date: October 26, 2016 | | Verified & Approved By
QC Approval | Note of the state | | Date: 10/27/2015 0:00 Date: 10/28/15 | | 401 ppiovai_ | TOUT TOUT | | | # QUALITY CONTROL PROGRAM MP-009 Rev.8; 11/01/03 Title: Radioactive Reference Standards Solutions & Records # EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS | SECO | ONDARY DILUTION RECERT | TIFICATION | | |--|---|--|--| | | MP-009 | Date | | | Solution Reference | e # AEA/Amersham 92/232/67 | Solution # | | | Principal Radionuclide | Half Life, Years | | Half Life, Days | | ²³² Ü∴ | 7:200E+01 | | 2.630E+04 | | | | | | | | | | • | | Radionuclide of Interest | | Reference Date | 3/1/2000 0:00 | | Parent Solution Conc. 2.167E+0 | 3: apm/mi | | | | | | | | | | | | | | | | | | | Chemical Composition o | f Standard Solution | | | | Chemical Composition of 22/U(NO ₃) ₆ in 2M HNO ₃ | i otalidale ociucion | | • | | COUNCES IN ZIVERINGS | FELLENDER STEINE EL STROLLEN, DE REGERT A | <u>a</u> | | | | | | | | 7.1 (V L | Dilution S | olvent Used | 2M HNO ₃ | | Dilution Instructions: | Dittal | | The Contract of American Contract of Contr | | SE | CONDARY VOLUMETRIC DIE | LUTION | | | Vol. Parent Solution: 10.0 | 000 ml | | | | Total Activity: 2.1670E | +04 dpm Final Ad | tivity Concentration | n: 2.1670E+01 dpm/ml | | Final Volume: 1000 | | · · · · · · · · · · · · · · · · · · · | | | Final vosume. | | 47 74 | a in based on the priminal | | | This a | ctivity concentratio | n is based on the original
/e. All activities are | | NOTES: | referei | ice date listed aboved to the date and | time of analysis by the | | INO 1 ES: | correc | tory data processin | ng software. | | | μροια | | • | |] | | | | | 1 | | | | | | | | | | | | Expiration Dat | e: October 26, 2016 | | 1 | | | | | | | | | | | 1 | | | | , | | | | | | mel | | 40/07/0045 0:00 | | Verified & Approved By | | Dai | te: 10/27/2015 0:00 | | | 1,0011,5 | | in whale | | QC Approval | alle to the | Da | 10 | | I | • • | | | # QA/QC REVIEWED ERTIFICATE OF CALIBRATION CALIBRA Radionuclide Th-230 Customer: OCT 1 4 1/100 LO Half Life: $(7.54 \pm 0.03) \times 10^4 \text{ years}$ P.O.No.: TT4944 Catalog No.: 7230 Reference Date: November 1 1991 *77*1 12:00 PST. Source No.: 388-116 Contained Radioactivity: 1.036 μCì. **Description of Solution** a. Mass of solution: 5.0042 Th(NO3)4 in 0.1N HNO3 b. Chemical form:c. Carrier content: None added grams. d. Density: 1.0016 gram/ml @ 20°C. Radioimpurities See attached technical data sheet Radioactive Daughters See attached technical data sheet Radionuclide Concentration 0.207 μCi/gram. Method of Calibration Weighed aliquots of the solution were assayed using a liquid scintillation counter. ### Uncertainty of Measurement a. Systematic uncertainty in instrument calibration: ±2.0% b. Random uncertainty in assay: ±0.5% c. Random uncertainty in weighing(s): ±0.2% d. Total uncertainty at the 99% confidence level: -+2.7% #### **NIST Traceability** This calibration is implicitly traceable to the National Institute of Standards and Technology. ### Notes - 1. Nuclear data were taken from "Table of Isotopes", Seventh Edition, edited by Virginia S. Shirley. - 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay(and later NIST certification) of Standard Reference Materials. (As in NRC Regulatory Guide 4.15) QUALITY CONTROL ISOTOPE PRODUCTS LABORATORIES 1800 No. Keystone Street., Burbank, California 91504 (818) 843 - 7000 ## QUALITY CONTROL PROGRAM MP-009 Rev.14; 10/10/2012 Title: Radioactive Reference Standards Solutions & Records ### **EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE SOLUTIONS** PRIMARY DILUTION RECERTIFICATION | | MP 009 | |---|--| | | CURRENT DATE 3/5/2016.0:00 | | SOLUTION REFERENCE # IPL 388-116 | SOLUTION # Th-1 | | Principal Radionuclide Half Life, Years | Half Life, Days | | ²³⁰ Th 7:540E+04 | 2.754E+07 | | Radionuclide 20 horium | Reference Date 11/1/1991 0:00 | | Certified Activity 1036E+00 μCi | | | Certified Concentration μCi per gram | | | Ampoule /Solution Gross | 9:2660 Weight, Grams | | Empty Ampoule | 4.6218 Weight, Grams | | Solution Net Total Activity in Ampoule | 4.6442 Weight, Grams
1.0360
μCi | | Total Activity III Allipodie | ∞ as orion t hαι | | Chemical Composition of Standard Soluti | on | | ²³⁰ Th(NØ ₅₎₄ in 0.1N HNØ₃ | | | · | | | Dilution Instructions: | bilution Solvent Used 0.1N HN0 ₃ | | Dilute to a volume of 1000.00 n | nillilltore | | Dilute to a volume of | multer 2 | | | | | Certified Total Activity of 1.0360 μCi Whic | h Equals 2.300E+06 dpm at the date listed above | | And after dilution the activity of this solution is | This activity concentration is based on the original reference date listed above. All activities are corrected | | | to the date and time of analysis by the laboratory data processing software. | | | | | · | | | , | Expiration Date: February 8, 2017 | | | | | | ٨ | | 1 | V | | Recertified By | Date: 3/5/2016 0:00 | | | | | QC Approval | Date:3/10/16 | | | | # QUALITY CONTROL PROGRAM MP-009 Rev.14; 10/10/2012 | Title: Kadioactive Reference Standards | Title: Radioactive Reference Standards Solutions & Records | | | | |--|---|---------------------|------------------------------|--| | EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION | | | | | | Solution Reference # | MP-009
IPL 388-116 | Date
Solution # | 3/5/2016 0:00
Th-1b | | | Principal Radionuclide 230Th | Half Life, Years
7.540E+04 | | Half Life, Days
2.754E+07 | | | Radionuclide of Interest 230 Thonum Parent Solution Conc. 2.30E+03 | dpm/ml | Reference Date | 11/1/1991 0:00 | | | | | | | | | Chemical Composition of Standard Solution 230 Th(NO ₃) ₄ in 0.1N HNO ₃ | | | | | | Dilution Instructions: | Dilution So | olvent Used | 0.1N HNO ₃ | | | SECON | IDARY VOLUMETRIC DIL | UTION | | | | Vol. Parent Solution: 10.0000 Total Activity: 2.2999E+04 Final Volume: 1000.00 | dpm Final Acti | vity Concentration: | 2.2999E+01 dpm/ml | | | NOTES: | This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software. | | | | | | | Expiration Date: | February 8, 2017 | | | Recertified By | | <u>Date:</u> | 3/5/2016 0:00 | | | QC Approval | Bust | Date: | 3/10/16 | | ### CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION Radionuclide: Th-232 Customer: TMA EBERLINE Half Life: (1.405 ± 0.006) x 10^10 years P.O.No.; (Th-232) Catalog No.: 7232 Reference Date: VH1632 November 1 1993 Contained Radioactivity: (Th-232) 0.0933 12:00 PST. Source No.: 435-104-2 Contained Radioactivity: kBa. Description of Solution a. Mass of solution: 11.9712 g (in a 10 ml flame sealed ampoule) Th(NO3)4 in water b. Chemical form: c. Carrier content: None added g/ml @ 20°C. 3.45 d. Density: Radioimpurities Approx. 1.21 None detected (other than daughters). Radioactive Daughters Ra-228, Ac-228, Th-228, Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208 Radionuclide Concentration (Th-232) 0.00779 μCi/g. Method of Calibration Activity calculations are based upon known specific activity and mass. Uncertainty of Measurement a. Systematic uncertainty in instrument calibration: +3.0% b. Random uncertainty in assay: +0.0% c. Random uncertainty in weighing(s): ±2.0% d. Total uncertainty at the 99% confidence level: $\pm 3.6\%$ NIST Traceability This calibration is implicitly traceable to the National Institute of Standards and Technology. Leak Test(s) See reverse side for Leak Test(s) applied to this source. 1. Nuclear data were taken from "Table of Radioactive Isotopes", edited by Virginia S. Shirley, 1986. 2. IPL participates in an NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15). QUALITY CONTROL Date Signed ISOTOPE PRODUCTS LABORATORIES 1800 North Keystone Street Burbank, California 91504 (818) 843 - 7000 ### **QUALITY CONTROL PROGRAM** . Since the product of the distribution of the constant of the $k \in \mathbb{N}^n$, which is a k Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records #### **EBERLINE SERVICES - OAK RIDGE LABORATORY** RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009 | III. 666 | |---| | CURRENT DATE 9/29/2015 0:00 SOLUTION REFERENCE # IPL 435-104-2 SOLUTION # Th-8 | | | | Principal Radionuclide Half Life, Years Half Life, Days 232Th, 228Th 5.132E+12 | | Radionuclide 232 & 228 Th Reference Date 11/1/1993 0:00 Certified Activity 9.330Ε-02 μCi Certified Concentration μCi per gram | | Ampoule /Solution Gross Empty Ampoule 6.9296 Weight, Grams Solution Net 11.9119 Weight, Grams Total Activity in Ampoule 0.0933 µCi | | Chemical Composition of Standard Solution Th(NO ₃) ₄ in H2O | | Dilution Instructions: Dilution Solvent Used 1% Nitric Acid | | Dilute to a volume of 1000 00 milliliters | | Certified Total Activity of 0.0933 µCi Which Equals 2.071E+05 dpm at the date listed above | | And after dilution the activity of this solution is 2.071E+02 dpm/ml This activity concentration is based on the original reference date listed above. All activities are corrected to the date and time of analysis by the laboratory data processing software. | | Expiration Date: August 25, 2016 | | Verified & Approved By Date: | # QUALITY CONTROL PROGRAM MP-009 Control of the Contro Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records ### **EBERLINE SERVICES - OAK RIDGE LABORATORY** | RADIOACTIVE REFERENCE STANDARD SOLUTIONS SECONDARY DILUTION RECERTIFICATION | | | | |---|---|-------------------------------|--| | SECUIADA | THE PIECERON NECENTRICATION | | | | , | | Date 9/29/2015 0:00 | | | Solution Reference # IF | | | | | Principal Radionuclide H | laif Life, Years | Half Life, Days | | | 228 & 252 Th | 1.405E+10 | ****** * *5.132E+*12 | | | Radionuclide of Interest Parent Solution Conc. 2.07E+02 d | Reference I
 pm/ml | Date 11/1/1993 0:00 | | | Chemical Composition of Sta
Th(NO ₃) ₄ in 1% HNO ₃ | ndard Solution | | | | Dilution Instructions: | Dilution Solvent Used | 1% Nitric Acid | | | SECOND | SECONDARY VOLUMETRIC DILUTION | | | | 020011 | , | | | | Vol. Parent Solution: 500.0000 n
Total Activity: 1.0355E+05 d
Final Volume: 1000.00 n | lpm Final Activity Concentrat | tion: 1.0355E+02 dpm/ml | | | • | This activity concentra | tion is based on the original | | | NOTES: | reference date listed at
corrected to the date a
laboratory data proces | nd time of analysis by the | | | | Expiration D | Date: August 25, 2016 | | | , | | i | | | Verified & Approved By | | Date: 9/29/2015 0:00 | | 24937 Avenue Tibbitts Valencia, California 91355 Tel 661 • 309 • 1010 An Eckert & Ziegler Company Fax 661.257.8303 ### CERTIFICATE OF CALIBRATION ALPHA STANDARD SOLUTION Radionuclide: Half-life: Th-229 7340 ± 160 years 7229 Catalog No.: 867-54 Source No.: Customer: (Th-229 only) **EBERLINE SERVICES** P.O. No.: 00009633 Reference Date: 15-Jan-02 12:00 PST 37.48 Contained Radioactivity: 1.013 μCi kBq Physical Description: A. Mass of solution: 5.0147 g in 5 mL flame-sealed ampoule B. Chemical form: Th(NO₃)₄ in 0.1M HNO₃ C. Carrier content: 10μg Th/mL D. Density: 1.0016 g/mL @ 20°C. ### Radioimpurities: None detected (daughters in equilibrium) Radionuclide Concentration: 0.2020 µCi/g, 7.474 kBq/g #### Method of Calibration: This source was prepared from a weighed aliquot of solution whose activity in µCi/g was determined using gamma ray spectrometry. Peak energy used for integration: 193.5 keV Branching ratio used: 0.0441 gammas per decay #### Uncertainty of Measurement: ± 0.7 % A. Type A (random) uncertainty: ± 3.0 % B. Type B (systematic) uncertainty: C. Uncertainty in aliquot weighing: ± 0.0 % D. Total uncertainty at the 99% confidence level: ± 3.1 % #### Notes: - See reverse side for leak test(s) performed on this source. - IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (As in NRC Regulatory Guide 4.15). - Nuclear data was taken from IAEA Technical Report Series No. 261. - This solution has a working life of 5 years. Quality Control IPL Ref. No.: 867-54 - ISO 9001 CERTIFIED - ## QUALITY CONTROL PROGRAM MP-009 Rev.8; 1/10/03 Title: Radioactive Reference Standards Solutions & Records #### **EBERLINE SERVICES - OAK RIDGE LABORATORY** RADIOACTIVE REFERENCE SOLUTIONS PRIMARY DILUTION RECERTIFICATION MP 009 | | •••• | |
--|--|--| | | CURRENT DATE 9/29/2015 0:00 | | | SOLUTION REFERENCE # IPL 867-54 | SOLUTION # Th-18 | | | Principal Radionuclide Half Life, Y | ears Half Life, Days | | | ²²⁹ Th 7.340E- | | | | | | | | Radionuclide 29th | Reference Date 1/15/2002 0:00 | | | Certified Activity 1013E+00 μCi | Marie de servicio de la compansa de la compansa de la compansa de la compansa de la compansa de la compansa de | | | Certified Concentration μCi per gra | am: | | | - Anima Animana and Salas and Salas Bar G. | | | | Ampoule /Solution Gro | oss 8.7752 Weight, Grams | | | Empty Ampo | ule 37591 Weight, Grams | | | Solution | | | | Total Activity in Ampo | | | | | | | | Chemical Composition of Standard S | Solution | | | ²²⁹ Th(NO ₃) ₄ in 0.1M HNO ₃ | | | | Emery And State Control of the State Control of the | | | | | | | | Dilution Instructions: | Dilution Solvent Used 0.1 M HNO ₃ | | | | | | | Dilute to a volume of 1000.00 | milliliters | | | | · · | | | ·
 | | | | Certified Total Activity of 1.0130 μCi | Which Equals 2:249E+06 dpm at the date listed above | | | | This activity concentration is based on the original | | | And after dilution the activity of this solution is 2,249E+03 dpm/ml reference date listed above. All activities are corrected | | | | | to the date and time of analysis by the laboratory data processing software. | | | | , b) adecounted accounted | | | | | | | | | | | | Expiration Date: August 24, 2016 | | | | | | | | | | | | \wedge | | | 1 | | | | | Date: 9/29/2015 0:00 | | | Verified & Approved By | Date. 3/20/20 (3 0.00 | | | | Date: 9/30/15 | | | QC Approval | Date. | | | | | | # QUALITY CONTROL PROGRAM MP-009 Rev.7; 9/29/99 Title: Radioactive Reference Standards Solutions & Records ## EBERLINE SERVICES - OAK RIDGE LABORATORY RADIOACTIVE REFERENCE STANDARD SOLUTIONS | SECONDARY DILUTION RECERTIFICATION | | | |--|------------------------|--| | MF
Solution Reference # IPL 867 | P-009
∖54 Solu | Date 9/29/2015 0:00
tion # | | <u></u> | e, Years
0E+03 | Half Life, Days
2.681E+06 | | Radionuclide of Interest 228Th Parent Solution Conc. 2.25E+03 dpm/m | | e Date 1/15/2002 0:00 | | Chemical Composition of Standard
TH(NO₃)₄ in 0 1M HNO₃ | Solution | | | Dilution Instructions: | Dilution Solvent Used | O IM HNOS | | SECONDARY VOLUMETRIC DILUTION | | | | Vol. Parent Solution: 10.0000 ml Total Activity: 2.2490E+04 dpm Final Volume: 1000.00 ml | Final Activity Concent | ration: 2.2490E+01 dpm/ml | | NOTES: | reference date listed | tration is based on the original
I above. All activities are
e and time of analysis by the
essing software. | | | Expiration | n Date: August 24, 2016 | | Verified & Approved By QC Approval | surf - | Date: 9/29/2015 0:00 Date: 9/30/15 | **Analytics** 1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677 Fax 404-352-2837 www.analyticsinc.com ### **CERTIFICATE OF CALIBRATION** Standard Radionuclide Source GAS-1402 #### 98503 Sand in 16 Ounce PP Taral Jar Filled to Capacity Customer: Reference Date: Eberline Analytical Corporation OR-1405030, Item 6 P.O. No.: 01-Oct-2014 Product Code: 8401-EG-SAN 12:00 PM EST Grams of Master Source: 0.017608 This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gammaray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101. | | | | Master | | Unce | rtainty | *,% | | |------------------|--------------|------------|-----------|-------------|----------------|---------|-----|-------------| | | Gamma-Ray | Half-Life, | Source* | This Source | Ty | pe | | Calibration | | Nuclide | Energy (keV) | Days | γps/gram | γps | u _A | u_B | U | Method* | | Am-241 | 59.5 | 1.580E+05 | | 2.030E+03 | 0,1 | 1.8 | 3.6 | 4π LS | | Cd-109 | 88.0 | 4.614E+02 | 1.663E+05 | 2,929E+03 | 0.5 | 2.0 | 4.1 | HPGe | | Co-57 | 122.1 | 2.717E+02 | 8.913E+04 | 1.569E+03 | 0.4 | 1.7 | 3.5 | HPGe | | Ce-139 | 165.9 | 1.376E+02 | 1.241E+05 | 2.185E+03 | 0.4 | 1.7 | 3.5 | HPGe | | Hg-203 | 279.2 | 4.659E+01 | 2.675E+05 | 4.710E+03 | 0.3 | 1.7 | 3.5 | HPGe | | ng-200
Sn-113 | 391.7 | 1.151E+02 | 1.796E+05 | 3.163E+03 | 0.4 | 1.9 | 3.9 | HPGe | | Cs-137 | 661.7 | 1.099E+04 | 1.111E+05 | 1.956E+03 | 0.7 | 1.9 | 4.0 | HPGe | | | 898.0 | 1.066E+02 | 4.223E+05 | 7.435E+03 | 0.7 | 1.7 | 3.7 | HPGe | | ¥-88 | | 1.925E+03 | 2.091E+05 | 3.683E+03 | 0.7 | 1.8 | 3.9 | HPGe | | Co-60 | 1173.2 | | 2.091E+05 | 3.687E+03 | 0.7 | 1.8 | 3.9 | HPGe | | Co-60 | 1332.5 | 1.925E+03 | | 7.872E+03 | 0.7 | 1.7 | 3.7 | HPGe | | Y-88 | 1836.1 | 1.066E+02 | 4.471E+05 | 1.0125703 | 0.1 | 1.1 | 0.1 | 111 00 | ^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly. Calibration Methods: 4n LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC -Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k=2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." (Certificate continued on reverse side) MGS Certificate Rev 7, 11 September 2014 Laboratory Page 1 of 2 # SECTION VI QUALITY CONTROL SAMPLE RESULTS SUMMARY Printed: 4/11/2016 2:53 PM | Analysis Control Cha | ırt | | | | | | | | | | | Pag | ge 1 of 2 | |----------------------|--------------------------|--------------------|-----------------------|-----------------------|---------------------|------------------|----------------------|---------------|-------------------|----------------|-----------------------|---------------------|----------------------| | WO | | Analysis | | Run | Activit | y Units | Aliquo | t Units | | | Client Name | | | | 16-03102 | | UUISO | | 1 | p(| Ci | g |) | | Auxier 8 | & Associ | ates, Inc | • | Labo | ratory (| Control | Sample | | | | 1 | 1 | | | Analyte | | LCS
Measured | CSU
Measured | LCS
Expected | Uncert.
Expected | Known | Known
Error | Result | csu | Standard
ID | Standard
ACT (dpm) | Standard
Error | Standard
Added (g | | U-234 | | 85.77% | 16.14% | 100.00% | 3.60% | 7.31E+00 | 2.63E-01 | 6.27E+00 | 1.01E+00 | U-8a | 3.20E+01 | 3.60E+00 | 5.07E-0 | | U-238 | | 87.23% | 16.17% | 100.00% | 3.60% | 7.08E+00 | 2.55E-01 | 6.17E+00 | 9.98E-01 | U-8a | 3.10E+01 | 3.60E+00 | 5.07E-0 | . 0 : | | | | | | | | | w-w- | · | 1 | · | 1 | Matri | x Spike | !
 | | <u> </u> | | ŀ | | T | | Analyte | Normalized
Difference | MS Actual
% Rec | Expected
MS Result | Expected
MS Uncert | Actual
MS Result | Actual
MS CSU | Sample
Result |
Sample
CSU | Sample
Aliquot | Standard
ID | Standard
ACT (dpm) | Standard
Error % | Standard
Added (g | Rep | olicate S | ample | | | | | | QC | Summ | ary | | | | Analyte | Normalized
Difference | RPD | Original
Result | Original
CSU | Replicate
Result | Replicate
CSU | LCS Relative
Bias | LCS % R | | MS % R | MS ND | Rep RPD | Rep Ni | | U-234 | 1.03 | 20.85 | 9.48E-01 | 2.64E-01 | 1.17E+00 | 3.26E-01 | 0.86 | ок | | | | ок | ок | | U-238 | 1.01 | 20.51 | 1.11E+00 | 2.90E-01 | 9.04E-01 | 2.79E-01 | 0.87 | ок | | | | ок | ок | | U-235 | 0.44 | 28.74 | 9.53E-02 | 8.78E-02 | 1.27E-01 | 1.11E-01 | | ок | | | | NA | ок | Printed: 4/11/2016 2:53 PM Page 2 of 2 | wo | Analysis | Run | Activity Units | Aliquot Units | Client Name | |----------|----------|-----|----------------|---------------|---------------------------| | 16-03102 | UUISO | 1 | pCi | g | Auxier & Associates, Inc. | Printed: 4/11/2016 8:03 AM Page 1 of 2 | 16-03102 ThISO 1 pCi g Auxier & Associates, Inc. | WO | Analysis | Run | Activity Units | Aliquot Units | Client Name | |--|----------|----------|-----|----------------|---------------|---------------------------| | | 16-03102 | ThISO | 1 | pCi | g | Auxier & Associates, Inc. | | | | | Labo | ratory (| Control . | Sample | | | , | | | | |---------|-----------------|-----------------|-----------------|---------------------|-----------|----------------|----------|----------|----------------|-----------------------|-------------------|-----------------------| | Analyte | LCS
Measured | CSU
Measured | LCS
Expected | Uncert.
Expected | Known | Known
Error | Result | csu | Standard
ID | Standard
ACT (dpm) | Standard
Error | Standard
Added (g) | | TH-228 | 111.25% | 17.78% | 100.00% | 3.60% | 4.79E+00 | 1.72E-01 | 5.32E+00 | 9.47E-01 | Th-8b | 1.04E+02 | 3.60E+00 | 1.03E-01 | | TH-230 | 114.86% | 19.19% | 100.00% | 2.70% | 5.34E+00 | 1.44E-01 | 6.13E+00 | 1.18E+00 | Th-1b | 2.35E+01 | 2.70E+00 | 5.04E-01 | | TH-232 | 99.90% | 17.75% | 100.00% | 3.60% | 4.79E+00 | 1.72E-01 | 4.78E+00 | 8.49E-01 | Th-8b | 1.04E+02 | 3.60E+00 | 1.03E-01 | | | | | | | | Matri | x Spike | | | | | | ş. | | |-----|-------------|--------------------------|--------------------|-----------------------|-----------------------|---------------------|------------------|------------------|------------|-------------------|----------------|-----------------------|---------------------|-----------------------| | | Analyte | Normalized
Difference | MS Actual
% Rec | Expected
MS Result | Expected
MS Uncert | Actual
MS Result | Actual
MS CSU | Sample
Result | Sample CSU | Sample
Aliquot | Standard
ID | Standard
ACT (dpm) | Standard
Error % | Standard
Added (g) | | L-2 | · · · · · · | | ••• | ···· | | | | | | | | | | | | | | | ı | | | | | | | | | | | | | | | | | Rep | ample | QC Summary | | | | | | | | | | |---------|--------------------------|-------|--------------------|-----------------|---------------------|------------------|----------------------|---------|--------|-------|---------|--------| | Analyte | Normalized
Difference | RPD | Original
Result | Original
CSU | Replicate
Result | Replicate
CSU | LCS Relative
Bias | LCS % R | MS % R | MS ND | Rep RPD | Rep ND | | TH-228 | 1.90 | 44.32 | 6.77E-01 | 2.20E-01 | 1.06E+00 | 3.30E-01 | 1.11 | ок | | | NA | ок | | TH-230 | 1.12 | 17.90 | 6.98E+00 | 1.49E+00 | 8.36E+00 | 1.89E+00 | 1.15 | ок | | | ок | ок | | TH-232 | 1.28 | 28.08 | 8.19E-01 | 2.44E-01 | 1.09E+00 | 3.29E-01 | 1.00 | ок | | | INV | ок | Printed: 4/11/2016 8:03 AM Page 2 of 2 | WO | Analysis | Run | Activity Units | Aliquot Units | Client Name | |----------|----------|-----|----------------|---------------|---------------------------| | 16-03102 | ThISO | 1 | pCi | g | Auxier & Associates, Inc. | **No Matrix Spike** Printed: 4/13/2016 2:32 PM Page 1 of 2 | Alialysis Collifor Chare | | | | | | |--------------------------|----------|-----|----------------|---------------|---------------------------| | wo | Analysis | Run | Activity Units | Aliquot Units | Client Name | | 16-03102 | Gamma | 1 | pCi | g | Auxier & Associates, Inc. | | | | | Labo | ratory (| Control | Sample | | | | | | | |---------|-----------------|-----------------|-----------------|---------------------|----------|----------------|----------|----------|----------------|-----------------------|-------------------|-----------------------| | Analyte | LCS
Measured | CSU
Measured | LCS
Expected | Uncert.
Expected | Known | Known
Error | Result | csu | Standard
ID | Standard
ACT (dpm) | Standard
Error | Standard
Added (g) | | CO-60 | 100.71% | 7.63% | 100.00% | 4.00% | 1.37E+02 | 5.48E+00 | 1.38E+02 | 1.05E+01 | GAS-1302 | 1.37E+02 | 5.48E+00 | 7.36E+02 | | CS-137 | 102.15% | 9.66% | 100.00% | 4.00% | 8.69E+01 | 3.48E+00 | 8.88E+01 | 8.58E+00 | GAS-1302 | 8.69E+01 | 3.48E+00 | 7.36E+02 | | | | | | | | | | | | | | | | | | | - · · · · · · · · · · · · · · · · · · · | | Matri | x Spike | | | | | | | , | |---------|--------------------------|---------------------------------------|---|-----------------------|---------------------|------------------|------------------|---------------|-------------------|----------------|-----------------------|---------------------|-----------------------| | Analyte | Normalized
Difference | MS Actual
% Rec | Expected
MS Result | Expected
MS Uncert | Actual
MS Result | Actual
MS CSU | Sample
Result | Sample
CSU | Sample
Aliquot | Standard
ID | Standard
ACT (dpm) | Standard
Error % | Standard
Added (g) | | | | | | | | | , | | | | | i | ! | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | Rep | Sample | QC Summary | | | | | | | | | | |---------|--------------------------|--------|--------------------|-----------------|---------------------|------------------|----------------------|---------|--|---------|---------|--------| | Analyte | Normalized
Difference | RPD | Original
Result | Original
CSU | Replicate
Result | Replicate
CSU | LCS Relative
Bias | LCS % R | MS % R | MS ND | Rep RPD | Rep ND | | BI-214 | 0.88 | 8.92 | 1.70E+00 | 2.45E-01 | 1.86E+00 | 2.53E-01 | 1.01 | ок | <cs-137< td=""><td>BI-214></td><td>ок</td><td></td></cs-137<> | BI-214> | ок | | | K-40 | 0.59 | 6.37 | 1.59E+01 | 2.36E+00 | 1.69E+01 | 2.55E+00 | 1.02 | ок | <co-60< td=""><td>K-40></td><td>ок</td><td>ок</td></co-60<> | K-40> | ок | ок | | PB-214 | 0.27 | 2.77 | 1.86E+00 | 2.60E-01 | 1.81E+00 | 2.58E-01 | | | | PB-214> | ок | ок | Printed: 4/13/2016 2:32 PM Page 2 of 2 | WO | Analysis | Run | Activity Units | Aliquot Units | Client Name | |----------|----------|-----|----------------|---------------|---------------------------| | 16-03102 | Gamma | 1 | pCi | g | Auxier & Associates, Inc. | #### **SECTION VII** LABORATORY TECHNICIAN'S NOTES & RUN LOGS ISO U NOTES Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com | Internal Work Order | 16-03102 | |---------------------|----------| | Analysis Code | UUISO | | Run Number | 1 | | # | Date | Dept | User | Notes | |---|----------------|------|--------|--| | 1 | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | JNOIPE 4/5/14 Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com | Internal Work Order | 16-03102 | |---------------------|----------| | Analysis Code | UUISO | | Run Number | 1 | | # | Date | Dept | User | Notes | |---|----------------|------|----------|---| | 1 | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | | 2 | 04/08/16 17:12 | CHEM | JDEMELAS | Added concentrated HCl to sample beakers and heated to dryness; Added 20 mi 8N HCL to samples and transferred to new, labeled C-Tubes, rinsing with 8N HCl to bring volume to ~35 ml; Preconditioned resin columns with 35 ml 8N HCl; Centrifuged samples and loaded onto columns; Rinsed C-Tubes with 20 ml 8N HCl, centrifuged as needed and loaded onto columns; Rinsed columns with 35 ml 8N HCl = 0.1N NH4I, 35 ml of 6.5N HCl = 0.04N HF, and 10 ml of 6.5N HCl; Eluted Uranium with 50 ml of 0.5N HCl into clean, labeled 100 ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with DI H2O. Set samples aside for later precipitation and filtering. | Oak Ridge Laboratory 601 Scarboro Rd. Oak
Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com | Internal Work Order | 16-03102 | |---------------------|----------| | Analysis Code | UUISO | | Run Number | 1 | | # | Date | Dept | User | Notes | |---|----------------|------|----------|---| | 1 | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | | 2 | 04/08/16 17:12 | СНЕМ | JDEMELAS | Added concentrated HCl to sample beakers and heated to dryness; Added 20 ml 8N HCL to samples and transferred to new, labeled C-Tubes, rinsing with 8N HCl to bring volume to ~35 ml; Preconditioned resin columns with 35 ml 8N HCl; Centrifuged samples and loaded onto columns; Rinsed C-Tubes with 20 ml 8N HCl, centrifuged as needed and loaded onto columns; Rinsed columns with 35 ml 8N HCl – 0.1N NH4I, 35 ml of 6.5N HCl – 0.04N HF, and 10 ml of 6.5N HCl; Eluted Uranium with 50 ml of 0.5N HCl into clean, labeled 100 ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with DI H2O. Set samples aside for later precipitation and filtering. | | 3 | 04/11/16 05:23 | CHEM | TSMITH | Followed steps 12.1.7 to 12.4.5 in AP-005 . (Precipitated and filtered samples for Uranium) | 4-11-16 Printed: 4/11/2016 5:28 AM Page 1 of 1 | ® _ | F. | Internal Work Order 16-03102 Analysis Code Run | | | | |---------------|-------------------------|--|---------------|------------------|--| | EBI | ERLINE
SERVICES | | | | | | - | nts Used in an Analysis | UUIS | 0 | 1 | | | Reagent
ID | Reagent
Name | Reagent
Concentration | Analyst
ID | Date
Recorded | | | 017047P | Hydrofluoric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | 017152P | Nitric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | 017361P | Perchloric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | 016679P | Sulfuric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | 017230P | Anion Exchange Resin | Reagent Grade | JDEMELAS | 4/8/2016 | | | 017477S | HCI - NH4I | 8N - 0.1M | JDEMELAS | 4/8/2016 | | | 017371D06 | Hydrochloric Acid | 0.5N | JDEMELAS | 4/8/2016 | | | 017414S | Hydrochloric Acid | 6.5N | JDEMELAS | 4/8/2016 | | | 017476S | Hydrochloric Acid | 8N | JDEMELAS | 4/8/2016 | | | 017371P | Hydrochloric Acid | Reagent Grade | JDEMELAS | 4/8/2016 | | | 017468S | HCI - HF | 6.5N - 0.04N | JDEMELAS | 4/8/2016 | | | 017437S | Carbon substrate | Solution | TSMITH | 4/11/2016 | | | 017047P | Hydrofluoric Acid | Reagent Grade | TSMITH | 4/11/2016 | | | 016973S | Neodymium Carrier | 1 mg/ml | TSMITH | 4/11/2016 | | | 017408P | Reagent Alcohol | Reagent Grade | TSMITH | 4/11/2016 | | | 016606P | Titanous Chloride | Reagent Grade | TSMITH | 4/11/2016 | | Mphe#1 | | |) - pro- | | | | 3 | |----------|----------------------------------|-------------------|----------|------------|----------|---------------| | Date | Sarplat | Creax | Jacollie | Aline. | Leauper | Tecl | | 3/31/16 | 16030514(5-11) | - I | 1132 | 2hr50- | uu | (CS) | | 4/1/16 | Day fulse | US | 0457 | 14- | M | | | 41116 | SECHLO-10) | UAB | 1118 | 242 | M | | | 41146 | 16070824114 | ucon | 0818 | us | About | | | 41116 | 16020874(1-7) | ucen | 0813 | 245- | Ah-240 | | | 4/1/16 | 1403089A(-7) | Accupat | 1354 | -02-45 | Rak | Kb . | | 4/1/14e | System Blad | المل | 1714 | He: Yo har | | KB ! | | | Dwy fins | 1413 | 0456 | 1- | w | | | | 160707 0ALI-7) | Auxie | 0206 | 24,50 | Ulutso | | | | 1603082A(3-4) | uor | 1207 | 2ho0 - | 1,7 5-15 | KUS | | | 1603083A (1-4) | Uwa | 1508 | 2hvor- | Puzuz | 100 | | | Dwing Pulse | - USB | 0213 | 1- | m | | | 415 | [1603095AL1-7) | Rep. Serv. | 0823 | Zli | Thiso | اً ب | | 4/5/16 | 1603088A(1-4,7) | | 1117 | 2400- | 780-PU | 103 | | - 4/6/16 | / \ | uer | 1118 | 2450- | NA | M | | 4/6/16 | Desty Pulse | - L&B | 0510 | 14 | w | | | 4/6/16 | 16040054(1-5) | United | 0.750 | Thru | unzso | | | 416116 | 16070718(1,2) | ust | 0751 | つんり | untso | | | - 417 | Daily Pryse | INB | 000 | 10 | M | | | -117 | 1604017ALI-4) | udon | 0800 | 2450 | luzso | | | 4/7 | 1603096A(1-7) | Ref. gr. | 0807 | no | UUZSO | <u> </u> | | 410 | Dunfala | UN IN | 0454 | 2h5- | us . | | | 4/2 | - SECHUT-1 | -, - | 1147 | 71- | | | | | -1604077A(1-4)
-1604018A(1-7) | uco | 0849 | 215 | unter | | | | 1603 100A(6-12) | Lepublic Services | 1422 | 2450- | 1250-Th | 190 | | 4/8/14 | Stoken Brad | Lais | 1740 | llertonas | | KBI | | 4/11 | Party fulge | VAD | 0509 | 12 | w | | | 4/11 | 160126A(1-4) | ucon | 0837 | 245 | Aure | | | • | 160726A(1-3) | | 0878 | un | Shory | | | 4/11/le | (6-4) N2018001 | Auxin | 1(3) | 2/100- | Uu | KB | | | 404019444 | ucot | [132 | 2 hoso - | Th229 | Kars | | | | | | | | | | | | | | | LAN E | 76 7 4 | Slphitt | 1 | | | | | | | 73 | |----------|--------|------------------------|-------------------|--------------|----------|----------|-------------------| | / 36. | Pate | Swiffer | Chest | Josephin. | OST | Anegar. | Tea | | | 4/2 | 16040184(4) | ucon | 850 | rho | Ameri | ر | | | 4/8 | 1604018Act-4) | ucon | 0850 | ur | Aurus | | | | 4/2 | - 1604018AU-4.7 | ucon. | 08 L1 | 25- | Pulso | × | | | 4/2 | 1604018101-4) | won | 0851 | 24,- | Pury | | | | 418 | | nan | 0852 | 245 | 1 uzs | <u> </u> | | | 4/3/16 | 1604018A(34) | uwe | 1018 | 2h-80- | ieu | US | | | 4/3/10 | (1404019AG4) | Ucon | 1019 | 2h00- | Np | KAS | | | 4/8/40 | 1604018A(141) | wor | 1020 | 2h30- | 130-Th | KB | | | | 1603016AC1-14) | Republic Services | - C D | 21000- | Rate | KB- | | | | 1603096A (1-14) | Republic Services | 1149 | 2h00~ | Role | NUB | | | 4/8/16 | 1604033A(1-2) | uan | 1149 | 2400- | uu | 145 | | • | | 16070164(15-19) | Rep. Sen | 125 | 245- | Rule | | | | 412 | 16001004(1-5) | py. ser. | 176 | ur | Thezo | | | | 4/2/16 | U0031004 (13) | Republic Services | 1-144 | 200hs | ISO-Th | KB | | <u>.</u> | 419/16 | 160310ZA(1-6) | Auxien | 1445 | ~ 02m2 | J\$0 >>\ | KB | | | | i | Republic Services | 1446 | 2/180- | uu | KB | | | E 2 3 | System Brad | las | 1740 | LEND hos | 1 | KB | | | | DATH Pulsen | Lab | 1023 | lorning | NA | 1016 | | . } | 38∆ | (| Pepublic Services | 1036 | 2400- | uu | KB | | - 1 | 4111 | Painfulse- | us | 0509 | 10- | not | <u> </u> | | | 4/11 | 1602126A(1-4) | ucon | 0179 | Thou | Rele | _ | | | 4111 | 16001704(1-11) | met | 0529 | 2450 | Rate | <u>_</u> | | | 4111 | 1603176A(4) | ucon | 0878 | 24 | Anny | _ | | - 3 | 4/11 | | wen. | 0813 | non | Putigo | <u> </u> | | | 4/11 | 1603126AC NY | ucon | 0379 | no | Parys | | | | 4/11 | 1607126A(1-4) | ucon | 0839 | rus- | 1 / | 1 | | | 4111 | 16071014(18) | Ausia- | 0040 | 2450 | -uh Too | | | | 4/11 | 16021021 (1-3) | sugiler. | 0840 | | units | 1 | | | 4/11 | 1607 MGANTLY) | uca | 0841 | • | - west | | | | 4111 | HE Regentest ADAMY-PUL | i) Lans | 0841 | | PLACE | 3 | L | | 1 | 1 | | | <u>مبر المبرا</u> | ISO TH NOTES Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com | Internal Work Order | 16-03102 | |---------------------|----------| | Analysis Code | ThISO | | Run Number | 1 | | # | Date | Dept | User | Notes | |----|----------------|------|--------|--| | 1. | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | JVOIZe NIS/14 Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com | Internal Work Order | 16-03102 | |---------------------|----------| | Analysis Code | ThISO | | Run Number | 1 | | # | Date | Dept | User | Notes | |---|----------------|------|----------|--| | 1 | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | | 2 | 04/07/16 16:49 | CHEM | JDEMELAS | Added concentrated HNO3 to sample beakers and heated to dryness; Added 20 mt 8N HNO3 to samples and transferred to new, labeled C-Tubes, adding 8N HNO3 to bring volume to ~35 mt; Preconditioned resin columns with 50 mt 8N HNO3; Centrifuged samples as needed, and passed through columns; Rinsed C-Tubes with 20 mt 8N HNO3; Centrifuged rinsates and loaded onto columns; Rinsed
columns with 40 mt 8N HNO3; Eluted Thorium with 50 mt of 8N HCI into clean, labeled 100-mt beakers; Dried-down samples on hotplate; Dissolved samples in ~10 mt of concentrated HCI; Transferred to new, labeled C-Tubes with deiononized water, bringing volume to ~15mt. Set samples aside for later precipitation and filtering. | Oak Ridge Laboratory 601 Scarboro Rd. Oak Ridge, TN 37830 Voice: 865.481.0683 www.eberlineservices.com Internal Work Order Analysis Code 16-03102 ThISO Run Number 1 | # | Date | Dept | User | Notes | |---|----------------|------|----------|--| | 1 | 04/05/16 11:27 | PREP | JWOLFE | ALIQUOTED AND ADDED SPIKES AND TRACERS- ADDED HF AND DRIED SAMPLES DOWN- ADDED MIXED ACIDS AND TOOK SAMPLES TO DRYNESS- SUBMITTED SAMPLES TO SEPARATIONS | | 2 | 04/07/16 16:49 | СНЕМ | JDEMELAS | Added concentrated HNO3 to sample beakers and heated to dryness; Added 20 ml 8N HNO3 to samples and transferred to new, labeled C-Tubes, adding 8N HNO3 to bring volume to ~35 ml; Preconditioned resin columns with 50 ml 8N HNO3; Centrifuged samples as needed, and passed through columns; Rinsed C-Tubes with 20 ml 8N HNO3; Centrifuged rinsates and loaded onto columns; Rinsed columns with 40 ml 8N HNO3; Eluted Thorium with 50 ml of 8N HCl into clean, labeled 100-ml beakers; Dried-down samples on hotplate; Dissolved samples in ~10 ml of concentrated HCl; Transferred to new, labeled C-Tubes with deiononized water, bringing volume to ~15ml. Set samples aside for later precipitation and filtering. | | 3 | 04/08/16 05:24 | CHEM | TSMITH | Followed steps 12.2.5 to 12.4.5 in AP-005 . (Preicptiated and filtered samples for Thorium) | 4816 Printed: 4/8/2016 5:28 AM Page 1 of 1 | • 📆 | | Internal | Work Order | | | | | |---------------|--------------------------|--------------------------|---------------|------------------|--|--|--| | | BERLINE | 16-03102 | | | | | | | | SERVICES | Analysis Coo | le | Run | | | | | | ents Used in an Analysis | ThIS | 0 | 1 | | | | | Reagent
ID | Reagent
Name | Reagent
Concentration | Analyst
ID | Date
Recorded | | | | | 017047P | Hydrofluoric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | | | 017152P | Nitric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | | | 017361P | Perchloric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | | | 016679P | Sulfuric Acid | Reagent Grade | JWOLFE | 4/5/2016 | | | | | 017230P | Anion Exchange Resin | Reagent Grade | JDEMELAS | 4/7/2016 | | | | | 017371P | Hydrochloric Acid | Reagent Grade | JDEMELAS | 4/7/2016 | | | | | 017349P | Nitric Acid | Reagent Grade | JDEMELAS | 4/7/2016 | | | | | 017465S | Hydrochloric Acid | 8N | JDEMELAS | 4/7/2016 | | | | | 017461S | Nitric Acid | 8N | JDEMELAS | 4/7/2016 | | | | | 017437S | Carbon substrate | Solution | TSMITH | 4/8/2016 | | | | | 017391S | Cerrium Carrier | 0.1mg/ml | TSMITH | 4/8/2016 | | | | | 017047P | Hydrofluoric Acid | Reagent Grade | TSMITH | 4/8/2016 | | | | | 017408P | Reagent Alcohol | Reagent Grade | TSMITH | 4/8/2016 | | | | | | | | Sla | lett- | 7 | | 1 | |----------|--------|------------------|-------------------|----------|--------|---------|----------| | · . | | | | 1 - | | | 73 | | | Sate | Swiffett. | Client | Tradfin. | CAT. | | Test ! | | | | 16040184(4) | ucon | 0850 | 245- | Ameri | <u> </u> | | | 1 - | 160401841-4) | ucon | 085 | usu | Aurus | | | | 4/2 | - 1604018AC1-47) | Ucon | 0851 | 215- | Puzzo | | | <u> </u> | 4/2 | 1604018AC1-4) | ucon_ | 0851 | 245- | Purya | | | 100 | | 160401BA(1,2) | nan | 0852 | 260 | 11475 | الأبد | | | 1 1 2 | 1604018A(34) | ucol | 1018 | 2h-80- | uu | vus | | | | 1604018464) | Ucon | 1019 | 2ho0- | Np | VAS | | | | 1604018AC14) | ucor | 1020 | 2h30- | 150-Th | KB. | | | 4/3/10 | 1603096AC1-14) | Republic Services | -10 | 21050- | Rote | Yb- | | - | 4(8)4 | 1603096A (1-14) | Republic Servicer | 1149 | 22000 | Role | 145 | | | 4/8/16 | Ue04033A(1-2) | uan' | 1149 | 2450- | lell | 1ch | | | 418- | 16070764(15-19) | Rep. Son | 125 | ur- | Rule | | | | 418 | 16001004(1-5) | Ry. Ser. | 176 | un | Thitiso | | | · 3 | 4/8/16 | 1603100H (13) | Republic Services | 1-644 | ~00hs | ISO-Th | KB . | | | 419/16 | 160310ZA(1-6) | Auxien | 1445 | ~ 00MS | ISO Th | CO | | | | | Republic Services | 1446 | 2480- | uu | KB | | | - | | 7 | | | | | | | | | | | | | | | | | , | , | | | | 37 | | | | | | | | | | | | | | | | | | 75. | | | | | | | | | | | | | | - | | | | | | | | | , | 1 | | | | | | | | | | | | | | | | + | | 1 | | | | | | | | | | | | | | | | - A | | -1 | | | | | | | | | | | | | <u>i</u> | | | | **GAMMA NOTES** | | Š | | 00 | | | | 9.9 | |----------|--|---|---|-------------|---------------------------------------|---------------------------------------
--| | . / | DATE | Sample # | Client | Losettime (| JiTime A | tombusis " | Tech | | | 47/4 | GAS-149 | Lab | 1206 | L5mw | -8 | AG | | | 4/7/1 | Daily Bled | Lab | 1233 | 15min | 8 | AG
KD | | | ylalle | Duly Blyd
System Blyce | انداه | 1233 | 24hr | 8 | K/) | | | 4111 | effiro. | 140 | OVIV | 15 | <u> </u> | C | | | 4/11 | Dwyn | US | 0576 | 17 | V | | | | 4/11 | Dwyn
160801-01 | Auguer | 0459 | 15
Ju | V | | | | 4/11 | 160202-01 | Auger | ofsy | 7_ | V | - | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | , | · | | | | | | | | ~ | | | | | | | , | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | , | | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | | | | | 46. P. C. | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | To the second se | <u> </u> | | | | | | | | | | | | | | ÷ | | | | | | | | | | | | | | | | | - | | | | | | | | | <u> </u> | | | | | · · · · · · · · · · · · · · · · · · · | | | | - | | | | | | | | | * | | | | | | | | :
 | * | | | | | | : | | 15.00 | | Marie Control of the | | _l | l. , , | · · · · · · · · · · · · · · · · · · · | - Anny Control of the | | | | | | | | | | | Section Sectio | DATE | SAmple =# | Client | LoadTime | CT. Time | Analysis | Tech | |--|-----------|--------------|----------------|----------|----------|--|--------------------| | 7 | 411116 | 1604043-07 | ust | 0453 | IL | V | | | + | | 160404204 | UST | PGGU | U | V | _ | | + | | 1654045-09 | USA | 0556 | JL- | | | | À | 4/11116 | | cist | 1100 | IL- | V | 4 | | - Section Sect | | 1604044.03 | ust | 1203 | In | V | - | | - | 4/11/16 | | USA | 1304 | 11 | | | | Sign Comme | | 1604044-07 | USA | 1405 | 1 hr | Y | lib | | · | · v | 1004044-10 | USA | 1507 | 1 h | Y | 100 | | Name of Street, Street, | | 1604044-14 | USA | 1407 | Ihr | | KB | | Berting | 4/11/16 | 1604044-17 | USA | 1708 | 1) hu- | l Y | KB | | | | 1604047-03 | USA | BIL | thr | 8 | 1CB | | and the same | 4/11/16 | 1604042-04 | USA- | 1912 | 1h | * ************************************ | ICB | | | | CKIron | (A) | PPT | 1 | r | | | | 410 | Owlyn | 1913 | orre | I | - | | | | 4/12 | Pesyn | 43 | 0596 | 15 | r | | | | 4/12 | 1604045-08 | UST | 0700 | Jr- | 2 | | | | 411 | 1604046-06 | ast | obol | 1h | | | | | 4102 | - 1604046-08 | | 088 | 1/m | V | | | | 4102 | 1604046-41 | ux | 1014 | In | r | | | | | - 160404615 | UST | 1117 | 126 | V | | | | 4/12/16 | 1604064-03 | City of or | 1519 | 2 hr | 8 | ius | | | 4 lelie | he-hoopen | City of ox | 1421 | 2 hrs | \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 143 | | | | | Rep. Services | 1655 | Knin | Ba | KB | | | ylorlu | 1403094-04 | CT-Dept of FEP | 10-12 | 4hr. | Y | 1CB | | | 4107 | C481402 | UN3 | 650 | 15 | | ς | | | 4117 | Dedyn | Less | OCKY | 18 | | | | <u>-</u> | 417 | Effici | UAM | 0612 | 15 | | | | | 4117 | 162102-02 | Aupier | 0700 | de | $-V_{-}$ | 5 | | | 4117 | 160910204 | Auxier | 0807 | Th | | $\vdash \subseteq$ | | | 4117 | 1607102-05 | Auster | 091 | 21 | | 100 | | - | 4/13/14 | 1603102-06 | Auxui | 1013 | 1.1 h | 18 | KB | | | 41116 | (6001000 | Auxie | 1315 | 1 | | | | | 4 1314 | 1604072-03 | Bionomics | 1113 | 1 ho | 18 | LB | | | ا مارا ال | 1604072-04 | Bionomics | 1213 | 110 | 0 | | ## SECTION VIII ANALYTICAL DATA (ISOTOPIC URANIUM) Printed: 4/11/2016 5:28 AM Page 1 of 3 | Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 | | | |---|----------------------|---------------------------| | Run 3/21/2016 Lab Deadline 4/12/2016 Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Work Order | 16-03102 | | Date Received Lab Deadline Client Auxier & Associates, Inc. Project Report Level Activity Units Project Aliquot Units Method Instrument Type Radiometric Tracer Radiometric Sol# Carrier J-232 Carrier | Analysis Code | UUISO | | Lab Deadline Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) Tracer Carrier | Run | 1 | | Client Auxier & Associates, Inc. Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 | Date Received | 3/21/2016 | | Project WESTLAKE NCC Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 | Lab Deadline | 4/12/2016 | | Report Level 4 Activity Units pCi Aliquot Units g Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Client | Auxier & Associates, Inc. | | Activity Units Aliquot Units G Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer Radiometric Sol# U-10a Tracer Act (dpm/g) Carrier | Project |
WESTLAKE NCC | | Aliquot Units Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) Carrier | Report Level | 4 | | Matrix SO Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Activity Units | pCi | | Method EML U-02 Modified Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Aliquot Units | g | | Instrument Type Alpha Spectroscopy Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Matrix | so | | Radiometric Tracer U-232 Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Method | EML U-02 Modified | | Radiometric Sol# U-10a Tracer Act (dpm/g) 18.56 Carrier | Instrument Type | Alpha Spectroscopy | | Tracer Act (dpm/g) 18.56 Carrier | Radiometric Tracer | U-232 | | Carrier | Radiometric Sol# | U-10a | | | Tracer Act (dpm/g) | 18.56 | | Carrier Conc (mg/ml) | Carrier | | | | Carrier Conc (mg/ml) | | | | | | | | | | | Internal
Fraction | Sample
Desc | Client
ID | Login
CPM | Sample
Date | Sample
Aliquot | |----------------------|----------------|--|--------------|----------------|-------------------| | 01 | LCS | LCS | | 03/22/16 00:00 | 1.0000E+00 | | 02 | MBL | BLANK | - 14.11 | 03/22/16 00:00 | 1.0000E+00 | | 03 | DUP | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 9.9820E-01 | | 04 | DO | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 9.9600E-01 | | 05 | TRG | SEDIMENT 2016-03-16B | 38 | 03/16/16 13:55 | 1.0019E+00 | | 06 | TRG | SEDIMENT 2016-03-16B DUP | 34 | 03/16/16 13:55 | 1.0046E+00 | | | | | | | · | - | a a | The state of s | | | | | | | | | | | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. Printed: 4/11/2016 5:28 AM Page 2 of 3 | Internal
Fraction | Sample
Desc | Tracer
Aliquot (g) | Tracer Total
ACT (dpm) | Radiometric
Tracer (pCi) | Radiometric
% Rec | Grav Carrier
Added (ml) | Grav Filter
Tare (g) | Grav Filter
Final (g) | Grav Filter
Net (g) | Grav
% Rec | Mean
% Rec | SAF
1* | SAF
2* | |----------------------|----------------|-----------------------|---------------------------|-----------------------------|----------------------|----------------------------|-------------------------|--------------------------|------------------------|---------------|---------------|-----------|-----------| | 01 | LCS | 0.6058 | 11.2 | | 0.00 | | | | | | | | | | 02 | MBL | 0.6060 | 11.2 | | 0.00 | | | | | | | | | | 03 | DUP | 0.6042 | 11.2 | | 0.00 | | | | | | | | | | 04 | DO | 0.6047 | 11.2 | | 0.00 | | | | | | | | | | 05 | TRG | 0.6045 | 11.2 | , | 0.00 | | | | | | | | | | 06 | TRG | 0.6019 | 11.2 | | 0.00 | | | | | | | | | | | | | | | | | | | | | | É | | | | | **** | | | | | | · | 1 | | | | | | | | , | | | | | | | | : | <u> </u> | <u> </u> | | | | | | | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. | Internal
Fraction | Sample
Desc | Rough Prep
Date | Rough Prep
By | Prep
Date | Prep
By | Sep t0
Date/Time | Sep t0
By | Sep t1
Date/Time | Sep t1
By | |----------------------|----------------|--------------------|------------------|----------------|------------|---------------------|--------------|---------------------|--------------| | 01 | LCS | | | 04/05/16 11:17 | JWOLFE | | | | | | 02 | MBL | | | 04/05/16 11:17 | JWOLFE | | | | | | 03 | DUP | 1.0.000 | | 04/05/16 11:17 | JWOLFE | | | | | | 04 | DO | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:17 | JWOLFE | | | | | | 05 | TRG | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:17 | JWOLFE | | | | | | 06 | TRG | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:17 | JWOLFE | <u></u> | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. #### Preliminary Data Report & Analytical Calculations ## Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 1 of 3 | | 8 | |--------------------------------|---------------------------| | Run | ~ | | Analysis Code | UNISO | | Eberline Analytical Work Order | 16-03102 | | Client Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|---------|----------------|--------------------------|-------------------|----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | 01 | U-234 | LCS | LCS | pCi/g | 6.27E+00 | 9.07E-01 | 8.21E-02 | 7.31E+00 | 85.77 | ок | | ок | | | 02 | U-234 | MBL | BLANK | pCi/g | 1.01E-01 | 8.04E-02 | 8.61E-02 | | | | | ок | ок | | 03 | U-234 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.17E+00 | 3.15E-01 | 1.03E-01 | | | | ок | ок | | | 04 | U-234 | DO | SEDIMENT 2016-03-16A | pCi/g | 9.48E-01 | 2.56E-01 | 8.19E-02 | | | | | ок | | | 05 | U-234 | TRG | SEDIMENT 2016-03-16B | pCi/g | 9.34E-01 | 2.66E-01 | 1.05E-01 | | | | | ок | | | 06 | U-234 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 9.29E-01 | 2.78E-01 | 1.34E-01 | | | | | ок | | | | | | | | | | | | | | | | | | | - | #### Preliminary Data Report & Analytical Calculations Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 2 of 3 | æ | (2) | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |--------------------------------|------------------|-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|-----|---------------------|---------------------| | | | 01 | U-234 | LCS | 03/22/16 00:00 | 1.00E+00 | 117.61 | 0.00 | 0.00 | | | | | ш | | 02 | U-234 | MBL | 03/22/16 00:00 | 1.00E+00 | 113.01 | 0.00 | 0.00 | | | | | Run | | 03 | U-234 | DUP | 03/16/16 13:35 | 9.98E-01 | 92.07 | 0.00 | 0.00 | | | | | o. | | 04 | U-234 | DO | 03/16/16 13:35 | 9.96E-01 | 113.86 | 0.00 | 0.00 | | | | | s Cod | SC | 05 | U-234 | TRG | 03/16/16 13:55 | 1.00E+00 | 88.81 | 0.00 | 0.00 | | | | | Analysis Code |
OSIOO | 06 | U-234 | TRG | 03/16/16 13:55 | 1.00E+00 | 81.02 | 0.00 | 0.00 | | | | | 4 | | | | | | | | | | | | | | Order | 7 | | | | | | | | | | | | | Eberline Analytical Work Order | 6-03102 | | | | | | | | | | | | | ılytical | 03 | | | | | | | | | | | | | пе Апа | -9 | | | | | | | | | | | | | Eberli | 7 | | | | | | | | | | | | | | lnc. | ates | | | | | | | | | | | | | ıt | oci | | | | | | | | | | | | | Client | Associates, | | | | | | | | | | | | | | ంద | | | | | - | | | | | | | | C | ا گزارا
 die | | | | | | | | | | | | | 8 | Auxier | | | | | | | | | | | | | $\frac{Q}{8}$ | <u> </u> | L | <u></u> | | <u></u> . | | 1 | ! | J | 1 | | | Printed: 4/11/2016 2:52 PM Page 3 of 3 | (| | |--------------------------------|----------------------------------| | Run | ~ | | Analysis Code | OSINO | | Eberline Analytical Work Order | 16-03102 | | OOO client | കൃശ
Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |-----------------|---------|----------------|-----------------------|--------------------|--------|-----------|---------------|-----------|------------|------| | 01 | U-234 | LCS | 04/11/16 08:40 | | A_Spec | Alpha_056 | 170 | 4.57 E+02 | 5.00 E-03 | 16.5 | | 02 | U-234 | MBL | 04/11/16 08:40 | | A_Spec | Alpha_057 | 170 | 7.00 E+00 | 0.00 E+00 | 16.4 | | 03 | U-234 | DUP | 04/11/16 08:40 | | A_Spec | Alpha_058 | 170 | 6.80 E+01 | 0.00 E+00 | 16.8 | | 04 | U-234 | DO | 04/11/16 11:31 | | A_Spec | Alpha_003 | 170.03 | 6.53 E+01 | 4.00 E-03 | 16.1 | | 05 | U-234 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_004 | 170.02 | 5.88 E+01 | 7.00 E-03 | 18.8 | | 06 | U-234 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_010 | 170.02 | 5.40 E+01 | 1.20 E-02 | 19 | | | | | | | | | | | | * | 1 | 1 | - | | | | | | | | | | | | | | | | | | _ | ### Preliminary Data Report & Analytical Calculations Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 1 of 3 | 0 | 3 | |--------------------------------|---------------------------| | Run | _ | | Analysis Code | OSINN | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|---------|----------------|--------------------------|-------------------|----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | 01 | U-238 | LCS | LCS | pCi/g | 6.17E+00 | 8.95E-01 | 7.70E-02 | 7.08E+00 | 87.23 | ок | | ок | | | 02 | U-238 | MBL | BLANK | pCi/g | 6.66E-02 | 6.35E-02 | 6.84E-02 | | | | | ок | ок | | 03 | U-238 | DUP | SEDIMENT 2016-03-16A | pCi/g | 9.04E-01 | 2.71E-01 | 1.13E-01 | | | | ок | ок | | | 04 | U-238 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.11E+00 | 2.79E-01 | 6.03E-02 | | | | | ОК | | | 05 | U-238 | TRG | SEDIMENT 2016-03-16B | pCi/g | 9.96E-01 | 2.75E-01 | 9.48E-02 | | | | | ок | , | | 06 | U-238 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 6.80E-01 | 2.29E-01 | 8.19E-02 | | | | | ок | - | <u> </u> | <u> </u> | <u> </u> | | | | | Page 2 of 3 | (| | |--------------------------------|---------------------------| | Run | ~ | | Analysis Code | OSINN | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|-----|---------------------|---------------------| | 01 | U-238 | LCS | 03/22/16 00:00 | 1.00E+00 | 117.61 | 0.00 | 0.00 | | | | | 02 | U-238 | MBL | 03/22/16 00:00 | 1.00E+00 | 113.01 | 0.00 | 0.00 | | | | | 03 | U-238 | DUP | 03/16/16 13:35 | 9.98E-01 | 92.07 | 0.00 | 0.00 | | | | | 04 | U-238 | DO | 03/16/16 13:35 | 9.96E-01 | 113.86 | 0.00 | 0.00 | | | | | 05 | U-238 | TRG | 03/16/16 13:55 | 1.00E+00 | 88.81 | 0.00 | 0.00 | | | | | 06 | U-238 | TRG | 03/16/16 13:55 | 1.00E+00 | 81.02 | 0.00 | 0.00 | - | 1 | l | | 1 | | | Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 3 of 3 | | | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |--------------------------------|---------------------------|-----------------|---------|----------------|-----------------------|--------------------|--------|-----------|---------------|-----------|--------------|------| | ' | | 01 | U-238 | LCS | 04/11/16 08:40 | | A_Spec | Alpha_056 | 170 | 4.52 E+02 | 4.00 E-03 | 16.5 | | - | | 02 | U-238 | MBL | 04/11/16 08:40 | | A_Spec | Alpha_057 | 170 | 4.66 E+00 | 2.00 E-03 | 16.4 | | Run | | 03 | U-238 | DUP | 04/11/16 08:40 | | A_Spec | Alpha_058 | 170 | 5.28 E+01 | 7.00 E-03 | 16.8 | | | | 04 | U-238 | DO | 04/11/16 11:31 | | A_Spec | Alpha_003 | 170.03 | 7.68 E+01 | 1.00 E-03 | 16.1 | | Analysis Code | OSINN | 05 | U-238 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_004 | 170.02 | 6.30 E+01 | 0.00 E+00 | 18.8 | | nalysi | 5 | 06 | U-238 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_010 | 170.02 | 3.97 E+01 | 2.00 E-03 | 19 | | 4 | 7 | | | | | | | | | | | | | rder | | | | | | | | | | | | | | Eberline Analytical Work Order | 16-03102 | | | | | | | | | | | | | lvtical | 33, | | | | · · · | | | | | | | | | ne Ana | 9-9 | | | | | | | ! | | | | | | Eberli | 7 | | | | | | | | | | | | | | ن | | | | | | | | | | | | | | , n | | | | | | | | | | | | | | ates | | | | | | | | | | | | | 1 | oci | | | | | | | | | | | | | Client | Ass | | | | | | | | | | | | | | - భ | | | | | | | | | | | | | | Auxier & Associates, Inc. | | | | | | | | | | | | | | Au | | | | | | | | | | | | | 14 L | 1 | J L | 1 | | L | | | 100 | | ····· | | | ### **Preliminary Data Report & Analytical Calculations** Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 1 of 3 | (| | |--------------------------------|---------------------------| | Run | _ | | Analysis Code | UNISO | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|---------|----------------|--------------------------|-------------------|----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | 01 | U-235 | LCS | LCS | pCi/g | 5.13E-01 | 1.94E-01 | 9.54E-02 | | | | | ок | | | 02 | U-235 | MBL | BLANK | pCi/g | 3,54E-02 | 6.03E-02 | 1.06E-01 | | | | | ок | ок | | 03 | U-235 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.27E-01 | 1.11E-01 | 1.27E-01 | | | | NA | ок | | | 04 | U-235 | DO | SEDIMENT 2016-03-16A | pCi/g | 9.53E-02 | 8.75E-02 | 1.01E-01 | | | | | ок | | | 05 | U-235 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.14E-01 | 9.53E-02 | 8.18E-02 | | | | | ок | | | 06 | U-235 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.55E-01 | 1.20E-01 | 1.20E-01 | | | | | ок | | | | | <u> </u> | | | | *** | - | | 1 | | <u> </u> | | | Work Order: 16-03102-UUISO-1 Printed: 4/11/2016 2:52 PM Page 2 of 3 | Œ | 3 | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |--------------------------------|---------------------------|-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|-----|---------------------|---------------------| | , and | 3 | 01 | U-235 | LCS | 03/22/16 00:00 | 1.00E+00 | 117.61 | 0.00 | 0.00 | | | | | и | | 02 | U-235 | MBL | 03/22/16 00:00 | 1.00E+00 | 113.01 | 0.00 | 0.00 | | | | | Run | 7 | 03 | U-235 | DUP | 03/16/16 13:35 | 9.98E-01 | 92.07 | 0.00 | 0.00 | | | | | es. | | 04 | U-235 | DO | 03/16/16 13:35 | 9.96E-01 | 113.86 | 0.00 | 0.00 | | | | | cod | SC | 05 | U-235 | TRG | 03/16/16 13:55 | 1.00E+00 | 88.81 | 0.00 | 0.00 | | , | | |
Analysis Code | OSINO | 06 | U-235 | TRG | 03/16/16 13:55 | 1.00E+00 | 81.02 | 0.00 | 0.00 | | | | | Eberline Analytical Work Order | 16-03102 | | | | | | | | | | | | | Client | Auxier & Associates, Inc. | | | | | | | | | | | | Printed: 4/11/2016 2:52 PM Page 3 of 3 # Work Order: 16-03102-UUISO-1 | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |-----------------|----------|----------------|-----------------------|--------------------|--------|-----------|---------------|-----------|------------|------| | 01 | U-235 | LCS | 04/11/16 08:40 | | A_Spec | Alpha_056 | 170 | 3.03 E+01 | 4.00 E-03 | 16.5 | | 02 | U-235 | MBL | 04/11/16 08:40 | | A_Spec | Alpha_057 | 170 | 2.00 E+00 | 0.00 E+00 | 16.4 | | 03 | U-235 | DUP | 04/11/16 08:40 | | A_Spec | Alpha_058 | 170 | 6.00 E+00 | 0.00 E+00 | 16.8 | | 04 | U-235 | DO | 04/11/16 11:31 | | A_Spec | Alpha_003 | 170.03 | 5.32 E+00 | 4.00 E-03 | 16.1 | | 05 | U-235 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_004 | 170.02 | 5.83 E+00 | 1.00 E-03 | 18.8 | | 06 | U-235 | TRG | 04/11/16 11:31 | | A_Spec | Alpha_010 | 170.02 | 7.32 E+00 | 4.00 E-03 | 19 | ! | | | | | : | - | | | | | | | | | | | | - | <u> </u> | | | | | | L | | | | Run Analysis Code Eberline Analytical Work Order UNISO 16-03102 Auxier & Associates, Inc. Count Room Report Client: Auxier Associates, Inc. ### 16-03102-UUISO-1 (pCi/g) in SO Tracer ID: U-10a Printed: 4/11/2016 5:28 AM Page 1 of 1 | | Internal
Fraction | Sample
Desc | Client
ID | Sample
Date | Sample
Aliquot | Tracer
Aliquot (g) | Tracer
ACT (dpm) | Radiometric
Tracer (pCl) | Radiometric
% Rec | SAF
1* | SAF
2* | |------|----------------------|----------------|--------------------------|----------------|-------------------|-----------------------|---------------------|-----------------------------|----------------------|-----------|-----------| | 5 | 01 | LCS | LCS | 03/22/16 00:00 | 1.0000 | 0.6058 | 11.2436 | | 0.00 | | | | | 0,2 | MBL | BLANK | 03/22/16 00:00 | 1.0000 | 0.6060 | 11.2474 | | 0.00 | | | | وُمُ | 03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 0.9982 | 0.6042 | 11.2140 | | 0.00 | | | | , | 04 | DQ | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 0.9960 | 0.6047 | 11.2232 | | 0.00 | | | | | 05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 1.0019 | 0.6045 | 11.2195 | | 0.00 | | · | | | 06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 1.0046 | 0.6019 | 11.1713 | | 0.00 | | | | ŀ | | | | | | | | | | | | | ļ | | 2 | | | | | | | | | - | | | | | | | | | | | | | _ | - | | | | | | | | | | | | | 1 | <u> </u> | | | | - | ### Spike and Tracer Worksheet Page 1 of 1 Printed: 4/5/2016 11:17 AM | | Internal V | Vork Order | | Run | Analysi | s Code | D | ate | | Techi | nician | | Technicia | an Initials | Witness | Initials | |----------|------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--|--------------|-------------------|--------------|-------------------|---------------------|-------------------|-----------------------|--| | | | 3102 | | 1 | UUI | SO | 4/5/201 | 6 11:14 | | JWC | LFE | | 1/2 | <u> </u> | | | | | LCS | & Matrix Sp | ikes | | LCS | MS | LCSD | MSD | LC | S | M | S | LC | SD | rishina M S | 3D | | Isotope | Sol# | Activity
dpm/g | Solution
Date | Approx
Addition | Volume
Used (g) | Volume
Used (g) | Volume
Used (g) | Volume
Used (g) | Known
pCi | Error
Estimate | Added
pCi | Error
Estimate | Known
pCi | Error
Estimate | Added pCI | Error
Estimate | | U-234 | U-8a | 32.000 | 4/5/2016 | 0.550 | 0.5068 | | | | 7.31 | 0.263 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | | U-238 | U-8a | 31.000 | 4/5/2016 | 0.550 | 0.5068 | | | | 7.08 | 0.255 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | Tc-99 MS | Tc-2a | 22043.636 | //5/2014 | 0.1 | Insuceds/Breseles | | | | | Dal. | ance Prir | itar Tanc | | | | | | | | | Tracers Activity | Solution | Volume | Approx | ers agriculture | The state of s | Tracer | ne roar | | ice i i apc | A-440 atau - 121 at | LCS | endiren indirectioned | <u> 1966 - 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. </u> | | fraction | Isotope | Sol# | dpm/g | Date | Used (g) | Addition | | | 118001 | | | | | | | | | 01 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6058 | 0.6500 | | | | | | | | | | | | 02 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6060 | 0.6500 | | | | | | | | | • | | | 03 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6042 | 0.6500 | | | | _ | .0 | | | | | | | 04 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6047 | 0.6500 | | | | | | | | a. Se | 168 q | | | 05 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6045 | 0.6500 | | | | | | | | w 2 W W | | | | 06 | U-232 | U-10a | 18.560 | 4/5/2016 | 0.6019 | 0.6500 | • • | | 0,60 | 58 9 | | | | | | | | | | | | | | | | | 9.69 | | | | | | | | | | | | | | | | | | | 142 g.
147 g | | | | | | | | | | | | | | | <u> </u> | | | 345 g. | | | | | | | | | | | | | | | | | | 919 g | | | | Matrix Spi | Ke | _ | # **Aliquot Worksheet** Printed: 4/5/2016 9:44 AM Page 1 of 1 | Work Order | Run | Analysis Code | Rpt Units | Lab Deadline | Technician | |------------|-----|---------------|-----------|--------------|------------| | 16-03102 | 1 | UUISO | grams | 4/12/2016 | JWOLFE | | | Auxier & Associates, Inc. | Sample | Muffle Data | 44111711 | Dilution Data | Aliquo | t Data | MS Alic | uot Data | H-3 Solid | s Only | |----------------|---------------------------|--------|--|-----------------|------------------|------------|------------------|---------|-----------|---------------------|-----------------| | Lab
raction | Client ID | Type | Ratio
Post/Pre | No of Dils | Dil Factor Ratio | Aliquot | Net Equiv | Aliquot | Net Equiv | Water Added
(ml) | H3 Dist
Aliq | | 01 | LCS | LCS | Os Alikus - S | | | 1.0000E+00 | 1.0000E+00 | | | | | | 02 | BLANK | MBL | are dance of | | | 1.0000E+00 | 1.0000E+00 | | 5.1 | | | | 03 | SEDIMENT 2016-03-16A | DUP | | Philips 15-1-14 | | 9.9820E-01 | 9.9820E-01 | | | | | | 04 | SEDIMENT 2016-03-16A | DO | | | | 9.9600E-01 | 9.9600E-01 | • | | | | | 05 | SEDIMENT 2016-03-16B | TRG | | | | 1.0019E+00 | 1,0019E+00 | | | | | | 06 | SEDIMENT 2016-03-16B DUP | | | | | 1.0046E+00 | 1.0046E+00 | | | | | | - | | | | | | | in in the second | • | | | | | | | | | | | | | | | i | - | | l | 1 | 1 | | | 3. 62 (2. 49) | engeligher, et selletige
Geskalballer, et Gal | ··· |
 |
 | | |----------|-----|------|------|--| |
Comments | | | | | | | | | | | Technician: MOI Pedate: 45/14 #### Rough Sample Preparation Log Book Printed: 3/23/2016 7:28 AM Page 1 of 1 | Work Order | Lab Deadline | Date Received in Prep | Date Sealed | Date Returned | Technician | |------------|--------------|-----------------------|-------------|---------------|------------| | 16-03102 | 4/12/2016 | 3/22/2016 | 3/23/2016 | 3/24/2016 | KSALLINGS | | Eberline | Auxier & Associates, Inc. | Tare (g) | Gross | (g) | Net | (g) | Perc | ent | Gam | ma | Special | |----------|---------------------------|----------|-----------|----------|-----------|----------|------------------------|--------|---------|----------|---------| | Fraction | Client ID | Pan Wt | Wet Wt. | Dry Wt. | Wet Wt. | Dry Wt. | Liquid | Solid | Dry Wt. | LEPS Wt. | Info | | 04 | SEDIMENT 2016-03-16A | 28.8600 | 1273.0600 | 743.5800 | 1244.2000 | 714.7200 | 42.56% | 57.44% | 0.0000 | 0.0000 | | | 05 | SEDIMENT 2016-03-16B | 29.1400 | 1389.3600 | 944.9200 | 1360.2200 | 915.7800 | 32.67% | 67.33% | 0.0000 | 0.0000 | | | 06 | SEDIMENT 2016-03-16B DUP | 29.0300 | 1180.8600 | 824.3000 | | | | 69.04% | 0.0000 | 0.0000 | - | dien en menden geste i | - | 1000 | **** | | | | | | | | | | | | | | | | | | | ***** | | | Comments | | 4 | |---------------|--|---| | Special Codes | H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments) | | Technician: Karry Scar Date: Analysis: Rough Prep Logbook Analysis: UUISO Page No. 9578 SPIKE Spectrum File: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 Batch Identification: 1603102A-UU Sample Identification: Sample Geometry: Shelf 2 Procedure Description: U iso Detector Name: Alpha_056 Chamber Serial Number: 10006124B Detector Serial Number: 56 01 Reagent Blank: Env. Background: System Bkgd 149954 <not performed> Sample Size: 1.000E+000 +/- 0.000E+000 gram Sample Date/Time: 4/11/2016 6:26:08 AM Acquisition Date/Time: Acquisition Live Time: 4/11/2016 8:40:57 AM Acquisition Real Time: 170.0 minutes 170.0 minutes Tracer Certificate: U232_UU-10A Tracer Quantity: 0.606 mL 0.1937 +/- 0.0111 Effective Efficiency: Counting Efficiency: 0.1647 +/- 0.0029 on 12/11/2015 11:36:29 AM Chem. Recovery Factor: 1.1761 +/- 0.0703 Control Certificate Name: NatU_U-8A Chem. Recov. of Control: U-238 0.767368 +/- .0.061276 Peak Match Tolerance: 0.150 MeV | | | | <i></i> | | | | | | |----------------------------------|--------------|----------------------------------|-------------------------------------|--------------------------------|------------------------------|--|---------------------------|---------| | | | | PEAK | AREA RI | EPORT | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | U-232
U-234
U-235
U-238 |
Т | 5.273
4.729
4.386
4.151 | 367.64
457.15
30.32
452.32 | 10.24
9.18
36.06
9.22 | 1.36
0.85
0.68
0.68 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 6.3
22.6
3.0
9.4 | | T = Tracer Peak used for Effective Efficiency NUCLIDE ANALYSIS RESULTS | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | U-232 | 0.994 | 5302.50* | 5.04E+000 +/- 5.64E-001 | 9.40E-002 +/- 1.05E-002 | | U-234 | 0.993 | 4761.50* | 6.27E+000 +/- 9.07E-001 | 8.21E-002 +/- 9.19E-003 | | U-235 | 1.000 | 4385.50* | 5.13E-001 +/- 1.94E-001 | 9.54E-002 +/- 1.07E-002 | | II-238 | 0.992 | 4184.40* | 6.17E+000 +/- 8.95E-001 | 7.70E-002 +/- 8.62E-003 | **************** ***** SPECTRAL DATA REPORT ***** ************* Sample Title: 01 Elapsed Live time: Elapsed Real Time: 10200 10200 | ou 7 [| - 1 | 1 | 1 | 1 | | | | | |--------------|---------------|--------|---------------------------------|------------------|--------|--------|-----------|--------------------------------------| | Channel 1: | 0 |
0 | 0 | 1 | 0 | 0 | 0 | o ¹ | | 9: | 0 | 0 | ő | ō | 1 | 0 | 1 | 0 | | 17: | ŏ | Ö | Ŏ | Ō | 0 | 0 | 0 | 0 | | 25: | ő | Ö | 0 | Ô | 0 | 0 | 0 | 0 | | 33: | Ö | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 41: | Ö | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | Õ | 0 | 1 | 1 | 0 | 1 | 0 | 1 | | 57: | ī | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 97: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 105: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 1 | 0 | 0 | .0 | 0 | 1 | 0 | 1 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 129: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 137: | 1 | 0 | 1 | 0 | 1 | 0 | 1
0 | 0
0 | | 145: | 0 | 0 | 0 | 0 | 1 | 0 | | 1 | | 153: | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | | 161: | 0 | 0 | 0 | 0 | 1 | 3
1 | 1 | 2 | | 169: | 2 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | | 177: | 0 | 1 | 0 | 0 | 0
1 | 0 | 1 | 0 | | 185: | 0 | 0 | 2 | 1
0 | 0 | 0 | 0 | 6 | | 193: | 1 | 1 | 1
0 | 0 | 3 | 2 | | Ö | | 201: | 2 | 1
1 | 0 | 2 | 1 | 4 | | 1 | | 209: | 2 | 4 | 7 | 1 | 3 | 7 | | 8 | | 217: | 4
3 | 5 | 4 | 15 | 8 | 10 | | 12 | | 225:
233: | <i>3</i>
7 | 8 | 10 | 10 | 9 | 5 | | 13 | | 233:
241: | 13 | 11 | 15 | 14 | 10 | 11 | | 16 | | 241: | 8 | 12 | 10 | 14 | 15 | 13 | | 7 | | 249:
257: | 5 | 5 | 5 | 4 | 2 | 0 | | 1 | | 265: | 0 | 0 | Ō | ō | 0 | 0 | | 0 | | 273: | Ö | ŏ | Ŏ | 0 | 0 | 0 | 1 | 0 | | 281: | Õ | Ō | 0 | 0 | 1 | 2 | 1 | 1 | | 289: | 2 | | 0 | 0 | 1 | 2 | 0 | 0 | | 297: | 2
0 | 1
1 | 0 | 1 | 0 | 0 | 0 | 1 | | 305: | 0 | 0 | 1 | 1 | 0 | 0 | | 0 | | 313: | 1 | 0 | 2 | 1
1
2
0 | 1 | 0 | | 0 | | 321: | 0 | 0 | 3 | | 0 | 0 | | 1 | | 329: | 1 | 0 | 0
0
1
2
3
0
1 | 0 | 0 | | | 0 | | 337: | 1 | 0 | 1 | 0 | 0 | | | 0 | | 345: | 0 | 0 | 0 | 0 | | | . 1 | 0 | | 353: | 1 | 1 | 1 | 0 | 0 | | 0 | 0
1
0
0
1
0
0
0 | | 361: | 0 | 0 | 0 | 2 | 0 | 1 | . 0 | U | 753: 761: 769: 777: 785: 793: | Channel | Data Repo | ort | | 4/11/2016 | 2:25:2 | 26 PM | | Page 3 | |--|-----------|----------|---|-------------|-------------|-------------|-------------|---| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample T | Title: 0 | 1 | | | · | | | | Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 889: 905: 913: 929: 937: 945: 969: 977: 985: 993: | | | | | | | | 000000000000000000000000000000000000000 | | 1001:
1009:
1017: | 0 0 | 0 0 | 0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | Spectrum File: BLANK Batch Identification: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 1603102A-UU Sample Identification: Sample Geometry: 02 Shelf 2 Procedure Description: U iso Detector Name: Alpha 057 Chamber Serial Number: Detector Serial Number: 57 01017326A Reagent Blank: Env. Background: System Bkgd 149955 <not performed> 1.000E+000 +/- 0.000E+000 gram Acquisition Date/Time: 4/11/2016 6:26:08 AM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 170.0 minutes Tracer Certificate: Tracer Quantity: U232 UU-10A 0.606 mL Effective Efficiency: 0.1849 +/- 0.0108 Counting Efficiency: 0.1636 +/- 0.0029 on 12/11/2015 11:36:28 AM Chem. Recovery Factor: 1.1301 +/- 0.0687 Peak Match Tolerance: 0.150 MeV | | | | PEAK | AREA RI | EPORT | | | | |----------------------------------|---|----------------------------------|--------------------------------|-----------------------------------|------------------------------|--|---------------------------|--| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | U-232
U-234
U-235
U-238 | T | 5.283
4.762
4.423
4.174 | 351.00
7.00
2.00
4.66 | 10.48
79.20
169.74
94.59 | 0.00
0.00
0.00
0.34 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 25.9
3.0
3.0
3.0 | | T = Tracer Peak used for Effective Efficiency |
_ | - | | | |--------------|--------------|---------|--| |
NUCLIDE | ANALYSIS | RESULTS | | | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | U-232 | 0.997 | 5302.50* | 5.04E+000 +/- 5.75E-001 | 8.61E-002 +/- 9.82E-003 | | U-234 | 1.000 | 4761.50* | 1.01E-001 +/- 8.04E-002 | 8.61E-002 +/- 9.82E-003 | | U-235 | 0.990 | 4385.50* | 3.54E-002 +/- 6.03E-002 | 1.06E-001 +/- 1.21E-002 | | U-238 | 0.999 | 4184.40* | 6.66E-002 +/- 6.35E-002 | 6.84E-002 +/- 7.80E-003 | *************** **** S P E C T R A L D A T A R E P O R T ***** ********************** Sample Title: 02 Elapsed Live time: Elapsed Real Time: 10200 10200 | Channel - | - | | | l _ | _ | | | - | |--------------|---|-----|--------|--------------|--------|--------|---------|----------| | 1: | 0 | 0 | 0 | 0 | 1 | o ' | o' | o' | | 9: | ő | 0 | Ö | Ö | ō | Ō | Ō | 0 | | 17: | Ö | 0 | Ö | Ö | Ö | Ō | 0 | 0 | | 25: | ő | Ö | Õ | Ö | Ō | 0 | 0 | 0 | | 33: | Ö | Ö | Ö | Ö | Ō | 0 | 0 | 0 | | 41: | ĺ | Ö | 1 | Ō | 0 | 0 | 0 | 0 | | 49: | ō | Ō | Ō | 0 | 0 | 0 | 0 | 0 | | 57: | Ö | Ö | Ō | 1 | 0 | 0 | 0 | 0 | | 65: | Ō | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
105: | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 137: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 145: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 153: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 161: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 169: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 177: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 185: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 193: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 201: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 209: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 217: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | 225: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 233: | 0 | 0 | 1 | 0 | 1 | 1
0 | 0
0 | 0 | | 241: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 249: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | Ö | | 257: | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | 1 | | 265: | 0 | 0 | 0
0 | 0 | 0 | 0 | . 0 | Ō | | 273: | 0 | 0 | ^ | 0 | 0 | 0 | , 0 | 0 | | 281: | 0 | 0 | 0 | 0 | 0 | 0 | Ö | ő | | 289: | 0 | 0 | 0 | 0 | 0 | Ö | Ŏ | ő | | 297: | 0 | 0 | 0 | 0 | 1 | Ö | ő | Ő | | 305:
313: | 0 | Ö | Ö | 0 | Ō | Ö | Ö | Ō | | 321: | 0 | 0 | 0 | 0 | Ö | Ö | Ö | Ö | | 329: | 0 | Ö | Ö | 0
0 | Ö | Ö | Ō | 0 | | 337: | 0 | 0 | Ö | Ö | Ö | Ö | Ö | ō | | 345: | 0 | 0 | Ö | Ö | Ö | Ö | Ö | 1 | | 353: | Ö | Ö | ő | Ö | Ö | Ö | Ō | 0 | | 361: | Ö | Ö | ő | Ö | Ö | Ō | 0 | 1 | | J V • | v | ~ | • | • | - | | | | | Channel | Data Rej | port | | 4/11/20: | 16 2:2! | 5:34 PM | | Page | |-----------------------|----------|---------|----|-----------------------|--------------|---------|----|------| | 369: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample | Title: | 02 | | | | | | | Channel | | | | | | | | | | 377: | ' o' | o · | 0 | 0 | 0 | 0 | 1 | 0 | | 385: | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | | 393: | Ô | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 401: | Ö | Ö | 0 | Ó | 0 | 0 | 0 | 0 | | 409: | 0 | 0 | Ö | Ō | Ō | 0 | 0 | 0 | | 417: | 0 | 0 | 0 | Ö | Ö | 0 | 1 | 0 | | | 0 | 0 | 0 | 1 | Ö | Ö | 0 | 0 | | 425: | J | 1 | 0 | 0 | Ö | ő | Ö | Ō | | 433: | 0 | 0 | 1 | 0 | 0 | Ö | ő | ō | | 441: | 0 | | | 0 | 0 | 0 | ő | Ö | | 449: | 0 | 0 | 0 | 0 | 0 | 0 | ő | Ö | | 457: | 1 | 1 | 0 | | 0 | 0 | 0 | ő | | 465: | 0 | 0 | 0 | 1 | • | 0 | 0 | ő | | 473: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 481: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 489: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 497: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 505: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 513: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 521: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 529: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 537: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 545: | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 553: | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | 561: | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | 569: | 2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | | 577 : | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 1 | | 585: | 0 | 2 | 1 | 0 | 2 | 3 | 3 | 0 | | 593: | 0 | 3 | 1 | 1 | 2 | 5 | 0 | 5 | | 601: | 6 | 0 | 1 | 7 | 2 | 7 | 8 | 6 | | 609: | 5 | 8 | 3 | 8 | 7 | 6 | 11 | 6 | | 617: | 11 | 3 | 8 | 3 | 9 | 7 | 13 | 11 | | 625: | 9 | 11 | 18 | 13 | 16 | 18 | 14 | 13 | | 633: | 14 | 11
7 | 9 | 9 | 9
16
5 | 18
3 | 1 | 1 | | 641: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 649: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 657: | Ō | 0 | 0 | | 0 | 0 | 0 | 0 | | 665: | Ō | 0 | 0 | | 0 | 0 | 0 | 0 | | 673: | Ō | 0 | 0 | | 0 | 0 | 0 | 0 | | 681: | Ō | 0 | 0 | | 0 | 0 | 0 | 0 | | 689: | 1 | 0 | 0 | | 0 | 0 | 0 | 0 | | 697: | 0 | ő | 0 | | 0 | 0 | 0 | 1 | | 705: | Ŏ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 713: | Ö | Ö | 0 | 0 | 0 | 0 | 1 | 0 | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 729: | 0 | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 729:
73 7 : | 0 | 0 | 0 | 0
0
0
0
0 | Ö | 0 | 0 | 0 | | 737:
745: | 0 | 0 | 0 | 0 | 0 | Ō | 0 | 0 | | | 0 | 0 | 0 | 0 | Ö | 0 | 0 | Ō | | 753: | 1 | 0 | 0 | | Ö | ő | 0 | Ō | | 761: | 1 | 0 | 0 | 0 | 0 | Ő | Ö | Ö | | 769: | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | | 777: | 0 | 0 | 0 | | 0 | 0 | 0 | ō | | 785: | | 0 | | | 0 | 0 | 0 | Ö | | 793: | 0 | U | U | J | U | J | U | Ŭ | | Channel | Data Report | = | | 4/11/2016 | 2:25: | 34 PM | | Page | 3 | |--|----------------------------|-----------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sample Tit | cle: | 02 | | | | | | | | Channel 809: 817: 825: 833: 841: |
0
0
0
0 |
0
0
0
0 |
0
0
0
0 |
0
0
0
0 |
0
0
0
0 |
0
0
0
0 | -
0
0
0
0 | 0
0
0
0
0 | | | 849:
857:
865:
873:
881: | 0
0
0
0 | 0 0 0 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | | | 889:
897:
905:
913: | 0
0
0
0 | 0
0
0
0 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | | | 921:
929:
937:
945:
953:
961: | 0
0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0 0 0 0 | 0
0
0
0 | | | 969:
977:
985:
993:
1001:
1009: | 0
0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0 0 0 0 | | Spectrum File: SEDIMENT 2016-03-16A-DUP \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 1603102A-UU Batch Identification: Sample Identification: 03 Sample Geometry: Procedure Description: U iso Shelf 2 Detector Name: Chamber Serial Number: 01017326B Detector Serial Number: 58 Reagent Blank: Alpha 058 Env. Background: System Bkgd 149956 <not performed> 9.982E-001 +/- 0.000E+000 gram Acquisition Date/Time: Acquisition Live Time: Acquisition Real Time Tracer Certificate: Tracer Quantity: U232 UU-10A 0.604 mL Effective Efficiency: 0.1547 +/- 0.0097 Counting Efficiency: 0.1680 +/- 0.0030 on 12/11/2015 11:36:26 AM Chem. Recovery Factor: 0.9207 +/- 0.0601 Peak Match Tolerance: 0.150 MeV | | | | PEAR | AREA RE | PORT | | | | | |----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|------------------------------|--|--------------------------|--|--| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | | U-232
U-234
U-235
U-238 | T | 5.247
4.701
4.372
4.141 | 292.83
68.00
6.00
52.81 | 11.46
23.94
86.43
27.32 | 0.17
0.00
0.00
1.19 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 7.8
4.0
3.0
3.0 | | | T = Tracer Peak used for Effective Efficiency NUCLIDE ANALYSIS RESULTS | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | U-232 | 0.979 | 5302.50* | 5.04E+000 +/- 6.20E-001 | 7.18E-002 +/- 8.84E-003 | | U-234 | 0.974 | 4761.50* | 1.17E+000 +/- 3.15E-001 | 1.03E-001 +/- 1.27E-002 | | U-235 | 0.999 | 4385.50* | 1.27E-001 +/- 1.11E-001 | 1.27E-001 +/- 1.57E-002 | | U-238 | | 4184.40* | 9.04E-001 +/- 2.71E-001 | 1.13E-001 +/- 1.39E-002 | **************** Sample Title: 03 Elapsed Live time: 10200 Elapsed Real Time: 10200 | Channel | | | | _ | | | | | |--------------|---------------|--------|---------|-------------|-------------|---------|----------|----------------------------| | 1: | 0 | 0 | 0 | 1 | oʻ | o ˈ | o' | o' | | 9: | Ö | Ö | Ö | 0 | Ō | 0 | 0 | 0 | | 17: | Ö | Ö | Ö | Ö | 0 | 0 | 0 | 0 | | 25: | ő | Ö | Ō | 1 | 0 | 0 | 0 | 0 | | 33: | Ö | Ö | Ō | 0 | 0 | 0 | 0 | 0 | | 41: | Ö | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | Ô | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57: | 0 | 1 . | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 137: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 145: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 153: | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 161: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 169: | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0
0 | | 177: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 185: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 193: | 1 | 0 | 0 | 0 | 0
1 | 1 | 0 | 0 | | 201: | 1 | 0 | 0 | 0
1 | 1 | 2 | 1 | 2 | | 209: | 0 | 0 | 1
0 | 1 | 0 | 0 | <u> </u> | 1 | | 217: | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | | 225: | 0 | 1
1 | 1 | 1 | 0 | i | 1 | 2 | | 233: | 2
1 | 3 | 0 | 1 | 2 | 1 | Ō | 5 | | 241: | 0 | 3 | 0 | 0 | 0 | ī | í | Ō | | 249:
257: | 0 | 0 | 1 | 0 | 1 | Ō | ō | 1 | | 265: | 0 | 1 | 0 | Ö | ō | 1 | Ō | 0 | | 273: | Ö | 0 | ő | Õ | Ö | ō | 0 | 0 | | 281: | Ö | Ö | 0 | Ö | Ō | Ō | 0 | 1 | | 289: | Ö | Ö | Ö | 0 | | 0 | 0 | 0 | | 297: | Ö | Ö | Ō | 0 | 0
2
0 | 0 | 0 | 0 | | 305: | Ö | Ö | Ö | 0 | 0 | 0 - | 0 | 0 | | 313: | Ö | 0 | 0
0 | 0
0 | 0 | 1 | 0 | 1 | | 321: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 329: | Ö | 0 | 0 | 0
0
0 | 0 | 0 | 0 | 0
0
1
0
0
0 | | 337: | Ō | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 345: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 353: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 361: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | | | | | | | | | | Channel | Data Rep | ort | | 4/11/201 | 6 2:25 | :40 PM | | Page | 2 | |--------------|------------------|-----------|-----|----------|--------|--------|----------------|---------|---| | 369: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | | Sample | Title: | 03 | | | | | | | | Channel |
 - | _ | | | - | _ | | | | | 377: | 0 | 0 ' | o ' | o' | o ˈ | o ' | o ['] | o ` | | | 385: | 1 | 0 | Ö
 ĺ | 1 | 3 | 2 | 0 | | | 393: | 2 | 0 | Ö | ī | ō | 0 | 1 | 0 | | | | 0 | 1 | 1 | 2 | ĺ | Ō | 2 | 1 | | | 401: | | 0 | 0 | 0 | 0 | 2 | 2 | 1 | | | 409: | 0 | | 3 | 0 | 1 | Õ | 3 | ī | | | 417: | 1 | 1 | 2 | 2 | 1 | 4 | 1 | 2 | | | 425: | 1 | 2 | | | 1 | 3 | 1 | 2 | | | 433: | 1 | 1 | 0 | 1 | | 0 | 1 | 1 | | | 441: | 1 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | | | 449: | 1 | 1 | 0 | 0 | 0 | | 0 | 0 | | | 457: | 0 | 0 | 0 | 0 | 0 | 0 | | . 0 | | | 465: | 0 | . 0 | 0 | 1 | 0 | 0 | 0 | | | | 473: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 481: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | 489: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | 497: | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 505: | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | | 513: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | 521: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 529: | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | 537: | 0 | 1 | 1 | 0 | 1 | 3 | 1 | 0 | | | 545: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | | 5 53: | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 3 | | | 561: | 0 | 0 | 1 | 1 | 1 | 3 | 3 | 0 | | | 569: | 1 | 2 | 3 | 1 | 4 | 2 | 2 | 4 | | | 577 : | 4 | 0 | 2 | 0 | 5 | 3 | 1 | 1 | | | 585: | 0 | 7 | 5 | 3 | 4 | 8 | 10 | 2 | | | 593: | 5 | 2 | 7 | 5 | 7 | 5 | 10 | 7 | | | 601: | 5 | 3 | 4 | 6 | 6 | 5 | 11 | 9 | | | 609: | 4 | 6 | 5 | 4 | 6 | 8 | 4 | 7 | | | 617: | 8 | 8 | 7 | 9 | 8 | 5 | 5 | 4 | | | 625: | 8
3 | 6 | 3 | 3 | 6 | 0 | 1 | 1 | | | 633: | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | 641: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 649: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 657: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 665: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | 673: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | 681: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | 689: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 697: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 705: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 713: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 729: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 737: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 745: | Ö | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | | 753: | ő | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | | 761: | ŏ | Ö | Ō | 1 | 0 | 0 | 0 | 0 | | | 769: | Ō | Ö | Ō | 0 | 0 | . 0 | 0 | 0 | þ | | 777: | Ö | Ō | Ō | 0 | 0 | 0 | 0 | 0 | | | 785: | 0 | Ö | 0 | Ō | 0 | 0 | 0 | 0 | | | 793: | Ö | 0 | Ō | Ō | 0 | 0 | 0 | 0 |) | | ,,,,,, | Ŭ | J | J | - | | | | | | | Channel Dat | a Repor | rt | | 4/11/2016 | 2:25:4 | 10 PM | | Page 3 | |----------------|---------|--------|-------|-----------|--------|------------|--------|--------| | 801: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | Sa | mple Ti | tle: | 03 | | | | | | | Channel | 0 |
0 |
0 | | 0 | - - |
0 | 0 | | 817: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 833: | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0
0 | | 841: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ő | | 857: | 0 | 0
0 | 0 | 0 | 0 | 0 | 0 | Ö | | 865: | 0
0 | 0 | 0 | 0 | 0 | Ö | Ö | Ö | | 873:
881: | 0 | 0 | 0 | 0 | 0 | Õ | Ö | Ō | | 889: | 0 | 0 | 0 | ŏ | Ö | Ö | Ö | 0 | | 897: | 0 | 0 | 0 | ő | Ö | Ō | 0 | 0 | | 905: | 0 | Ö | 0 | Ö | 0 | 0 | 0 | 0 | | 913: | Ŏ | Ō | Ō | 0 | 0 | 0 | 0 | 0 | | 921: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 937: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 945: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 953: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 961: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0
0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | 1001: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 1009:
1017: | 0
0 | . 0 | 0 | 0
0 | . 0 | 0 | 0 | ő | Spectrum File: Batch Identification: Sample Identification: Sample Geometry: Procedure Description: SEDIMENT 2016-03-16A \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 1603102A-UU 04 Shelf 2 U iso Detector Name: Chamber Serial Number: Detector Serial Number: 3 Reagent Blank: Alpha_003 Env. Background: System Bkgd 149924 <not performed> Sample Size: Sample Date/Time: Acquisition Date/Time: 3/16/2016 6:26:08 AM Acquisition Date/Time: 4/11/2016 11:31:58 AM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 9.960E-001 +/- 0.000E+000 gram 3/16/2016 6:26:08 AM 170.0 minutes Tracer Certificate: Tracer Quantity: U232_UU-10A 0.605 mL Effective Efficiency: 0.1836 +/- 0.0107 Counting Efficiency: 0.1612 +/- 0.0029 on 12/11/2015 2:46:09 PM Chem. Recovery Factor: 1.1386 +/- 0.0695 Peak Match Tolerance: 0.150 MeV | | | | | . - | | | | | |----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|------------------------------|--|---------------------------|--| | | | | PEAF | C AREA RI | | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | U-232
U-234
U-235
U-238 | т | 5.255
4.714
4.412
4.126 | 347.83
65.32
5.32
76.83 | 10.51
24.40
91.11
22.39 | 0.17
0.68
0.68
0.17 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 11.9
8.0
3.0
4.5 | | T = Tracer Peak used for Effective Efficiency NUCLIDE ANALYSIS RESULTS | Nuclide | Id
Conf. | Energy
(keV) | Activity
(pCi/gram) | MDA
(pCi/gram) | | | | |-------------------------|-------------------------|----------------------------------|---|--|--|--|--| | U-232
U-234
U-235 | 0.984
0.984
0.995 | 5302.50*
4761.50*
4385.50* | 5.05E+000 +/- 5.78E-001
9.48E-001 +/- 2.56E-001
9.53E-002 +/- 8.75E-002 | 6.06E-002 +/- 6.94E-003
8.19E-002 +/- 9.37E-003
1.01E-001 +/- 1.16E-002
6.03E-002 +/- 6.90E-003 | | | | | 11_22Q | 0 976 | 4184 40* | 1.11E+000 +/- 2.79E-001 | 6.U3E-UUZ +/- 6.9UE-UU3 | | | | 0000148259.CNF Sample Title: 04 Elapsed Live time: 10202 Elapsed Real Time: 10202 | | птарьес | . 1000 | | | | | | | |---------|---------|--------|-------------|----------------------------|--------|--------|--------|-----------------------| | Channel | | | | | | | | | | 1: | 10202 | 10202 | 0 | 0 | 0 | 0 | 0 | 0 | | 9: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 33: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 41: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 137: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 145: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 153: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 161: | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 169: | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | | 177: | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | | 185: | 1 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | | 193: | 2 | 1 | 1 | 3 | 1 | 0 | 1 | 0 | | 201: | 1 | 0 | 0 | 0 | 1 | 3 | 0 | 3
1 | | 209: | 0 | 1 | 1 | 2 | 2 | 0 | 0 | 3 | | 217: | 2 | 3 | 1 | 3 | 0 | 4 | 2 | 2 | | 225: | 2 | 2 | 3 | 1 | 1 | 0 | 3
0 | 0 | | 233: | 2 | 1. | 0 | 0 | 1 | 3 | 0 | 0 | | 241: | 1 | 1 | 1 | 0 | 0 | 0 | | 0 | | 249: | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 1 | | 257: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Ō | | 265: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 273: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 281: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 289: | 0 | 0 | 0
0 | 1
0 | 0 | 0
1 | 0 | 0 | | 297: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 305: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 313: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | n | | 321: | 1 | 0 | 0
0
0 | U
1 | 0 | 0 | 0 | 0 | | 329: | 0 | 0 | 0 | T | 0 | Ö | Ö | 0 | | 337: | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0
0
0
0
0 | | 345: | 0 | 1 | 0
0 | ±
1 | 0 | 0 | 0 | Ô | | 353: | 1 | 0
0 | 0 | 0
0
1
0
1
1 | 0 | 0 | 0 | Õ | | 361: | 1 | U | U | U | U | J | · | | | Channel I | Data Repor | t ' | 4 | /11/2016 | 2:25:5 | 59 PM | | Page 2 | |--------------|------------|----------|----------|----------|--------|------------|--------|--------| | 369: | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | | | Sample Ti | tle: | 04 | | | | | | | Channel | | <u>-</u> | - | | | - - | | 0 | | 377: | 1 | 0 | 0
1 | 0
0 | 0
0 | 0
2 | 0
3 | 0 | | 385: | 0 | 1
0 | 0 | 2 | 0 | 0 | 0 | ĭ | | 393: | 2 | | 3 | 0 | 1 | 2 | 2 | 2 | | 401: | 0 | 2
1 | 3
4 | 3 | 2 | 3 | 1 | 4 | | 409: | 1
1 | 0 | 2 | 0 | 2 | 0 | 1 | 2 | | 417: | 1
1 | 4 | 1 | 2 | 0 | Ö | Ō | 1 | | 425: | 2 | 0 | 0 | 0 | 0 | í | Õ | 0 | | 433:
441: | 0 | 0 | 0 | 0 | 0 | Ō | Ő | Ö | | 441:
449: | 1 | 0 | 0 | 0 | 0 | Ö | Õ | Ö | | 449:
457: | 0 | 0 | 0 | 0 | 0 | Ö | Ö | Ō | | 457:
465: | 0 | 0 | 0 | Ö | 0 | ĺ | Ö | ĺ | | 405:
473: | 0 | 0 | 0 | Ö | Ö | Ō | Ö | 0 | | 4/3:
481: | 0 | 0 | 0 | ő | 0 | Ö | Ö | Ō | | 489: | 0 | 0 | 0 | Ö | 0 | Ö | Ō | 0 | | 409: | . 0 | 0 | 1 | Ö | Ö | Ö | Ö | 0 | | 505: | 0 | 0 | 0 | Ö | Ō | Ō | 0 | 1 | | 513: | 0 | Ö | Ö | 1 | Ö | 1 | 0 | 1 | | 521: | Ö | 1 | ĺ | 0 | 1 | 0 | 0 | 1 | | 529: | Ö | 1 | Ō | Ö | 2 | 0 | 1 | 1 | | 537: | 1 | Ō | Ŏ | Ō | 0 | 0 | 0 | 0 | | 545: | Ō | 1 | ĺ | Ō | 2 | 1 | 2 | 0 | | 553: | ĺ | 1 | 0 | 1 | 4 | 1 | 2 | 0 | | 561: | 0 | 3 | 6 | 4 | 4 | 3 | 2 | 2 | | 569: | 3 | 8 | 0 | 2 | 4 | 3 | 2 | 5 | | 577: | 9 | 6 | 5 | 4 | 6 | 5 | 9 | 8 | | 585: | 7 | 6 | 9 | 10 | 10 | 7 | 3 | 4 | | 593: | 8 | 8 | 7 | 7 | 10 | 5 | 10 | 7 | | 601: | 2 | 5 | 10 | 2 | 10 | 8 | 11 | 10 | | 609: | 4 | 6
1 | 9 | 10 | 12 | 6 | 7 | 4 | | 617: | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | | 625: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
 | 633: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 641: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 649: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 657: | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0
0 | | 665: | 0 | 0 | 0 | 0 | 0 | 0
0 | 1 | 0 | | 673: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 681: | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | ő | | 689: | 0 | 0 | 0
0 | 0 | 0 | 0 | 0 | Ö | | 697: | 0
0 | 0
0 | 0 | 0 | 0 | 0 | 0 | Ö | | 705:
713: | 0 | 0 | 0 | Ö | Ö | Ö | Ö | Ö | | 721: | 0 | 0 | Ö | Ö | Ő | Ö | 0 | Ō | | 721: | 0 | 0 | Ö | Ö | Ö | Ō | 0 | 0 | | 737: | ő | Ö | Ŏ | 0 | 1 | 1 | 2 | 0 | | 745: | ŏ | Ö | Ö | Ö | 0 | 0 | 0 | 0 | | 753: | Ö | Ö | Ō | 0 | 0 | 0 | 0 | 0 | | 761: | Ö | Ŏ | 0 | 0 | 0 | 0 | 0 | 0 | | 769: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 777: | Ō | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 785: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 793: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | | | | | | | | | | Channel | Data Repor | t | | 4/11/2016 | 2:25:5 | 59 PM | | Page 3 | |---------|------------|----------|----|-----------|--------|-------|---|------------| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample Ti | tle: | 04 | | | | | | | Channel | | - | | | | | - | - - | | 809: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 817: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 857: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 865: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 873: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 881: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 889: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 897: | 0 | 0 | 0 | 0 | 0 · | 0 | 0 | 0 | | 905: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 913: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 921: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | | 937: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 945: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 953: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 961: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 969: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1001: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1009: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1017: | 0 | 0 | 0 | 0 | 0 | O O | 0 | 0 | Spectrum File: SEDIMENT 2016-03-16B \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 Batch Identification: 1603102A-UU Sample Identification: 05 Sample Geometry: Shelf 2 Procedure Description: U iso Detector Name: Alpha 004 Chamber Serial Number: Detector Serial Number: 4 Reagent Blank: Env. Background: System Bkgd 149925 <not performed> Sample Size: 1.002E+000 +/- 0.000E+000 gram Sample Date/Time: Sample Date/Time: 3/16/2016 6:26:08 AM Acquisition Date/Time: 4/11/2016 11:31:59 AM Acquisition Live Time: 170.0 minutes 3/16/2016 6:26:08 AM Acquisition Real Time: 170.0 minutes Tracer Certificate: Tracer Quantity: U232 UU-10A 0.604 mL Effective Efficiency: 0.1668 +/- 0.0102 Counting Efficiency: 0.1879 +/- 0.0033 on 12/11/2015 2:46:10 PM Chem. Recovery Factor: 0.8881 +/- 0.0562 Peak Match Tolerance: 0.150 MeV | | | | PEAF | AREA RI | | | | | | | |---------|-------|-----------------|----------------|--------------------|--------------------|--------------------|---------------|--|--|--| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | | | U-232 |
Т | 5.253 | 316.00 | 11.04 | 0.00 | 0.00E+000 | 10.6 | | | | | U-234 | | 4.704 | 58.81 | 25.86 | 1.19 | 0.00E+000 | 3.4 | | | | | Ծ-235 | | 4.433 | 5.83 | 82.55 | 0.17 | 0.00E+000 | 2.9 | | | | | U-238 | | 4.120 | 63.00 | 24.89 | 0.00 | 0.00E+000 | 5.8 | | | | T = Tracer Peak used for Effective Efficiency |
 | | | | |-------------|----------|---------|----------| |
NUCLIDE | ANALYSIS | RESULTS | - | | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | U-232 | 0.983 | 5302.50* | 5.02E+000 +/- 5.99E-001 | 9.53E-002 +/- 1.14E-002 | | U-234 | 0.976 | 4761.50* | 9.34E-001 +/- 2.66E-001 | 1.05E-001 +/- 1.25E-002 | | U-235 | 0.984 | 4385.50* | 1.14E-001 +/- 9.53E-002 | 8.18E-002 +/- 9.75E-003 | | U-238 | 0.971 | 4184.40* | 9.96E-001 +/- 2.75E-001 | 9.48E-002 +/- 1.13E-002 | ************** **** SPECTRAL DATA REPORT ***** ***************************** Sample Title: 05 Elapsed Live time: Elapsed Real Time: 10201 10201 | Channel | - 1 | 1 _ | 1 | 1 | | | | | |--------------|--------|--------|--------|--------|--------|--------|---------|--------| | 1: | 10201 | 10201 | 0 | 0 | o' | 0 | 0 | o ' | | 9: | 0 | 0 | Ö | Ō | 0 | 0 | 0 | 0 | | 17: | Ő | Ö | 1 | Ō | 0 | 0 | 0 | 0 | | 25: | Ö | ŏ | 0 | Ō | 0 | 0 | 0 | 0 | | 33: | ő | Ö | Ō | Ō | 0 | 0 | 0 | 0 | | 41: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 5 7: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 137: | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | | 145: | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | 153: | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | 161: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | | 169: | 0 | 0 | 0 | 0 | 0 | 0 | 1
0 | 0 | | 177: | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | | 185: | 2 | 0 | 0 | 0 | 0 | 0 | 1
0 | 0
0 | | 193: | 0 | 2 | 1 | 1 | 1 | 1
1 | | 1 | | 201: | 1 | 1 | 2 | 2 | 0 | 2 | | 1 | | 209: | 2 | 3 | 0 | 2 | 3
0 | 1 | | 2 | | 217: | 0 | 1 | 0 | 1
2 | 0 | 2 | | 2 | | 225: | 1 | 1
3 | 2
1 | 2 | 1 | 0 | | 0 | | 233: | . 2 | 3
0 | 0 | 3 | 0 | 0 | | . 0 | | 241: | 0 | 0 | 0 | 0 | 0 | 0 | | Ō | | 249:
257: | 0
0 | 0 | 0 | 0 | 0 | Ö | | Ō | | 257:
265: | 0 | 0 | 0 | 1 | Ö | ō | - | 0 | | 273: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 281: | 0 | ő | Ŏ | 0 | 0 | 0 | 0 | 0 | | 289: | Ö | Ö | | 0 | 0 | 0 | 0 | 0 | | 297: | 0 | Ö | 1
0 | 0 | 0 | | 0 | 0 | | 305: | Ö | Ō | Ō | 0 | 0 | 0 | | 0 | | 313: | Ō | Ō | 0 | 0 | 0 | 1 | | | | 321: | Ö | Ō | 0 | 1 | 0 | 0 | 0 | 0 | | 329: | Ō | Ō | 0 | 0 | 1. | 0 | | . 0 | | 337: | 1 | 0 | 0 | 0 | 0 | 0 | | 0 | | 345: | 0 | 0 | 0 | 0 | 0 | | | 0 | | 353: | 1 | 0 | 0 | 1 | 0 | | | | | 361: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | Channel Data Report 4/11/2016 2:26:16 PM Page 2 369: 0 0 0 0 0 1 1 0 Sample Title: 05 | ž | sambre 11 | .cre. | , , | | | | | | |--------------|-----------|-------|-----------|----------------------|---|----|---|------------------| | Channel | | | . | . - | | | | <u>-</u> | | 377: | o · | 0 | 0 | 0 | 2 | 1 | 1 | 0 | | 385: | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | 393: | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 401: | Ō | 1 | 2 | 1 | 2 | 2 | 1 | 2 | | | 0 | ī | 1 | 2 | 2 | 3 | 1 | 0 | | 409: | | | 0 | 4 | ĩ | Ö | 0 | 0 | | 417: | 3 | 2 | | | 1 | 2 | 2 | 2 | | 425: | 2 | 3 | 0 | 1 | | 2 | Ō | Õ | | 433: | 2 | 0 | 1. | 1 | 0 | | 0 | 0 | | 441: | 0 | 2 | 0 | 0 | 0 | 0 | | | | 449: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 457: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 465: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 473: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 481: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 489: | ō | Ō | 0 | 0 | 1 | 0 | 0 | 0 | | 497: | 0 | . 0 | Ö | Ö | 0 | 0 | 0 | 0 | | | 0 | 1 | ŏ | ő | Ō | 0 | 0 | 1 | | 505: | | 0 | Ö | Ö | Ö | Ö | Ô | 0 | | 513: | 0 | | | 0 | 0 | ĺ | Ö | 0 | | 521: | 0 | 0 | 1 | | 0 | 0 | Ö | Ö | | 529: | 2 | 0 | 0 | 0 | | 0 | Ö | 0 | | 537: | 1 | 0 | 0 | 0 | 0 | | 0 | 0 | | 545: | 0 | 0 | 1 | 0 | 0 | 0 | | 0 | | 553: | 0 | 0 | 1 | 1 | Ō | 2 | 0 | | | 561: | 2 | 0 | 0 | 3 | 1 | 2 | 1 | 2 | | 569: | 1 | 0 | 1 | 4 | 3 | 2 | 1 | 3 | | 577 : | 6 | 5 | 0 | 3 | 5 | 0 | 1 | 4 | | 585: | 4 | 4 | 3 | 3 | 6 | 5 | 2 | 3 | | 593: | 8 | 5 | 2 | 3 2 | 8 | 5 | 7 | 4 | | 601: | 7 | 10 | 10 | 9 | 9 | 12 | 6 | 7 | | 609: | 9 | 9 | 6 | 11 | 5 | 7 | 9 | 8 | | 617: | 14 | 3 | 12 | 7 | 7 | 5 | 8 | 3 | | 625: | 2 | 4 | 1 | 2 | 1 | 0 | 0 | 0 | | 633: | 0 | 1 | ō | 0 | 0 | 0 | 0 | 0 | | 641: | 0 | Ō | Ö | Ö | Ō | 0 | 0 | 0 | | | 0 | 0 | 0 | Ŏ | Ö | Ō | 0 | 2 | | 649: | | | | Ö | Ö | Ö | 0 | 0 | | 657: | 0 | 0 | 0 | 0 | 0 | Ö | Ö | Ô | | 665: | 0 | 0 | 0 | | 0 | Ö | Ö | 0
0 | | 673: | 0 | 0 | 0 | 0 | | 0 | 0 | Ö | | 681: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 689: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 697: | 0 | 0 | 1 | 0 | 0 | 0 | | 1 | | 705: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
1
0 | | 713: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0
0 | | 729: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ü | | 737: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 745: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 753: | Ö | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 761: | Ö | Ö | Ö | 0 | 0 | 0 | 0 | 0
0 | | 769: | 0 | Ö | Ö | Ö | 0 | 0 | 0 | 0 | | 103;
777. | 0 | 0 | Ö | Ö | Ö | Ō | 0 | 0 | | 777: | | 0 | 0 | ő | Ö | Ö | 0 | 0 | | 785: | 0 | 0 | 0 | 0 | 0 | ŏ | Ö | 0 | | 793: | 0 | U | U | J | Ŭ | • | - | | | | | | | | | | | | | Channel 1 | Data Repor | t | 4 | 1/11/2016 | 2:26: | l6 PM | | Page 3 | | |--|--|----------------------------|---------------|----------------------------|----------------------------|----------------------------|--|----------------------------|--| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sample Ti | tle: | 05 | | | | | | | | Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 881: 889: 905: 913: 921: 929: 937: 945: | Sample T10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | |
1
0
0
0
0
0
0
0
0
0
0
0 | | | |
953:
961:
969:
977:
985:
993:
1001:
1009: | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0 0 0 0 0 0 0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0 0 0 0 0 0 | 0
0
0
0
0
0 | | SEDIMENT 2016-03-16B DUP Spectrum File: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001482 1603102A-UU Batch Identification: Sample Identification: Sample Geometry: 06 Shelf 2 Procedure Description: U iso Detector Name: Alpha 010 Chamber Serial Number: Detector Serial Number: 10 Env. Background: System Bkgd 149926 Reagent Blank: <not performed> Sample Size: 1.005E+000 +/- 0.000E+000 gram Sample Date/Time: 3/16/2016 6:26:08 AM Acquisition Date/Time: 4/11/2016 11:31:57 AM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 170.0 minutes Tracer Certificate: Tracer Quantity: U232 UU-10A 0.602 mL Chem. Recovery Factor: Effective Efficiency: 0.1536 +/- 0.0097 Counting Efficiency: 0.1895 +/- 0.0033 on 12/11/2015 2:46:10 PM Chem. Recovery Factor: 0.8102 +/- 0.0532 Peak Match Tolerance: 0.150 MeV | | | | PEAR | PEAK AREA REPORT | | | | | | | | |---------|-------|-----------------|----------------|--------------------|--------------------|--------------------|---------------|--|--|--|--| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | | | |
 |
T | 5.251 | 289.62 | 11.57 | 2.38 | 0.00E+000 | 4.7 | | | | | | U-234 | _ | 4.716 | 53.96 | 27.27 | 2.04 | 0.00E+000 | 3.4 | | | | | | บ-235 | | 4.409 | 7.32 | 76.28 | 0.68 | 0.00E+000 | 2.9 | | | | | | U-238 | | 4.117 | 39.66 | 31.28 | 0.34 | 0.00E+000 | 3.6 | | | | | T = Tracer Peak used for Effective Efficiency ______ NUCLIDE ANALYSIS RESULTS | Nuclide | Id
Conf. | Energy
(keV) | Activity
(pCi/gram) | MDA
(pCi/gram) | |----------------|----------------|----------------------|---|---| | U-232
U-234 | 0.981 | 5302.50*
4761.50* | 4.99E+000 +/- 6.19E-001
9.29E-001 +/- 2.78E-001
1.55E-001 +/- 1.20E-001 | 1.41E-001 +/- 1.75E-002
1.34E-001 +/- 1.66E-002
1.20E-001 +/- 1.49E-002 | | U-235
U-238 | 0.996
0.969 | 4385.50*
4184.40* | 6.80E-001 +/- 1.20E-001 | 8.19E-002 +/- 1.02E-002 | **************** Sample Title: 06 Elapsed Live time: Elapsed Real Time: 10201 10201 | ~1 | 1 | ı | 1_ | 1 | 1 | | | | |---------|-------|------------|-------------|--------|--------|-----|-----|----------------------------| | Channel | 10001 | 10201 | 0 | 0 | 0 | 0 | ' 0 | ' o' | | 1: | 10201 | 10201
0 | 0 | 0 | 0 | 0 | Ō | 0 | | 9: | 0 | | 0 | 0 | 0 | 0 | Ō | Ō | | 17: | 0 | 0 | | 0 | 0 | 0 | ő | Ō | | 25: | 0 | - 0 | 0 | | 0 | 0 | 0 | ő | | 33: | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | | 41: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 57: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 65: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 121: | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | | | | 137: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | 145: | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 153: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 161: | Ō | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 169: | 1 | Ö | 1 | 0 | 0 | 0 | 0 | 0 | | 177: | 0 | Ö | ō | 0 | 0 | 0 | 1 | . 0 | | 185: | 1 | 1 | 2 | Ö | 0 | 1 | | 0 | | 193: | 0 | 2 | ō | 2 | 0 | C | | 2 | | 201: | 0 | 0 | ő | 2 | 1 | ī | | | | 201: | 2 | 1 | ĺ | ō | 0 | Ċ | | | | | 0 | 0 | Ō | ĺ | 2 | 1 | | | | 217: | 1 | 0 | 1 | 0 | 0 | 1 | | | | 225: | 0 | 0 | Ō | 1 | 1 | C | | | | 233: | | | 0 | 1 | 0 | · 0 | | | | 241: | 1 | 0 | 0 | 0 | 0 | C | | | | 249: | 0 | 0 | 0 | 0 | 0 | (| _ | | | 257: | 0 | 0 | | 2 | 0 | (| | _ | | 265: | 0 | 1 | 0 | 0 | 1 | | • | | | 273: | 0 | 0 | 0 | | 0 | | | | | 281: | 0 | 0 | 0 | 0 | | | • | | | 289: | 0 | 0 | 0 | 0 | 0 | | | | | 297: | 0 | 0 | 0 | 0
1 | 0 | | | | | 305: | 0 | 1 | 0 | Τ. | 0 | | | , 1 | | 313: | 0 | 0 | 0 | 1 | 0 | | | , , | | 321: | 0 | 0 | 1
0
0 | 0 | 0 | | | | | 329: | 1 | 0 | 0 | 0 | 0 | | |) 0 | | 337: | 0 | 0 | 0 | 0 | O | | | 0 | | 345: | 0 | 0 | 0 | 0 | C | _ | | 0 | | 353: | 0 | 1 | 0 | 0
2 | 1
1 | . (| | 0
0
0
1
0
1 | | 361: | 0 | 0 | 0 | 2 | 1 | | 1 : | 1 | | | | | | | | | | | | Channel : | Data Report | t | 4 | /11/2016 | 2:26:3 | 33 PM | | Page | 2 | |--------------|-------------|--------------|---|----------|--------|--------|--------|---------------------------|---| | 369: | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sample Ti | tle: 0 | 6 | | | | | | | | | 1 | ı | 1 | 1 | İ | | | 1 | | | Channel | | - | | | | 1 | 0 | 1 | | | 377: | 0 | 0 | 0 | 0 | 1
0 | 0 | 0 | Ō | | | 385: | 1 | 1 | 0 | 0 | | 1 | 1 | 1 | | | 393: | 1 | 1 | 0 | 0 | 1 | | 0 | i | | | 401: | 2 | 1 | 0 | 1 | 1 | 0 | = | | | | 409: | 4 | 0 | 1 | 0 | 0 | 0 | 0 | 4
0 | | | 417: | 0 | 2 | 2 | 2 | 1 | 2 | 2 | 1 | | | 425: | 0 | 1 | 2 | 1 | 2 | 4 | 1 | $\overset{\mathtt{L}}{1}$ | | | 433: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 441: | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 449: | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | | 457: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | 465: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 473: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | 481: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | . 0 | | | 489: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | 497: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 505: | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | 513: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 521: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 529: | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | | 537: | 0 | 0 | 0 | 2 | 1 | 1 | 2 | 0 | | | 545: | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | | | 553: | 2 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | | | 561: | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 2 | | | 569: | 1 | 2 | 3 | 2 | 2 | 2 | 0 | 4 | | | 577 : | 4 | 6 | 5 | 1 | 3 | 3 | 5 | 1 | | | 585: | 4 | 2 | 5 | 4 | 5 | 5 | 7 | 0 | | | 593: | 4 | 5 | 8 | 8 | 8 | 3 | 8 | 7 | | | 601: | 2 | 7 | 8 | 9 | 5 | 9 | 7 | 5 | | | 609: | 14 | 8 | 2 | 4 | 15 | 7 | 4 | 10 | | | 617: | 5 | 6 | 7 | 3 | 5 | 4 | 2 | 3 | | | 625: | 1 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | | | 633: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | | 641: | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | 649: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 657: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 665: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 673: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 681: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | 689: | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0
0 | | | 697: | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | | | 705: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 713: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 729: | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | 737: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 745: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 753: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 761: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 769: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | 777: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | | 785: | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | | | 793: | 0 | 0 | 0 | 0 | 0 | U | U | U | | | Channel | Data Repor | t | - 4 | 4/11/2016 | 2:26:3 | 33 PM | | Page 3 | |--------------|------------|------|-----|-----------|--------|-------|-----|--------| | 801: | 0 | 0 | 0 | .0 | 0 | 0 | 0 | 0 | | | Sample Ti | tle: | 06 | | | | | | | Channel | | | - | | | | | | | 809: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 817: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 857: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 865: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 873: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 881: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 889: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 897: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 905: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 913: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 921: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 937: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 945: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 953 : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 961: | . 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ó | | 1001: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1009: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1017: | 0 | Ō | 0 | 0 | 0 | 0 | 0 . | 0 | # QA SUMMARY REPORT Review Of QA Results - Pulser Check Date : 4/11/2016 Time : 5:38:58 AM | CHAMBER | DEVICE | PARAMETER | FLAG | DATE | |-----------|--------------------|---------------------|----------|----------------------| | Alpha 001 | 21f | ALL · | Not Done | | | Alpha 002 | 21f | ALL | Not Done | | | Alpha 003 | 21f | ALL | Passed | 4/11/2016 5:09:37 AM | | Alpha 004 | 21f | ALL | Passed | 4/11/2016 5:09:38 AM | | Alpha 005 | 21f | ALL | Not Done | | | Alpha 006 | 21f | ALL | Not Done | | | Alpha 007 | 21f | ALL | Not Done | | | Alpha 008 | 21f | ALL | Not Done | | | Alpha 009 | 21f | ALL | Not Done | | | Alpha 010 | 21f | ALL | Passed | 4/11/2016 5:09:39 AM | | Alpha 011 | 21f | ALL | Passed | 4/11/2016 5:09:40 AM | | Alpha 012 | 21f | ALL | Passed | 4/11/2016 5:09:40 AM | | Alpha 013 | 21f | ALL | Not Done | | | Alpha 014 | 21f | ALL | Passed | 4/11/2016 5:09:41 AM | | Alpha 015 | 21f | ALL | Passed | 4/11/2016 5:09:42 AM | | Alpha 016 | 21f | ALL | Not Done | | | Alpha 033 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:43 AM | | Alpha 034 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:45 AM | | Alpha 035 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:47 AM | | Alpha 036 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:48 AM | | Alpha 037 | Alpha Analyst100DC | ALL | Passed | 4/11/2016
5:09:51 AM | | Alpha 038 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:53 AM | | Alpha 039 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:55 AM | | Alpha 040 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:57 AM | | Alpha 041 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:09:59 AM | | Alpha 042 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:02 AM | | Alpha 043 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:04 AM | | Alpha 044 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:07 AM | | Alpha 045 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:09 AM | | Alpha 046 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:12 AM | | Alpha 047 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:15 AM | | Alpha 048 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:18 AM | | Alpha 049 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:20 AM | | Alpha 050 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:23 AM | | Alpha 051 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:08 AM | | Alpha 052 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:26 AM | | Alpha 053 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:28 AM | | Alpha 054 | Alpha Analyst100DC | ΔΙΤ | Passed | 4/11/2016 5:10:31 AM | | Alpha 055 | Alpha Analyst100DC | Peak FWHM Peak FWHM | Action | 4/11/2016 5:10:33 AM | | Alpha 056 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:36 AM | | Alpha 057 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:39 AM | | Alpha_058 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:42 AM | Review of QA Results - Pulser Check Page 2 of 2 4/11/2016 5:38:58 AM | CHAMBER | DEVICE | PARAMETER | FLAG | DATE | |-----------|--------------------|-----------|--------|----------------------| | Alpha 059 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:45 AM | | Alpha 060 | Alpha Analyst100DC | ALL | Passed | 4/11/2016 5:10:48 AM | | APPROVED BY: | | |----------------|---------| | APPROVAL DATE: | 4111116 | Nuclide Library Title: Uranium Nuclide Library Description: U-232,-234,-235,-238 | Nuclide | Half-Life | Energy | Energy | Yield | Yield | |---------|------------|-----------|----------------|----------|-----------------| | Name | (Seconds) | (keV) | Uncert. (keV) | (%) | Uncert.(Abs.+-) | | U-232 | 2.174E+009 | 5302.500* | 0.000 | 99.8000 | 0.0000 | | U-234 | 7.731E+012 | 4761.500* | | 99.8000 | 0.0000 | | U-235 | 2.221E+016 | 4385.500* | | 80.9000 | 0.0000 | | U-238 | 1.410E+017 | 4184.400* | | 100.2300 | 0.0000 | ^{* =} key line TOTALS: ⁴ Nuclides ⁴ Energy Lines ## SECTION IX ANALYTICAL DATA (ISOTOPIC THORIUM) | Work Order | 16-03102 | |----------------------|--------------------------| | Analysis Code | ThISO | | Run | 1 | | Date Received | 3/21/2016 | | Lab Deadline | 4/12/2016 | | Client | Auxier & Associates, Inc | | Project | WESTLAKE NCC | | Report Level | 4 | | Activity Units | pCi | | Aliquot Units | g | | Matrix | so | | Method | EML Th-01 Modified | | Instrument Type | Alpha Spectroscopy | | Radiometric Tracer | Th-229 | | Radiometric Sol# | Th-18a | | Tracer Act (dpm/g) | 22.46 | | Carrier | | | Carrier Conc (mg/ml) | | | | | | | | | | | | Internal
Fraction | Sample
Desc | Client
ID | Login
CPM | Sample
Date | Sample
Aliquot | |----------------------|----------------|--------------------------|--------------|----------------|-------------------| | 01 | LCS | LCS | | 03/22/16 00:00 | 1.0000E+00 | | 02 | MBL | BLANK | | 03/22/16 00:00 | 1.0000E+00 | | 03 | DUP | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 9.9700E-01 | | 04 | DO | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 1.0102E+00 | | 05 | TRG | SEDIMENT 2016-03-16B | 38 | 03/16/16 13:55 | 1.0085E+00 | | 06 | TRG | SEDIMENT 2016-03-16B DUP | 34 | 03/16/16 13:55 | 1.0126E+00 | · · · · · · · | | | | | | | | | | | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. | Internal
Fraction | Sample
Desc | Tracer
Aliquot (g) | Tracer Total
ACT (dpm) | Radiometric
Tracer (pCi) | Radiometric
% Rec | Grav Carrier
Added (ml) | Grav Filter
Tare (g) | Grav Filter
Final (g) | Grav Filter
Net (g) | Grav
% Rec | Mean
% Rec | SAF
1* | SAF
2* | |---------------------------------------|----------------|-----------------------|---------------------------|-----------------------------|----------------------|----------------------------|--|--------------------------|------------------------|---------------|---------------|-----------|-----------| | 01 | LCS | 0.4655 | 10.5 | | 0.00 | | | | | | | | | | 02 | MBL | 0.2336 | 5.2 | | 0.00 | | | | | | | | | | 03 | DUP | 0.2330 | 5.2 | | 0.00 | | | | | | | | | | 04 | DO | 0.2327 | 5.2 | | 0.00 | | 1. | | | | | | | | 05 | TRG | 0.2328 | 5.2 | | 0.00 | | | | | | | | | | 06 | TRG | 0.2334 | 5.2 | | 0.00 | - | | | _ | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. | Internal
Fraction | Sample
Desc | Rough Prep
Date | Rough Prep
By | Prep
Date | Prep
By | Sep t0
Date/Time | Sep t0
By | Sep t1
Date/Time | Sep t1
By | |----------------------|----------------|--------------------|------------------|----------------|------------|---------------------|--------------|---------------------|--------------| | 01 | LCS | | | 04/05/16 11:21 | JWOLFE | | | | | | 02 | MBL | | | 04/05/16 11:21 | JWOLFE | | | | | | 03 | DUP | | | 04/05/16 11:21 | JWOLFE | | | | | | 04 | DO | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:21 | JWOLFE | | | | | | 05 | TRG | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:21 | JWOLFE | | | | | | 06 | TRG | 03/23/16 07:28 | KSALLINGS | 04/05/16 11:21 | JWOLFE | : | 1 | | | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 1 of 3 | (| 3 | |--------------------------------|---------------------------| | Run | _ | | Analysis Code | ThISO | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |---------|---|--|---|-----------|----------------|---|---|-----------|-------------|-------------
--|---| | TH-228 | LCS | LCS | pCi/g | 5.32E+00 | 8.03E-01 | 7.41E-02 | 4.79E+00 | 111.25 | ок | | ок | | | TH-228 | MBL | BLANK | pCi/g | -1.46E-02 | 2.64E-02 | 8.07E-02 | | | | | ок | ок | | TH-228 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.06E+00 | 3.15E-01 | 1.25E-01 | | | | NA | ок | | | TH-228 | DO | SEDIMENT 2016-03-16A | pCi/g | 6.77E-01 | 2.10E-01 | 8.84E-02 | | | | | ок | | | TH-228 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.08E+00 | 3.13E-01 | 8.68E-02 | | | | | ок | | | TH-228 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 6.18E-01 | 2.29E-01 | 1.48E-01 | | | | | ок | - | | | | | | | | | | 1 | - | | | | | | | | | | - | TH-228 TH-228 TH-228 TH-228 TH-228 TH-228 | TH-228 LCS TH-228 MBL TH-228 DUP TH-228 TRG TH-228 TRG | TH-228 LCS LCS TH-228 MBL BLANK TH-228 DUP SEDIMENT 2016-03-16A TH-228 DO SEDIMENT 2016-03-16A TH-228 TRG SEDIMENT 2016-03-16B TH-228 TRG SEDIMENT 2016-03-16B DUP | TH-228 | TH-228 | TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 TH-228 MBL BLANK pCi/g -1.46E-02 2.64E-02 TH-228 DUP SEDIMENT 2016-03-16A pCi/g 1.06E+00 3.15E-01 TH-228 DO SEDIMENT 2016-03-16A pCi/g 6.77E-01 2.10E-01 TH-228 TRG SEDIMENT 2016-03-16B pCi/g 1.08E+00 3.13E-01 TH-228 TRG SEDIMENT 2016-03-16B DUP pCi/g 6.18E-01 2.29E-01 | TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 7.41E-02 TH-228 MBL BLANK pCi/g -1.46E-02 2.64E-02 8.07E-02 TH-228 DUP SEDIMENT 2016-03-16A pCi/g 1.06E+00 3.15E-01 1.25E-01 TH-228 DO SEDIMENT 2016-03-16A pCi/g 6.77E-01 2.10E-01 8.84E-02 TH-228 TRG SEDIMENT 2016-03-16B pCi/g 1.08E+00 3.13E-01 8.68E-02 TH-228 TRG SEDIMENT 2016-03-16B DUP pCi/g 6.18E-01 2.29E-01 1.48E-01 | Nuclide | TH-228 | Nuclide | Nuclide Desc Identification Units Results Error Estimate Nuclide Nucli | Nuclide Desc Identification Units Results Error Estimate MUA Known 1/6R Flag Flag Flag Flag TH-228 LCS LCS pCi/g 5.32E+00 8.03E-01 7.41E-02 4.79E+00 111.25 OK OK | ## Preliminary Data Report & Analytical Calculations Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 2 of 3 | Client | Eberline Analytical Work Order | Analysis Code | Run | (| |---------------------------|--------------------------------|---------------|-----|---| | Auxier & Associates, Inc. | 16-03102 | ThISO | ~ | | | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|-------|---------------------|---------------------| | 01 | TH-228 | LCS | 03/22/16 00:00 | 1.00E+00 | 120.93 | 0.00 | 0.00 | | | | | 02 | TH-228 | MBL | 03/22/16 00:00 | 1.00E+00 | 137.36 | 0.00 | 0.00 | | | | | 03 | TH-228 | DUP | 03/16/16 13:35 | 9.97E-01 | 92.84 | 0.00 | 0.00 | | | | | 04 | TH-228 | DO | 03/16/16 13:35 | 1.01E+00 | 131.36 | 0.00 | 0.00 | | | | | 05 | TH-228 | TRG | 03/16/16 13:55 | 1.01E+00 | 109.29 | 0.00 | 0.00 | | | | | 06 | TH-228 | TRG | 03/16/16 13:55 | 1.01E+00 | 91.89 | 0.00 | 0.00 | - | | | | | | | | | | ***** | ### Work Order: 16-03102-ThISO-1 | | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |---|-----------------|---------|----------------|-----------------------|--------------------|--------|-----------|---------------|------------|------------|------| | | 01 | TH-228 | LCS | 04/08/16 14:44 | | A_Spec | Alpha_034 | 170 | 4.30 E+02 | 5.00 E-03 | 17.7 | | | 02 | TH-228 | MBL | 04/08/16 14:44 | | A_Spec | Alpha_035 | 170 | -1.19 E+00 | 7.00 E-03 | 15.8 | | | 03 | TH-228 | DUP | 04/08/16 14:44 | | A_Spec | Alpha_036 | 170 | 6.78 E+01 | 1.30 E-02 | 18.7 | | | 04 | TH-228 | DO | 04/08/16 14:44 | | A_Spec | Alpha_037 | 170 | 5.45 E+01 | 9.00 E-03 | 16.5 | | | 05 | TH-228 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_038 | 170 | 7.03 E+01 | 4.00 E-03 | 16 | | | 06 | TH-228 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_039 | 170 | 3.94 E+01 | 2.10 E-02 | 18.6 | <u></u> | | | | | | | | | | | | | | | | | 1 | <u> </u> | | - | | . – | | | | | | | | Ī | L | ļ | . 1 | | | 1 | | 1 | | | 1 | Run Analysis Code Eberline Analytical Work Order ThISO 16-03102 Associates, Inc. Auxier & ## Preliminary Data Report & Analytical Calculations Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 1 of 3 | Analysis Code Run | Thiso 1 | |--------------------------------|---------------------------| | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|---------|----------------|--------------------------|-------------------|----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | 01 | TH-230 | LCS | LCS | pCî/g | 6.13E+00 | 9.00E-01 | 5.92E-02 | 5.34E+00 | 114.86 | ок | | OK | | | 02 | TH-230 | MBL | BLANK | pCi/g | 1.65E-01 | 9.38E-02 | 6.44E-02 | | | | | ОК | ок | | 03 | TH-230 | DUP | SEDIMENT 2016-03-16A | pCi/g | 8.36E+00 | 1.58E+00 | 9.66E-02 | | | | ок | ок | | | 04 | TH-230 | DO | SEDIMENT 2016-03-16A | pCi/g | 6.98E+00 | 1.22E+00 | 6.86E-02 | | | | | ок | | | 05 | TH-230 | TRG | SEDIMENT 2016-03-16B | pCi/g | 4.53E+00 | 9.21E-01 | 8.49E-02 | | | | | ок | | | 06 | TH-230 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 4.39E+00 | 9.09E-01 | 1.13E-01 | - | | | | ок | | | ,,, | * | } | ### Preliminary Data Report & Analytical Calculations ### Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 2 of 3 | æ | 3 | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |--------------------------------|----------------|-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|-----|---------------------|---------------------| | | 6 | 01 | TH-230 | LCS | 03/22/16 00:00 | 1.00E+00 | 120.93 | 0.00 | 0.00 | | | | | u | | 02 | TH-230 | MBL | 03/22/16 00:00 | 1.00E+00 | 137.36 | 0.00 | 0.00 | | | | | Run | 7
| 03 | TH-230 | DUP | 03/16/16 13:35 | 9.97E-01 | 92.84 | 0.00 | 0.00 | | | | | 60 | | 04 | TH-230 | DO | 03/16/16 13:35 | 1.01E+00 | 131.36 | 0.00 | 0.00 | | | | | s Cod | SO | 05 | TH-230 | TRG | 03/16/16 13:55 | 1.01E+00 | 109.29 | 0.00 | 0.00 | | | | | Analysis Code | ThIS | 06 | TH-230 | TRG | 03/16/16 13:55 | 1.01E+00 | 91.89 | 0.00 | 0.00 | i | | | | ₹ | | | | | | | | | | | | | | rder | | | | | | | | | | | | | | Eberline Analytical Work Order | 6-03102 | | | | | | | | | | | | | lytical | 03, | | | | | | | | | | | | | ne Ana | - 9 | | | | | | | | | | | | | Eberii | ~ | | | | | | | | | | | | | | ပ | | | | | | | | | | | | | | i, Inc. | | | | | | | | | | | | | | Associates, | | | | | | | | | | | | | | oci | | | | | | | | | | | | | Client | Ass | | | | | | | | | | | | | | ⊸ ಶ | | | | | | | | | | | | | | xier | | | | | | | | | - | | | | | Au | | | | | | | | | | | | | | Auxier | | | | | | | | | | | | | Run | 7 | |--------------------------------|---------------------------| | Analysis Code | ThISO | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |-----------------|---------|----------------|---|--------------------|--------|-----------|---------------|-----------|------------|------| | 01 | TH-230 | LCS | 04/08/16 14:44 | | A_Spec | Alpha_034 | 170 | 4.95 E+02 | 2.00 E-03 | 17.7 | | 02 | TH-230 | MBL | 04/08/16 14:44 | | A_Spec | Alpha_035 | 170 | 1.35 E+01 | 3.00 E-03 | 15.8 | | 03 | TH-230 | DUP | 04/08/16 14:44 | | A_Spec | Alpha_036 | 170 | 5.45 E+02 | 6.00 E-03 | 18.7 | | 04 | TH-230 | DO | 04/08/16 14:44 | | A_Spec | Alpha_037 | 170 | 5.74 E+02 | 4.00 E-03 | 16.5 | | 05 | TH-230 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_038 | 170 | 3.01 E+02 | 4.00 E-03 | 16 | | 06 | TH-230 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_039 | 170 | 2.86 E+02 | 1.00 E-02 | 18.6 | | | | | | | | | | | | | | | | | *************************************** | <u></u> | <u> </u> | Printed: 4/11/2016 8:03 AM Page 1 of 3 # Run ThISO Analysis Code Eberline Analytical Work Order 16-03102 Auxier & Associates, Inc. | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|---------|----------------|--------------------------|-------------------|-----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | 01 | TH-232 | LCS | LCS | pCi/g | 4.78E+00 | 7.37E-01 | 5.91E-02 | 4.79E+00 | 99.90 | ок | | ОК | | | 02 | TH-232 | MBL | BLANK | pCi/g | -4.16E-03 | 2.47E-02 | 5.85E-02 | | | | | ок | ок | | 03 | TH-232 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.09E+00 | 3.14E-01 | 9.18E-02 | | | | INV | ок | | | 04 | TH-232 | DO | SEDIMENT 2016-03-16A | pCi/g | 8.19E-01 | 2.33E-01 | 6.37E-02 | | | | | ок | | | 05 | TH-232 | TRG | SEDIMENT 2016-03-16B | pCi/g | 7.36E-01 | 2.42E-01 | 9.01E-02 | | | | | ок | | | 06 | TH-232 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 8.41E-01 | 2.69E-01 | 1.19E-01 | | | | | ок | : | _ | | | | | | | | | | | | | | | | | ! | | | | | | | | | | | | | | | | | | ` | Printed: 4/11/2016 8:03 AM Page 2 of 3 | | (| | |--|--------------------------------|---------------------------| | | Run | _ | | | Analysis Code | Thiso | | | Eberline Analytical Work Order | 16-03102 | | a state of the sta | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |-----------------|---------|----------------|----------------|-------------------|----------------------|---------------|---------------|---------|---------------------|---------------------| | 01 | TH-232 | LCS | 03/22/16 00:00 | 1.00E+00 | 120.93 | 0.00 | 0.00 | | . No. | | | 02 | TH-232 | MBL | 03/22/16 00:00 | 1.00E+00 | 137.36 | 0.00 | 0.00 | ******* | | | | 03 | TH-232 | DUP | 03/16/16 13:35 | 9.97E-01 | 92.84 | 0.00 | 0.00 | | | | | 04 | TH-232 | DO | 03/16/16 13:35 | 1.01E+00 | 131.36 | 0.00 | 0.00 | | | | | 05 | TH-232 | TRG | 03/16/16 13:55 | 1.01E+00 | 109.29 | 0.00 | 0.00 | _ | | | | 06 | TH-232 | TRG | 03/16/16 13:55 | 1.01E+00 | 91.89 | 0.00 | 0.00 | Printed: 4/11/2016 8:03 AM Page 3 of 3 ## Work Order: 16-03102-ThISO-1 | 3 | Lab
Fraction | Nuclide | Sample Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |---------------------------|-----------------|---------|-------------|-----------------------|--------------------|----------|-----------|---------------|------------|------------|----------| | 3 | 01 | TH-232 | LCS | 04/08/16 14:44 | | A_Spec | Alpha_034 | 170 | 3.87 E+02 | 2.00 E-03 | 17.7 | | | 02 | TH-232 | MBL | 04/08/16 14:44 | | A_Spec | Alpha_035 | 170 | -3.40 E-01 | 2.00 E-03 | 15.8 | | | 03 | TH-232 | DUP | 04/08/16 14:44 | | A_Spec | Alpha_036 | 170 | 7.10 E+01 | 0.00 E+00 | 18.7 | | | 04 | TH-232 | DO | 04/08/16 14:44 | | A_Spec | Alpha_037 | 170 | 6.75 E+01 | 3.00 E-03 | 16.5 | | Thiso | 05 | TH-232 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_038 | 170 | 4.90 E+01 | 0.00 E+00 | 16 | | <u> </u> | 06 | TH-232 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_039 | 170 | 5.50 E+01 | 1.20 E-02 | 18.6 | 16-03102 | | | | | | | | | | | | | 33 | | | | | | | | | | | | |)-9 | | | | | | | | | | | | | 7 | | | | | | | | | | | | | ن | | | | | | | | | | | | | Auxier & Associates, Inc. | | | | | | | | | | | | | ates | | | | | | | | | | | | | OC. | | | | | | | | | | | | | Ass | | | | | | | | | | | | | જ | | | | | | | | | | | | | Ķier | | | | | | | | | | | | | Au; | | | | | | | | | | | | | | L | | | | | <u> </u> | 1 | | 1 | | <u> </u> | Analysis Code Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 1 of 3 | • | | |--------------------------------|---------------------------| | Run | ~ | | Analysis Code | ThISO | | Eberline Analytical Work Order | 16-03102 | | Client | Auxier & Associates, Inc. | | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error Estimate | MDA | LCS
Known | LCS
%R | LCS
Flag | RPD
Flag | MDA
Flag | Blank
Flag | |-----------------|-----------|----------------|--------------------------|-------------------|----------|----------------|----------|--------------|-----------|-------------|-------------|-------------|---------------| | | | | | | 4.55.04 | 0.045.00 | 7 FOE 00 | | | | | ОК | ок | | 02 | TH-227 | MBL | BLANK | pCi/g | 1.15E-01 | 8.04E-02 | 7.52E-02 | | | | | | UK - | | 03 | TH-227 | DUP | SEDIMENT
2016-03-16A | pCi/g | 3.11E-01 | 1.55E-01 | 1.26E-01 | | | | NA | ок | | | 04 | TH-227 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.95E-01 | 1.03E-01 | 5.96E-02 | | | | | OK | | | 05 | TH-227 | TRG | SEDIMENT 2016-03-16B | pCi/g | 3.03E-01 | 1.45E-01 | 7.38E-02 | | | | | ок | | | 06 | TH-227 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 2.01E-01 | 1.26E-01 | 1.26E-01 | | | | | ок | <u></u> . | | | | - | J | 1 | | | | | | | | | | | | | | <u></u> | | | | | | | | | | | | | | | | | | - | <u> </u> | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | - | ļ | | | | | | | | | | | | | | | | | | | ### Preliminary Data Report & Analytical Calculations Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 2 of 3 | Ž, | D | Lab
Fraction | Nuclide | Sample
Desc | Sample
Date | Sample
Aliquot | Radiometric
% Rec | Grav
% Rec | Mean
% Rec | SAF | Sep t0
Date/Time | Sep t1
Date/Time | |----------|--|-------------------------------------|--|---|----------------|-------------------------------------|---|--|---|---|--
---| | | 3 | | | | | | | | | | | | | | | 02 | TH-227 | MBL | 03/22/16 00:00 | 1.00E+00 | 137.36 | 0.00 | 0.00 | | | | | 로 | | 03 | TH-227 | DUP | 03/16/16 13:35 | 9.97E-01 | 92.84 | 0.00 | 0.00 | | | | | a | | 04 | TH-227 | DO | 03/16/16 13:35 | 1.01E+00 | 131.36 | 0.00 | 0.00 | | | | | 2 CO | SC | 05 | TH-227 | TRG | 03/16/16 13:55 | 1.01E+00 | 109.29 | 0.00 | 0.00 | | | | | narysi | <u> </u> | 06 | TH-227 | TRG | 03/16/16 13:55 | 1.01E+00 | 91.89 | 0.00 | 0.00 | | | | | ₹ . | | | | | | | | | | | | | | Order | 2 | | | | | | | | | | | | | Work | 10, | | | | | | | | | | | | | alytical | 03 | | | | | | | | | | | | | ine An | -9 | | | | <u></u> | | | | | | | | | Eber | ` | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | - 's | | | | | | | | | | | | | | ate | | | | | | | | | | | | | ent | 200 | | | | | | | | | | | | | ີ້ວັ | Ass | | | | | | | | | | | | | ļ | જ | | | | | | | | | | | | | | ixie | | | | | | | | | | | | | | Ar | | | | | | | | | | | | | | Client Ebarline Analytical Work Order Analysis Code Kull | r & Associates, Inc. 16-03102 ThISO | r & Associates, Inc. 16-03/102 ThiSO 1 | TH-227 O3 TH-227 O4 TH-227 O5 TH-227 O6 TH-227 TH-227 O6 TH-227 | Client | 102 TH-227 MBL 03/22/16 00:00 | TH-227 MBL 03/22/16 00:00 1.00E+00 03/16/16 13:35 9.97E-01 04 TH-227 DO 03/16/16 13:35 1.01E+00 05/25/25/25 06 TH-227 TRG 03/16/16 13:55 1.01E+00 05/25/25/25 06 TH-227 TRG 03/16/16 13:55 1.01E+00 05/25/25/25 05/25/25/25/25/25/25/25/25/25/25/25/25/25 | The property of o | CONTRACTION | TOUR TH-227 MBL 03/22/16 00:00 1.00E+00 137.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | Company Comp | The control of | Work Order: 16-03102-ThISO-1 Printed: 4/11/2016 8:03 AM Page 3 of 3 | | | Lab
Fraction | Nuclide | Sample
Desc | Counting
Date/Time | Halflife
(days) | Detect | Carrier | Count
Time | Counts | Bkg
CPM | Eff | |--------------------------------|------------------|-----------------|---------|----------------|-----------------------|--------------------|--------|-----------|---------------|-----------|------------|------| | | | | | | | | | | | | | | | Run | — | 02 | TH-227 | MBL | 04/08/16 14:44 | | A_Spec | Alpha_035 | | 9.15 E+00 | 5.00 E-03 | 15.8 | | | | 03 | TH-227 | DUP | 04/08/16 14:44 | | A_Spec | Alpha_036 | 170 | 1.98 E+01 | 1.30 E-02 | 18.7 | | ي ا | | 04 | TH-227 | DO | 04/08/16 14:44 | | A_Spec | Alpha_037 | 170 | 1.57 E+01 | 2.00 E-03 | 16.5 | | S Cog | SC | 05 | TH-227 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_038 | 170 | 1.97 E+01 | 2.00 E-03 | 16 | | Analysis Code | Thiso | 06 | TH-227 | TRG | 04/08/16 14:45 | | A_Spec | Alpha_039 | 170 | 1.28 E+01 | 1.30 E-02 | 18.6 | | _ | | | | | | | | | | | | | | Order | 2 | | | | | | | | | | | | | Work | 10, | | | | | | | | | | | | | Eberline Analytical Work Order | 6-03102 | | | | | | | | | | | | | ne An | 9 | | | | | | | | | | | | | Eberli | 1 | | | | | | | | i | | | | | | IC. | | | | | | | | | | | | | |), II | | | | | 1 | | | | | | | | | Associates, Inc. | | | | | | | | | | | | | ₌ | oci | | | | | | | | | | | | | Client | Ass | | | | | | | | | | | | | | න් | | | | | | | | | | | | | | Auxier & | | | | | | | | | | | | | | Au | | | | <u></u> | | | | | | | | | \. | | J [| | | · | | | | | | | | **Count Room Report** Client: Auxier Associates, Inc. ### 16-03102-ThISO-1 (pCi/g) in SO Tracer ID: Th-18a Printed: 4/8/2016 5:28 AM Page 1 of 1 | 4 | (| |---|---| | N | 0 | | Internal
Fraction | Sample
Desc | Client
ID | Sample
Date | Sample
Aliquot | Tracer
Aliquot (g) | Tracer
ACT (dpm) | Radiometric
Tracer (pCi) | Radiometric
% Rec | SAF
1* | SAF
2* | |----------------------|----------------|--------------------------|----------------|-------------------|-----------------------|---------------------|-----------------------------|----------------------|-----------|-----------| | 01 | LCS | LCS | 03/22/16 00:00 | 1.0000 | 0.4655 | 10.4551 | | 0.00 | | | | 02 | MBL | BLANK | 03/22/16 00:00 | 1.0000 | 0.2336 | 5.2467 | | 0.00 | | | | 03 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 0.9970 | 0.2330 | 5.2332 | | 0.00 | | | | 04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 1.0102 | 0.2327 | 5.2264 | | 0.00 | | | | 05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 1.0085 | 0.2328 | 5.2287 | | 0.00 | | | | 06 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 1.0126 | 0.2334 | 5.2422 | | 0.00 | · | <u> </u> | : | | | | | - | | | ļ | <u> </u> | | <u> </u> | | | | 1 | | <u> </u> | ### Spike and Tracer Worksheet Page 1 of 1 Printed: 4/5/2016 11:21 AM | Internal Work Order | | | Run | Analysis Code | | | | Tech | echnician | | Technician Initials | | Witness | Initials | | | |---------------------|--------------------------------------|-------------------|-------------------|--------------------|----------------------------|--------------------|-----------------------------------|--------------------|------------------|--------------------|---------------------|------------------------|------------------|-------------------|--------------|-------------------| | | 16-0 | 3102 | | 1 | Thi | SO | 4/5/201 | 6 11:17 | | JWC | LFE | · <u>·····</u> | M | | | | | | LCS | & Matrix Sp | ikes | | LCS | MS | LCSD | MSD | LC | S | M | S | LC | SD | MS MS | D | | Isotope | Sol# | Activity
dpm/g | Solution
Date | Approx
Addition | Volume
Used (g) | Volume
Used (g) | Volume
Used (g) | Volume
Used (g) | Known
pCi | Error
Estimate | Added
pCi | Error
Estimate | Known
pCi | Error
Estimate | Added
pCi | Error
Estimate | | Th-228 | Th-8b | 103.560 | 4/5/2016 | 0.100 | 0.1026 | | | | 4.79 | 0.172 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | | Th-230 | Th-1b | 23.520 | 4/5/2016 | 0.500 | 0.5036 | | 2.3 | | 5.34 | 0.144 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | | Th-232 | Th-8b | 103.560 | 4/5/2016 | 0.100 | 0.1026 | | | | 4.79 | 0.172 | 0.00 | 0.000 | 0.00 | 0.000 | 0.00 | 0.000 | | Tc-99 MS | Tc-2a | 22043.636 | //5/2014 | 0.1 | | 42.57 | name or a significant in security | orania ili | mene kukikosista | enencia anti- | sesensity in the | eres - Colo | ezerine pela err | 208642852555 | | | | | dendi jeda jeveli
Su sulospi daji | | Tracers | | | | | 행성을 받는 생각 | | Bai | ance Prir | iter i ape | :5 | | | | | fraction | Isotope | Sol# | Activity
dpm/g | Solution
Date | Volume
Used (g) | Approx
Addition | | | Tracer | | | | | LCS | | | | 01 | Th-229 | Th-18a | 22.460 | 4/5/2016 | 0.4655 | 0.2200 | _ | | | | | | • | | • | | | 02 | Th-229 | Th-18a | 22.460 | 4/5/2016 | 0.2336 | 0.2200 | | | | | | | | | | | | 03 | Th-229 | Th-18a | 22.460 | | ninterior strengthings. | 0.2200 | | | | | | | | | | | | 04 | Th-229 | Th-18a | 22.460 | <u> </u> | Gelegier Granden | 0.2200 | | | | | | | | 0,5036 | | | | 05 | Th-229 | Th-18a | 22.460 | 4/5/2016 | The contract of the second | 0.2200 | | | A | d ti matan | • | | | 0.1026 | g | | | 06 | Th-229 | Th-18a | 22.460 | 4/5/2016 | 0.2334 | 0,2200 | | | | .4655 g
.2336 q | | | | | | | | | | | | <u> </u> | | | - | | Ø | . 2339 g | | | | | | | | | | | | | K. | <u> </u> | 1 | | | 2327. g | | | | | | | | <u> </u> | | | | | | | 1 | | | .2328 g
.2334 g | | | | Matrix Spil | (e | | | | | | <u> </u> | | | | 1 | | | ares ² | | | | | | | | | | - | | | | | 1 | | | | | | - " | | | | | | | | | | | | | | | • | ÷ | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | | | | _ | 9 | | 1 | | | | | | | | | | <u> </u> | | | | | ### **Aliquot
Worksheet** Printed: 4/5/2016 9:42 AM Page 1 of 1 | Work Order | Run | Analysis Code | Rpt Units | Lab Deadline | Technician | |------------|-----|---------------|-----------|--------------|------------| | 16-03102 | 1 | Thiso | grams | 4/12/2016 | JWOLFE | | | La Dia sistes inc | | Muffle Data | Г | Dilution Data | **- | Aliquo | t Data | MS Alic | uot Data | H-3 Solids Only | | |-----------------|---------------------------|------------|---|---|--|--|------------|--|---------|---|---------------------|---| | Lab
Fraction | Auxier & Associates, Inc. | | Ratio | No of Dils | Dil Factor | Ratio | Aliquot | Net Equiv | Aliquot | Net Equiv | Water Added
(m!) | H3 Dist
Aliq | | | Client ID | Type | Post/Pre | INU UI DIIS | Dil i actor | has seeiges. | 1.0000E+00 | | | 5014851505152 | | | | 01 | LCS | LCS | | | | ris i grabbus. | | | | | | | | 02 | BLANK | MBL | | | 承十三指統 九普 | | 1.0000E+00 | | | | | | | 03 | SEDIMENT 2016-03-16A | DUP | | | | | 9.9700E-01 | 9.9700E-01 | | | | | | 04 | SEDIMENT 2016-03-16A | DO | | | | | 1.0102E+00 | 100000 | | | | | | 05 | SEDIMENT 2016-03-16B | TRG | | | | | 1.0085E+00 | | | | | | | 06 | SEDIMENT 2016-03-16B DUP | | | | | | 1.0126E+00 | 1.0126E+00 | | | | | | - 00 | SEBIMENT 2010-00-102 20. | | | i de la composición de la composición de la composición de la composición de la composición de la composición | | | | | | | | | | | | | 20. 15. jesma iziblio 2011 | Hallister - Hallian | eris visa ta | a Chine i i | | | | | | | | | | | a de la la la de la compania de la compania de la compania de la compania de la compania de la compania de la c | | | | | | | | | | | | | | a francisco de Colonia Galegia de Colonia de
Colonia de Colonia | Televipado Jestini | | ner gente da de | | | | | | | | | <u> </u> | | | 16 (14 (16) 1 (16) (16) (16) (16) (16) (16) (1 | al de la compansa de la compaña de la compaña de la compaña de la compaña de la compaña de la compaña de la co
Para en la compaña de c | | | gader volleige er sit | | | | | | | | | | 200 BP 30 22 10V | i spino erise e ei ili.
Periode e e e e e e e e e e e e e e e e e e | 1 45 : 1245 A. 20
1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : | | | | de nas diversasses | | | | | <u> </u> | | 16 curis a computer | e della general di sicilo di | | | | Similar Sylvanie (CA)
Olemanie Sylvanie | | | | *************************************** | Jäking Coubus Gir | | 440 00 00 00 00 00 00 00 00 00 00 00 00 | | | | | | | | | | | | | | Chief Chief Chief Chief | | | | | | - | White West and a | | | | | | | | | | | | | | | | | | | _ | ļ <u>.</u> | | | | | | | | | | | | | | ļ <u> </u> | | ir ada saka ilah sambabi
di Jananara ada basara | Maria de la Compania br>Compania de la Compania de la Compa | | | | | | | | | | T | | • | | |----------|---|---|---|--| | | | | | | | Comments | | • | • | | | | 1 | | · | | | | | | | | Technician: ______ Date: 215114 #### Rough Sample Preparation Log Book Printed: 3/23/2016 7:28 AM Page 1 of 1 | Work Order | Lab Deadline | Date Received in Prep | Date Sealed | Date Returned | Technician | |------------|--------------|-----------------------|-------------|---------------|------------| | 16-03102 | 4/12/2016 | 3/22/2016 | 3/23/2016 | 3/24/2016 | KSALLINGS | | Eberline | Auxier & Associates, Inc. | Tare (g) | Gross | (g) | Net | (g) | Pero | ent | Gamma | | Special | |----------|---------------------------|----------|----------------|----------|-----------|----------|--------|--------|---------|----------|------------| | Fraction | _ | Pan Wt | Wet Wt. | Dry Wt. | Wet Wt. | Dry Wt. | Liquid | Solid | Dry Wt. | LEPS Wt. | Info | | 04 | SEDIMENT 2016-03-16A | 28.8600 | 1273.0600 | 743.5800 | 1244.2000 | 714.7200 | 42.56% | 57.44% | 0.0000 | 0.0000 | | | 05 | SEDIMENT 2016-03-16B | 29.1400 | 1389.3600 | 944.9200 | | 915.7800 | 32.67% | 67.33% | 0.0000 | 0.0000 | | | | SEDIMENT 2016-03-16B DUP | 29.0300 | 1180.8600 | 824.3000 | 1151.8300 | 795.2700 | 30.96% | 69.04% | 0.0000 | 0.0000 | | | | | | | ******* | | | | | | | | | • | - | | | | | | | | | | | | | | | AATA MARKETT I | 184-1/6-11 | ****** | Comments | | |---------------|--| | Special Codes | H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments) | Sample Description: SPIKE 01 Spectrum File: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 Batch Identification: 1603102A-TH Sample Identification: Sample Geometry: Shelf 2 Procedure Description: Th iso Detector Name: Alpha 034 Chamber Serial Number: 04026479B Detector Serial Number: 91136 Env. Background: System Bkgd 149228 Reagent Blank: <not performed> Sample Size: 1.000E+000 +/- 0.000E+000 gram Sample Date/Time: 4/8/2016 6:14:10 AM Acquisition Date/Time: 4/8/2016 Acquisition Live Time: 170.0 2:44:53 PM Acquisition Real Time: 170.0 minutes 170.0 minutes Tracer Certificate: Th229 S TH-18A Tracer Quantity: 0.465 mL Effective Efficiency: 0.2143 +/- 0.0128 Counting Efficiency: 0.1772 +/- 0.0031 on 12/11/2015 8:20:57 AM Chem. Recovery Factor: 1.2093 +/- 0.0755 Control Certificate Name: NatTh_Th-8 Chem. Recov. of Control: TH-232 0.999046 +/- 0.084045 Peak Match Tolerance: 0.175 MeV | | | | PEAR | C AREA RI | EPORT | | | | | |--|---|---|---|--|--------------------------------------|---|----------------------------------|--|--| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | | TH-227
TH-228
TH-229
TH-230
TH-232 | т | 5.797
5.366
4.873
4.626
3.952 | 22.66
430.15
380.83
494.66
386.66 | 41.53
9.46
10.05
8.82
9.97 | 0.34
0.85
0.17
0.34
0.34 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 3.0
11.0
6.0
9.2
6.1 | | | T = Tracer Peak used for Effective Efficiency |
 • | | | | |-------------------|----------|---------|--| |
NUCLIDE | ANALYSIS | RESULTS | | | Nuclide | Id
Conf. | Energy
(keV) | Activity
(pCi/gram) | MDA
(pCi/gram) | |---------|-------------|-----------------|-------------------------|-------------------------| | TH-227 | 0.985 | 5850.00* | 2.87E-001 +/- 1.24E-001 | 6.06E-002 +/- 7.12E-003 | | TH-228 | 0.994 | 5400.00* | 5.32E+000 +/- 8.03E-001 | 7.41E-002 +/- 8.70E-003 | | TH-229 | 1.000 | 4872.00* | 4.73E+000 +/- 5.56E-001 | 5.19E-002 +/- 6.09E-003 | | TH-230 | 0.989 | 4672.00* | 6.13E+000 +/- 9.00E-001 | 5.92E-002 +/- 6.95E-003 | | TH-232 | 0.989 | 3997.00* | 4.78E+000 +/- 7.37E-001 | 5.91E-002 +/- 6.94E-003 | Sample Title: 01 Elapsed Live time: Elapsed Real Time: 10200 10200 | Channel - | | | _ . | | _ | | | | |-------------|----------------|--------|--------------|--|----------------------------|-------------------|--------|----| | 1: | o ' | 0 ' | o ' | o' | o' | o ˈ | oʻ | o' | | 9: | Ö | Ö | Ö | Ō | Ö | 0 | 0 | 0 | | 17: | Ö | i | Ö | 1 | Ö | Ō | 0 | 0 | | 25: | ĭ | 0 | Ö | ō | Ö | Ö | Ö | 0 | | 33: | Ó | 0 | ő | Ö | ŏ | Ö | ĺ | Ō | | 41: | ő | 0 | Ö | ŏ | Ö | Ö | 0 | 0 | | 49: | í | 0 | ő | Ö | Ö | Ö | 1 | Ō | | 57: | Ō | 1 | ŏ | Ö | Ö | Ö | 0 | Ō | | 65: | ő | 0 | Ö | ő | ŏ | ĺ | Ö | 0 | | 73: | ĺ | 1 | ő | Ö | Õ | 0 | 1 | 0 | | 81: | Ō | 0 | i | ĺ | Ö | Ö | ō | 0 | | 89: | ő | 0 | Ō | Ō | Ö | Ö | Ō | 0 | | 97: | Ö | 0 | Ö | 1 | ŏ | 1 | Ö | 2 | | 105: | 1 | 0 | 2 | 0 | 3 | ō | Ö | 0 | | 113: | Ō | 1 | 1 | Ö | 1 | 4 | Ŏ | Ō | | 121: | í | 2 | 3 | 3 | Ō | 3 | 2 | 4 | | 129: | Ō | 1 | 2 | 0 | 2 | 4 | 2 | 2 | | 137: | 5 | 3 | Õ | 4 | 5 | ī | 2 | 0 | | 145: | 3 | 6 | 5 | 5 | 3 | -
7 | _
5 | 7 | | 153: | 9 | 7 | 3 | 3 | 7 | 4 | 7 | 5 | | 161: | 13 | 8 | 2 | 5 | 10 | 6 | 5 | 6 | | 169: | 7 | 4 | 10 | 7 | 11 | 11 | 11 | 5 | | 177: | 4 | 10 | 10 | 10 | 11 | 10 | 12 | 7 | | 185: | . 6 | 8 | 8 | 9 | 5 | 3 | 2 | 2 | | 193: | 2 | 0 | Ö | ō | 0 | Ō | 0 | 0 | | 201: | ō | Ö | ŏ | Ö | Ö | Ö | Ö | 0 | | 209: | ĭ | 1 | ĺ | Ö | Ō | Ō | Ō | 0 | | 217: | ō | Ō | 0 | Ö | Ö | 0 | 1 | 0 | | 225: | ı
1 | ŏ | Ö | Ö | Ö | Ō | 0 | 0 | | 233: | 1 | Ö | ō | Ō | 0 | 0 | 0 | 0 | | 241: | 0 | 1 | Ö | 0 | 1 | 0 | 0 | 0 | | 249: | ő | Ō | 1 | Ō | 0 | Ō | 0 | 0 | | 257: | Ö | Ō | ō | Ō | 0 | 0 | 0 | 0 | | 265: | Ö | Ö | 1 | Ō | 0 | 1 | 0 | 0 | | 273: | Ö | 0 | 0 | Ō | 0 | 1 | 0 | 0 | | 281: | Ō | Ö | Ō | 1 | 0 | 0 | 0 | 1 | | 289: | Ö | 1 | ĺ | | | 1 | 0 | 0 | | 297: | ő | Ō | 0 | 0 | 1 | 0 | 0 | 0 | | 305: | ő | Õ | Ö | 1 | 0 | 0 | 0 | 1 | | 313: | Õ | 1 | Ö | 0 | 1 | 1 | 1 | 1 | | 321: | ĺ | 0 | Ŏ | Ō | 0
1
0
1
1
1 | 0 | 2 | 0 | | 329: | 0 | 1 | ŏ | 3 | _
1 | 1 | 1 | 0 | | 337:
 Ö | Ō | Ö | ī | 1 | 0
1
1 | 2 | 1 | | 345: | 2 | 2 | 0 | _
1 | 1 | 0 | 0 | 1 | | 353: | 0 | 6 | 1 | 0
0
1
0
0
3
1
1
1
2 | _
3 | 1 | 3 | 1 | | 361: | 2 | 6
3 | 1 2 | 2 | 3
2 | 2 | 6 | 4 | | ~ ~ · · | | _ | _ | _ | | | | | Channel Data Report 4/8/2016 5:45:41 PM Page 2 369: 3 7 5 5 4 6 4 5 Sample Title: 01 | Channel | | | | | | ı | 1 | | ĺ | |--|---------|----|---|---|---|----|----|----|-------------| | 385: 5 6 13 9 8 12 12 10 401: 10 14 11 13 10 13 10 12 409: 12 9 13 11 9 14 5 4 417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 441: 4 5 5 1 4 2 3 7 447: 6 5 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 2 2 | Channel | | | | | | | | | | 11 | | 5 | | | | | | | | | A01: 10 | | | | | | | | | | | 409: 12 9 13 11 9 14 5 4 417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 441: 4 5 5 5 1 4 2 3 7 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 4 497: 2 2 1 1 2 3 0 5 4 4 2 2 | | | | | | | | | | | 417: 1 2 0 0 3 3 2 1 425: 2 2 2 1 0 3 0 3 431: 4 0 2 2 3 2 4 2 441: 4 5 5 1 4 2 3 7 447: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 487: 2 1 1 2 0 4 5 2 505: 2 2 2 3 3 1 1 2 1 1 2 1 1 2 | | | | | | | | | | | 425: 2 2 2 1 0 3 0 3 433: 4 0 2 2 3 2 4 2 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 3 4 4 4 2 5 5 3 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 3 3 1 1 2 505: 2 2 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td></td<> | | | | | | | | 5 | | | 433: 4 0 2 2 3 2 4 2 441: 4 5 5 5 1 4 2 3 7 4457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 2 3 3 1 1 2 2 505: 2 2 2 3 3 1 1 2 2 2 3 0 0 0 0 2 0 1 1 2 2 1 1 | 417: | 1 | | | | | 3 | | 1 | | 441: 4 5 5 1 4 2 3 7 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 2 0 3 0 0 0 2 513: 1 2 0 3 0 0 0 2 2 3 0 0 2 3 0 0 0 0 0 0 0 0 0 | 425: | 2 | 2 | | | | 3 | | 3 | | 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 0 0 0 0 2 505: 2 2 3 3 3 1 1 2 2 3 3 1 1 2 2 3 0 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0< | 433: | 4 | 0 | 2 | 2 | 3 | 2 | | | | 449: 7 5 4 5 4 3 10 4 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 0 0 0 0 2 521: 0 1 1 2 0 0 0 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 < | 441: | 4 | 5 | 5 | 1 | 4 | 2 | 3 | 7 | | 457: 3 7 4 7 6 10 6 12 465: 6 5 9 6 7 9 7 6 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 2 505: 2 2 3 3 3 1 1 2 0 0 0 2 2 3 0 0 0 0 2 2 2 0 0 0 0 0 2 0 0 0 0 2 0 | | | | | | 4 | 3 | 10 | 4 | | 465: 6 5 9 6 7 9 7 6 473: 3 9 3 4 7 6 3 5 480: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 2 505: 2 2 3 3 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 2 2 2 3 3 3 1 1 2 2 2 3 0 0 0 0 0 2 0 </td <td></td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>10</td> <td>6</td> <td>12</td> | | | | 4 | | | 10 | 6 | 12 | | 473: 3 9 3 4 7 6 3 5 481: 3 4 4 4 2 5 5 3 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 505: 2 2 2 0 0 0 0 2 513: 1 2 0 3 0 0 0 0 2 529: 3 2 2 2 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 2 0 537: 0 1 3 2 0 | | | | | | | 6 | | 5 | | 489: 3 6 1 2 3 0 5 4 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 2 0 537: 0 1 3 2 0 | | 3 | | | | | | | 3 | | 497: 2 1 1 2 0 4 5 2 505: 2 2 3 3 3 1 1 2 513: 1 2 0 3 0 0 0 0 2 529: 3 2 2 2 0 0 2 0 0 537: 0 1 3 2 0< | | 3 | | | | | | 5 | 4 | | 505; 2 2 3 3 1 1 2 513: 1 2 0 3 0 0 0 2 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 0 0 537: 0 1 3 2 0 0 0 0 545: 1 0 0 1 0 | | 2 | | | | n | | 5 | $\tilde{2}$ | | 513: 1 2 0 3 0 0 0 2 2 521: 0 1 1 2 1 2 3 0 0 2 0 0 2 0 0 2 0 </td <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> | | 2 | | | | | | | 2 | | 521: 0 1 1 2 1 2 3 0 529: 3 2 2 2 0 0 2 0 537: 0 1 3 2 0 | | | | | | | | | 2 | | 529: 3 2 2 2 0 0 2 0 537: 0 1 3 2 0 0 0 0 545: 1 0 0 1 0 0 0 0 0 553: 0 1 0 < | | | | | 2 | | | | | | 537: 0 1 3 2 0 0 0 0 0 545: 1 0 0 1 0 </td <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> | | | | | 2 | | | 2 | | | 545: 1 0 0 1 0 | | | | | | | | | | | 553: 0 1 0 0 2 0 1 1 561: 1 0 0 0 0 0 0 0 569: 2 2 2 0 0 1 1 0 2 2 577: 0 2 0 1 0 0 2 2 585: 0 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 3 3 6 0 0 3 3 3 6 0 3 3 3 1 2 1 0 | | | | | | | | | | | 561: 1 0 2 2 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 0 0 1 1 2 0 | | | | | | 0 | | | | | 569: 2 2 0 0 1 1 0 2 577: 0 2 0 1 0 0 2 2 585: 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 7 5 2 2 665: 2 0 | | | | | | | | | | | 577: 0 2 0 1 0 0 2 2 585: 0 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 | | | | | | | | | 0 | | 585: 0 0 0 0 1 1 2 0 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 15 7 17 16 15 13 7 5 22 17 10 15 13 7 5 22 17 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></td<> | | | | | | | | | 2 | | 593: 1 0 1 1 2 2 1 0 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 641: 6 6 5 3 5 10 6 12 7 641: 6 6 5 3 5 10 6 12 7 657: 20 17 10 15 13 7 5 2 17 10< | | | | | | | | | | | 601: 4 2 2 0 4 0 3 3 609: 1 2 1 4 4 3 1 2 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 7 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 | | | | | | | | | 0 | | 617: 0 0 6 1 5 5 5 3 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 | | | | | | | | | 3 | | 625: 2 4 12 5 6 8 4 4 633: 4 5 4 7 7 6
12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>2</td></td<> | | | | | | | 3 | | 2 | | 633: 4 5 4 7 7 6 12 7 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 0 673: 0 0 1 0 1 1 | | | | | | 5 | 5 | | | | 641: 6 6 5 3 5 10 6 12 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 1 0 1 | | | | | | | | | | | 649: 10 14 15 10 13 15 7 17 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 1 0 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | | 657: 20 17 10 15 13 7 5 2 665: 2 0 1 0 1 0 0 0 673: 0 0 0 1 0 0 0 0 681: 0 0 0 0 0 0 0 0 0 689: 0 0 0 0 0 1 0 1 0 1 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td></t<> | | | | | | 5 | | | | | 665: 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | | | 673: 0 0 1 0 | 657: | 20 | | | | 13 | • | | | | 673: 0 0 1 0 | 665: | 2 | | 1 | | 1 | | | 0 | | 689: 0 0 0 0 1 0 1 0 697: 0 2 1 0 0 0 0 0 705: 1 2 0 0 0 0 0 1 713: 1 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 0 0 0 785: 0 1 0 0 0 0 0 1 1 | 673: | 0 | | | | | | | | | 697: 0 2 1 0 0 0 0 0 705: 1 2 0 0 0 0 0 1 713: 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 0 0 785: 0 1 0 0 0 0 0 1 1 | | | | | | | | | 0 | | 705: 1 2 0 0 0 0 0 1 713: 1 1 1 0 1 1 2 1 721: 0 1 3 1 1 1 1 1 3 729: 0 3 4 0 1 3 3 2 737: 3 0 2 1 0 5 3 1 745: 2 2 1 5 0 2 1 0 753: 3 0 0 0 0 0 0 0 0 761: 0 <td>689:</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>0</td> | 689: | 0 | 0 | | | 1 | | | 0 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | 697: | 0 | 2 | | | | | | 0 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | 705: | 1 | 2 | 0 | 0 | 0 | 0 | | 1 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | 713: | 1 | 1 | 1 | 0 | 1 | 1 | 2 | 1 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | | 0 | | 3 | 1 | 1 | 1 | 1 | 3 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | | | 3 | 4 | 0 | | 3 | 3 | 2 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | 737: | | 0 | 2 | 1 | | 5 | 3 | 1 | | 753: 3 0 0 0 0 0 0 0 0 761: 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 1 0 0 777: 1 0 1 0 1 0 2 0 785: 0 1 0 0 0 0 1 1 | | 2 | 2 | 1 | 5 | | 2 | 1 | 0 | | 761: 0 0 0 0 0 0 0 0 0 0 0 769: 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 | | 3 | 0 | | 0 | | 0 | | 0 | | 769: 0 1 0 0 0 1 0 0
777: 1 0 1 0 1 0 2 0
785: 0 1 0 0 0 0 1 1 | | | | | | | | | 0 | | 777: 1 0 1 0 1 0 2 0
785: 0 1 0 0 0 0 1 1 | | | | | | | | | 0 | | 785: 0 1 0 0 0 0 1 1 | | | 0 | | Ō | | | | 0 | | 793: 1 2 0 0 0 0 1 0 | | | | | | 0 | | 1 | 1 | | | | | 2 | 0 | | | | 1 | 0 | | Sample Title: O1 | Channel | Data Report | 5 | 4 | /8/2016 | 5:45: | 41 PM | | Page 3 | |--|--|----------------------------|-----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Channel | 801: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 809: 0 | | Sample Tit | tle: | 01 | | | | | | | 865: 0 0 0 0 1 1 0 0 873: 0 0 0 0 0 0 0 1 881: 0 0 0 0 0 0 0 0 889: 0 0 0 0 0 0 0 0 0 897: 1 0 0 0 0 0 0 0 1 905: 0 0 0 0 0 0 0 0 1 905: 0 0 0 0 1 1 0 0 2 913: 0 0 0 0 1 1 0 0 2 921: 2 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 | 809:
817:
825:
833:
841: | 0
0
0 | 0
0
0 | 0 0 0 | 0
0
0
0 | 0
0
0 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | | 905: 0 0 0 1 1 0 0 2 913: 0 0 0 0 1 1 0 1 921: 2 0 1 1 1 0 0 929: 0 1 0 0 2 0 2 1 937: 1 3 0 3 0 0 1 1 1 945: 2 6 1 3 2 1 2 1 953: 3 1 3 1 1 0 2 0 961: 3 1 0 0 0 0 0 0 1 969: 1 1 0 0 0 0 0 0 0 0 977: 0 | 865:
873:
881:
889: | 0
0
0 | 0 0 | 0
0
0 | 0
0
0 | 1
0
1
0 | 1
0
0
0 | 0
0
0
0 | 0
1
0
1 | | 937: 1 3 0 3 0 0 1 1 945: 2 6 1 3 2 1 2 1 953: 3 1 3 1 1 0 2 0 961: 3 1 0 0 0 0 0 0 1 0 | 905:
913:
921: | 0
0
2 | 0 0 | 0
0
1 | 1
0
1 | 1
1
1 | 0
1
1 | 0
0
0 | 2
1
0 | | 1009: 0 0 0 0 0 0 0 | 945:
953:
961:
969:
977:
985:
993: | 2
3
3
1
0
0 | 6
1
1
0
0 | 1
3
0
0
0
0 | 3
1
0
0
0
0 | 2
1
0
0
0
0 | 1
0
0
1
0
0 | 2
2
0
0
0
0 | 1
0
1
0
0
0 | | | 1009: | 0 | Ō | Ö | Ō | 0 | O | Ō | 0 | Sample Description: Spectrum File: Batch Identification: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 1603102A-TH BLANK Sample Identification: Sample Geometry: Procedure Description: Th iso 02 Shelf 2 Detector Name: Chamber Serial Number: 04026477A Detector Serial Number: 58771 Reagent Blank: Alpha 035 Env. Background: System Bkgd 149229 <not performed> Sample Size: 1.000E+000 +/- 0.000E+000 gram Sample Size: 1.000E+000 +/- 0.000E+ Sample Date/Time: 4/8/2016 6:14:10 AM Acquisition Date/Time: 4/8/2016 2:44:55 PM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 170.0 minutes Th229_S_TH-18A Tracer Certificate: Tracer Quantity: 0.234 mL Effective Efficiency: 0.2164 +/- 0.0170 Counting Efficiency: 0.1575 +/- 0.0028 on 12/11/2015 8:20:56 AM Chem. Recovery Factor: 1.3736 +/- 0.1106 Peak Match Tolerance: 0.175 MeV | | | | PEAR | K AREA RI | EPORT | | | | |---------|--------------|-----------------|----------------|--------------------|--------------------|--------------------|---------------|---| | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | TH-227 | | 5.782 | 9.15 | 68.23 | 0.85 | 0.00E+000 | 3.0 | | | TH-228 | | 5.298 | -1.19 | 180.60 | 1.19 | 0.00E+000 | 0.0 | | | TH-229 | \mathbf{T} | 4.898 | 193.00 | 14.14 | 0.00 | 0.00E+000 | 4.8 | | | TH-230 | | 4.643 | 13.49 | 54.53 | 0.51 | 0.00E+000 | 3.5 | | | TH-232 | | 3.946 | -0.34 | 592,90 | 0.34 | 0.00E+000 | 0.0 | ٠ | T = Tracer Peak used for Effective Efficiency ---- NUCLIDE ANALYSIS RESULTS | | Id | Energy | Activity | MDA | |---------|---------|----------|--------------------------|-------------------------| | Nuclide | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | | | | | | | TH-227 | 0.976 | 5850.00* | 1.15E-001 +/- 8.04E-002 | 7.52E-002 +/- 1.16E-002 | | TH-228 | 0.948 | 5400.00* | -1.46E-002 +/- 2.64E-002 | 8.07E-002 +/- 1.24E-002 | | TH-229 | 0.996 | 4872.00* | 2.37E+000 +/- 3.66E-001 | 7.38E-002 +/- 1.14E-002 | | TH-230 | 0.996 | 4672.00* | 1.65E-001 +/- 9.38E-002 | 6.44E-002 +/- 9.91E-003 | | TH-232 | 0.986 | 3997.00* | -4.16E-003 +/- 2.47E-002 | 5.85E-002 +/- 9.01E-003 | ************* ***** SPECTRAL DATA REPORT *****
*********** Sample Title: 02 Elapsed Live time: Elapsed Real Time: 10200 10200 | Channel - | | | | | | . | | | |-------------|----|--------|-----|--------|--------|-----------|----|--------| | 1: | oʻ | 0 | o ˈ | o ' | o ' | oʻ | o' | o' | | 9: | Ö | Ō | Ō | Ō | 0 | 0 | 0 | 0 | | 17: | Ö | Ö | Ö | Ō | Ö | 0 | 0 | 0 | | 25: | Ö | Ö | Ö | ō | Ö | Ō | Ō | 0 | | 33: | Ŏ | Ö | Ö | Ö | Ö | Ö | Ō | Ō | | 41: | ő | Ö | Ö | 1 | ő | Ö | Ö | Ö | | 49: | ő | Ö | Ö | 0 | ő | Ö | Ö | Ō | | 57 : | Ő | Ö | Ö | Ö | Ö | . 0 | Ö | ō | | 65: | Ö | Ö | Ö | Ö | Ö | Ō | Ō | 0 | | 73: | Ö | Ö | Ö | Ö | Ö | Ö | Ō | Ō | | 81: | Õ | 0 | Ö | Õ | Ö | Ō | Ō | Ō | | 89: | Ö | Ö | Ö | Ö | Ö | Ō | Ō | Ō | | 97: | Ö | 0 | ő | Ö | Ö | Ö | Ö | Ō | | 105: | ő | 0 | Ö | Ö | ő | Ö | Ö | Ŏ | | 113: | Ö | 0 | Ö | Ö | Ő | Ö | Ö | Ö | | 121: | ő | 0 | Ö | Ö | Ö | Ö | Ö | Ö | | 129: | ő | Ö | ő | Ö | Ŏ | Ö | Ö | Ō | | 137: | Ö | Ö | Ö | Ö | Ō | Ō | Ö | 0 | | 145: | Õ | Ö | Ö | Ō | Ö | Ō | Ō | 0 | | 153: | Õ | Ö | Ö | Ŏ | Ō | 0 | Ō | 0 | | 161: | Ö | Õ | Ö | Ö | Ō | Ō | 0 | 0 | | 169: | Ô | Ö | Ō | Ō | 0 | 0 | 0 | 0 | | 177: | Ō | Ö | Ō | Ö | Ō | Ö | 0 | 0 | | 185: | Ö | Ö | Ö | Ö | Ō | Ö | Ō | 0 | | 193: | 0 | Ö | Ō | Ō | 0 | 0 | 0 | 0 | | 201: | Ō | Ö | Ö | Ö | 0 | 0 | 0 | 0 | | 209: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 217: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 225: | Ō | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 233: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 241: | Ö | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 249: | 0 | Ô | 0 | 0 | 0 | 0 | 0 | 0 | | 257: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 265: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 273: | Ō | Ō | Ô | 0 | 0 | 0 | 0 | 0 | | 281: | 0 | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 289: | Ō | 0 | 0 | 0 | | 0 | 0 | | | 297: | Ö | 0 | 0 | 0
0 | 0
0 | 0 | 0 | 0
0 | | 305: | 0 | 0
0 | 0 | 0 | 0 | 0 | 0 | 0 | | 313: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | 321: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 329: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 337: | 0 | 0 | 0 | 0 | 0 | 0
1 | 0 | 0 | | 345: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 353: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 361: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | Channel | Data Rep | oort | 4 | /8/2016 | 5:45: | 47 PM | | Page 2 | |------------------|----------|--------|----|---------|-------|--------|---|-------------| | 369: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | :
:
:
: | Sample | Title: | 02 | | | | | | | Channel | - | - | | | | | | | | 377: | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | | 385: | 1 | , 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 393: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 401: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 409: | 1 | 0 | 0 | 4 | 1 | 1 | 0 | 1 | | 417: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 425: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 433: | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | | 441: | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | 449: | 0 | 2 | 2 | 5 | 2 | 3 | 2 | 5 | | 457: | 3 | 2 | 3 | 3 | 2 | 3 | 1 | 6 | | 465: | 3 | 5 | 3 | 4 | 3 | 4 | 2 | 1 | | 473: | 2 | 4 | 1 | 1 | . 2 | 2 | 5 | 2 | | 481: | 3 | 3 | 2 | 3 | 4 | 2 | 3 | 1
2
3 | | 489: | 2 | 3 | 0 | 3 | 2 | 1 | 3 | 0 | | 497: | 1 | 2 | 2 | 0 | 2 | 2 | 1 | 1 | | 505: | 1 | 4 | 4 | 2 | 1 | 2 | 1 | 1 | | 513: | 0 | 4 | 0 | 2 | 1 | 2 | 2 | 0 | | 521: | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 2 | | 529: | 0 | 1 | 2 | 1 | 2 | 2 | 0 | 0 | | 537: | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | | 5 4 5: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 553: | 0 | Ō | 0 | Ō | 0 | Ō | Ō | 0 | | 561: | 0 | Ō | Ō | 0 | Ō | 0 | Ō | Ō | | 569: | Ō | Ō | 0 | Ō | Ō | Ō | Ō | Ō | | 577 : | 0 | Ö | 0 | 0 | 0 | 0 | Ō | 0 | | 585: | 0 | Ō | Ō | 0 | Ō | Ō | Ō | 0 | | 593: | Ō | Ō | Ō | Ō | Ō | Ō | Õ | Ō | | 601: | 0 | Ö | 0 | Ō | 0 | 0 | Ō | Ō | | 609: | 0 | Ō | Ō | Ō | Ō | Ō | Ō | 0 | | 617: | Ō | Ō | Ō | Ō | Ö | Ö | Ö | Ō | | 625: | 0 | 0 | 0 | Ö | 0 | 0 | 0 | 0 | | 633: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 641: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 649: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 657 : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 665: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 673: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0 | | 681: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 689: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 697: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 705: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 713: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | 729: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 737: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 745: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 753: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 761: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 769: | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | | 777: | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | | 785: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | 793: | 0 | 0 | 0 | 0 | 0 | 1
0 | 0 | 0 | | | | | | | | | | | | Channel | Data Rep | ort | | 4/8/201 | 6 5:4 | 5:47 PM | | Page 3 | |---------|----------|--------|----|---------|-------|---------|----------|--------| | 801: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample | Title: | 02 | | | | | | | Channel | | | | | | | _ | | | 809: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 817: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 857: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 865: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 873: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 881: | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | | 889: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 897: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 905: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 913: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 921: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 937: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 945: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 953: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 961: | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | | 969: | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | 977: | 0 | 0 | 0 | Ō | 0 | 0 | 0 | 0 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1001: | 0 | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1009: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1017: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | Sample Description: SEDIMENT 2016-03-16A-DUP Spectrum File: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 Batch Identification: 1603102A-TH Sample Identification: 03 Sample Geometry: Shelf 2 Procedure Description: Th iso Alpha 036 Chamber Serial Number: 04026477B Detector Serial Number: 84167 Env. Background: System Bkgd 149230 Reagent Blank: Detector Name: <not performed> Sample Size: 9.970E-001 +/- 0.000E+000 gram Sample Size: Sample Date/Time: Acquisition Date/Time: Acquisition Live Time: Acquisition Real Time: 9.9/0E-001 +/- 0.000E-001 4/8/2016 6:14:10 AM 4/8/2016 2:44:57 PM 170.0 minutes Tracer Certificate: Tracer Quantity: Th229_S_TH-18A 0.233 mL Effective Efficiency: 0.1736 +/- 0.0150 Counting Efficiency: 0.1870 +/- 0.0033 on 12/11/2015 8:20:54 AM Chem. Recovery Factor: 0.9284 +/- 0.0821 Peak Match Tolerance: 0.175 MeV | | | | - | | | | | | |--|---|---|---|--|--------------------------------------|---|----------------------------------|-----------| | | • | | PEAK | AREA RI | EPORT | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | . <i></i> | | TH-227
TH-228
TH-229
TH-230
TH-232 | Т | 5.832
5.376
4.882
4.643
3.967 | 19.79
67.79
154.47
544.98
71.00 | 46.85
24.26
15.86
8.41
23.42 | 2.21
2.21
1.53
1.02
0.00 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 3.0
4.9
4.7
24.1
4.4 | | T = Tracer Peak used for Effective Efficiency ---- NUCLIDE ANALYSIS RESULTS | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | TH-227 | 0.998 | 5850.00* | 3.11E-001 +/- 1.55E-001 | 1.26E-001 +/- 2.14E-002 | | TH-228 | 0.997 | 5400.00* | 1.06E+000 +/- 3.15E-001 | 1.25E-001 +/- 2.13E-002 | | TH-229 | 0.999 | 4872.00* | 2.38E+000 +/- 4.04E-001 | 1.09E-001 +/- 1.86E-002 | | TH-230 | 0.996 | 4672.00* | 8.36E+000 +/- 1.58E+000 | 9.66E-002 +/- 1.64E-002 | | TH-232 | 0.995 | 3997.00* | 1.09E+000 +/- 3.14E-001 | 9.18E-002 +/- 1.56E-002 | ************ ***** SPECTRAL DATA REPORT ***** ************* Sample Title: 03 Elapsed Live time: Elapsed Real Time: 10200 10200 | | HIGPSOG I | | | | | | | | |--------------|-----------|------------------------|-------------------------|-----------------------|----------|----------|--------------|--------------------------------------| | Channel - | | . - : | - | | | - | - | · | | 1: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 9: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 17: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 33: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 41: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 105: | Ō | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 113: | Ö | 0 | 0 | 1 | 0 | 1 | 0 | 1 | | 121: | Ō | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | 129: | Ö | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 137: | Ö | Ō | ĺ | 1 | 0 | 0 | 0 | 0 | | 145: | Ö | ō | $\overline{\mathtt{1}}$ | 2 | 0 | 0 | 0 | 0 | | 153: | Ö | Ö | 0 | 0 | 0 | 3 | 0 | 0 | | 161: | ĺ | Ö | 1 | ī | 1 | 0 | 1 | 0 | | 169: | 2 | Ö | 2 | Ō | 1 | 1 | 2 | 2 | | 177: | 2 | 2 | $\tilde{\overline{2}}$ | 1 | 3 | 2 | 0 | 1 | | 185: | 2 | 3 | 2 | 3 | 2 | 3 | 6 | 0 | | 193: | 2 | 2 | ō | 1 | 1 | 1 | 0 | 0 | | 201: | Õ | 0 | ŏ | 0 | 0 | 0 | 0 | 0 |
 209: | Ö | Ö | ő | Ö | Ō | Ö | 2 | 0 | | 217: | 0 | 0 | ĭ | Ö | Ö | Ö | 0 | 0 | | 225: | ő | 0 | Ō | Ö | Ö | 1 | Ō | 0 | | 233: | 0 | 0 | ő | Ö | Ö | ō | Ō | 0 | | 241: | 0 | 0 | ő | 0 | Ö | Ö | Ō | 0 | | 249: | 0 | 0 | Ö | i | ő | Ö | Ö | Ō | | 257: | 0 | 0 | Ö | Ō | Ö | Õ | Ō | 0 | | 265: | 0 | 0 | ő | Ö | ő | 1 | Ö | 0 | | 273: | 0 | 0 | ő | 1 | ĺ | ō | Ö | Ō | | 281: | 0 | 0 | 1 | Ō | Ō | Õ | Ō | 0 | | 289: | 0 | 1 | 1 | Õ | Ö | Ō | Ō | | | 209: | 0 | 1
1 | 1
0 | 0
0 | ő | Ö | Ō | 1 | | 305: | 0 | 0 | 0 | Ö | ő | Ö | Ö | 1 | | 313: | 1 | 0 | 0 | Ö | 1 | Ö | Ö | 0 | | 321: | 1 | 0 | 0 | 0 | 1
0 | Ŏ | Ö | 1 | | 321: | 0 | 0 | 0 | 2 | ŏ | Ö | Ö | 0 | | 329: | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 1 | | 337: | 1 | 0 | <u> </u> | 1 | 0 | 0 | Ö | 1 | | 345: | 0 | 0 | ٠
٢ | <u>.</u>
1 | 0 | 1 | 1 | 0 | | 353:
361: | 0
1 | 1 | 0
1
0
2
0 | 0
2
0
1
1 | 0
1 | 0 | 1 | 0
1
0
1
0
1
0
3 | | 361: | 7 | 1. | U | 1 | _ | U | <u> </u> |) | Channel Data Report 4/8/2016 5:45:56 PM Page 2 369: 1 0 1 1 3 0 0 2 Sample Title: 03 | | защрте т. | rcie: | 0.3 | | | | | | |--------------|-----------|-------|--------|--------|--------|----------|-----|--------| | Channel | | | | | | - | | | | 377: | 1 | 1 | 4 | 1 ' | 4 ' | 2 ່ | 3 ່ | 6 ່ | | 385: | 4 | ī | 4 | -
9 | 6 | 5 | 8 | 7 | | 393: | 9 | 3 | 9 | 13 | 14 | 11 | 10 | 6 | | 401: | 11 | 12 | 16 | 4 | 8 | 10 | 14 | 14 | | 401: | 15 | 15 | 15 | 20 | 27 | 22 | 27 | 20 | | 417: | 35 | 24 | 25 | 13 | 11 | 7 | 6 | 2 | | | | 0 | 1 | 1 | 0 | 1 | 0 | ō | | 425: | 1 | | 0 | 0 | 0 | 0 | 0 | 1 | | 433: | 0 | 0 | | 0 | 1 | 0 | 1 | ī | | 441: | 1 | 1 | 0 | 1 | 0 | 2 | 1 | 1 | | 449: | 1 | 0 | 1 | | U | 2 | 2 | 0 | | 457: | 2 | 2 | 1 | 1 | 5
5 | 4 | 6 | 3 | | 465: | 2 | 0 | 0 | 4 | 5 | 3 | | 1 | | 473: | 8 | 3 | 6 | 5 | 3 | | 2 | 2 | | 481: | 3 | 2 | 7 | 0 | 1 | 4 | 1 | | | 489: | 1 | 2 | 0 | 1 | 0 | 1 | 2 | 1 | | 497: | 0 | 0 | 2 | 2 | 3 | 1 | 1 | 0 | | 505: | 1 | 0 | 0 | 1 | 0 | 5 | 1 | 1 | | 513: | 2 | 1 | 1 | 2 | 1 | 0 | 2 | 1 | | 521: | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | | 529: | 0 | 2 | 2 | 0 | 2 | 0 | 1 | 0 | | 537: | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | | 545: | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | 553 : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 561: | 0 | 0 | 0 | 0 | 0 | .0 | 0 | 0 | | 569: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 57 7: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 585: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 593: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 601: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 609: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 617: | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | | 625: | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 633: | 1 | 0 | 1 | 0 | 2 | 2 | 2 | 1 | | 641: | 1 | 0 | 2 | 2 | 1 | 1 | 0 | 2 | | 649: | . 0 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | | 657: | \$ O | 2 | 2
3 | 1 | 1 | 2 | 5 | 2 | | 665: | 3 | 5 | 3 | 1 | 4 | 1 | 1 | 1
1 | | 673: | 1 | 2 | 0 | 0 | 0 | 0 | 0 | Τ | | 681: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 689: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 697: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 705: | 0 | 0 - | 0 | 0 | 0 | 0 | 0 | 0 | | 713: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 721: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 729: | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | | 737: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 745: | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | 753: | 0 | 1 | 0 | 1 | 1 | 0 | 0 | . 0 | | 761: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 769: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 777: | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | | 785: | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1
0 | | 793: | 1 | 0 | 0 | 0 | 1 | 0 | 1 | U | | Channel | Data Repor | t | 4 / | /8/2016 | 5:45:5 | 56 PM | | Page | 3 | |---|--|----------------------------|-----------------|---------------------------------|--|---------------------------------|---|----------------------------|---| | 801: | 2 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | | | Sample Ti | tle: | 03 | | | | | | | | Channel 809: 817: 825: 833: 841: 849: 857: 865: 873: 881: 889: 905: 913: 921: 929: 937: |
0
0
0
0
0
1
0
0
0
0
0
0
0
0 | | | |
0
0
0
0
1
0
0
0
0
0
0
0 | | 0
0
0
0
0
0
0
0
1
0
0
0
0 | | | | 945:
953:
961:
969:
977:
985:
993:
1001:
1009: | 0
0
0
1
0
0
0 | 0
0
0
0
0
0 | 0 0 0 0 0 0 0 0 | 0
0
2
1
0
0
0 | 0
0
1
0
0
0
0 | 0
0
2
0
0
0
0 | 0 1 0 0 0 0 0 0 0 | 1
1
0
0
0
0 | | Sample Description: Spectrum File: Batch Identification: Sample Identification: Sample Geometry: Procedure Description: SEDIMENT 2016-03-16A \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 1603102A-TH 04 Shelf 2 Th iso Detector Name: Chamber Serial Number: Detector Serial Number: 91133 Env. Background: Reagent Blank: Alpha 037 04026478A System Bkgd 149231 <not performed> Sample Size: Sample Date/Time: Acquisition Date/Time: 4/8/2016 2:44:59 PM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 1.010E+000 +/- 0.000E+000 gram 3/16/2016 6:14:10 AM 170.0 minutes Tracer Certificate: O.233 mL O.2161 +/Counting Efficiency: 0.1645 +/Chem. Recovery Factor: 1.3136 Peak Matcl Th229_S_TH-18A 0.0170 0.1645 +/- 0.0029 on 12/11/2015 8:20:53 AM 1.3136 +/- 0.1060 Peak Match Tolerance: | | | | - | | | | | | | | | | |--|---|---|---|--|--------------------------------------|---|-----------------------------------|--|--|--|--|--| | | | | PEAK | AREA RE | EPORT | | | | | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | | | | | TH-227
TH-228
TH-229
TH-230
TH-232 | Т | 5.882
5.383
4.893
4.655
3.976 | 15.66
54.47
192.00
574.32
67.49 | 50.15
26.99
14.18
8.18
23.96 | 0.34
1.53
0.00
0.68
0.51 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 3.0
5.0
3.9
14.2
18.1 | | | | | | T = Tracer Peak used for Effective Efficiency |
 | - | | | |------------------|-----------|-------------|--| |
NUCLIDE | ANALYSIS | RESULTS | | | Nuclide | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | TH-227 | 0.995 | 5850.00* | 1.95E-001 +/- 1.03E-001 | 5.96E-002 +/- 9.20E-003 | | TH-228 | 0.998 | 5400.00* | 6.77E-001 +/- 2.10E-001 | 8.84E-002 +/- 1.36E-002 | | TH-229 | 0.998 | 4872.00* | 2.34E+000 +/- 3.61E-001 | 7.31E-002 +/- 1.13E-002 | | TH-230 | 0.998 | 4672.00* | 6.98E+000 +/- 1.22E+000 | 6.86E-002 +/- 1.06E-002 | | TH-232 | 0.998 | 3997.00* | 8.19E-001 +/- 2.33E-001 | 6.37E-002 +/- 9.83E-003 | Sample Title: 04 Elapsed Live time: 10200 Elapsed Real Time: 10200 | Channel | | | | · | | | | - | |---------|--------|-------------|----------|---|----------------------------|-------------|---|-------------| | 1: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 9: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 25: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 33: | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | 0 | | 41: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 57: | Ō | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | Ô | 0 | 0 | 0 | 0 | . 0 | 0 | 1 | | 73: | Ô | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | Ö | Ō | Ō | 0 | 2 | 0 | 0 | 0 | | 89: | 0 | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 97: | Ō | Ö | 0 | 0 | 0 | 0 | 0 | 0 | | 105: | Ö | Ö | 0 | 0 | 1 | 0 | 0 | 0 | | 113: | i | Ö | Ö | Ö | 1 | 0 | 0 | 0 | | 121: | ō | Ö | Ö | Ö | 0 | 0 | 0 | 0 | | 129: | 2 | Ö | 1 | Ō | 1 | 0 | 1 | 0 | | 137: | Ō | Ŏ | 1 | Ō | 0 | 1 | 0 | 1 | | 145: | ŏ | Ö | 0 | 1 | 0 | 0 | 2 | 3 | | 153: | Ö | 2 | ĺ | 3 | 1 | 0 | 1 | 2 | | 161: | 1 | 2 | ī | 2 | 1 | 3 | 1 | 3 | | 169: | 4 | 4 | 3 | 4 | 4 | 0 | 0 | 1 | | 177: | 3 | 1 | ő | Ō | ĺ | Ō | 0 | 0 | | 185: | ő | ō | ŏ | ĺ | 0 | Ō | 1 | 0 | | 193: | 0. | 0 | o · | 0 | Ö | Ō | 0 | 0 | | 201: | 0 | 0 | ő | Ő | Ö | Ö | 0 | 0 | | 209: | 0 | 0 | ő | Ö | Ö | Ō | 0 | 0 | | 217: | 0 | 0 | Ö | Ö | Ö | ō | Ō | 0 | | 225: | 0 | 0 | ő | Ö | Ö | Ö | Ö | 0 | | 233: | 0 | 0 | Ö | 1 | Ö | Ö | Ō | 0 | | 241: | 0 | 0 | Ö | 0 | Ö | Ō | 0 | 0 | | 249: | 0 | Ő | 1 | ĺ | Ö | Ö | Ô | 0 | | 257: | 0 | 1 | Ō | 1 | Ö | Ō | Ō | 0 | | 265: | Ö | 0 | Ö | 0 | 1 | Ō | 0 | 0 | | 273: | 0 | Ö | ő | Ö | 0 | Ō | 0 | 1 | | 281: | 0 | Ö | 1 | Ö | Ō | Ö | 0 | 0 | | 289: | Ö | Ö | 1 | | | | 0 | 0 | | 297: | Ö | Ö | 1 | Ô | 0 | 0
2
1 | 0 | 0 | | 305: | Ö | Ö | Ō | Õ | Ô | $\bar{f 1}$ | 1 | 0 | | 313: | Ö | 1 | ŏ | Ô | Ô | Ō | 0 | 0 | | 321: | Ö | 0 | Ö | 1 | 0 | 1 | 1 | 0 | | 329: | Ö | Ö | 1 | ō | 1 | Ō | 0 | 2 | | 337: | 2 | 0 | 1
1 | Õ | 0
0
0
0
0
1 | Ö | 1 | 0 | | 345: | 0 | | 1 | 3 | Ö | Ö | 2 | | | 353: | 2 | -
1 | 1 | 2 | $\overline{4}$ | 2 | 2 | 2 | | 361: | 2
6 | 2
1
0 | 1
1 | 0
0
0
1
0
0
3
2
5 | 4
6 | 5 | 2 | 4
2
3 | | 201: | U | J | <u> </u> | 3 | Ŭ | _ | _ | _ | Channel Data Report 4/8/2016 5:46:02 PM Page 2 369: 7 10 6 7 6 5 6 11 Sample Title: 04 | | | Sample | Title: | 0,4 | | | | | | |---|--------------|--------|--------|--------|--------|----|--------|-------------|--------| | C | hannel | | · - | | | | | | | | | 377: | 8 | 11 | 11 | 5 | 16 | 9 | 12 | 13 | | | 385: | 13 | 10 | 16 | 17 | 25 | 13 | 16 | 22 | | | 393: | 28 | 32 | 26 | 12 | 27 | 30 | 12 | 15 | | | 401: | 15 | 12 | 9 | 3 | 5 | 2 | 2 | 0 | | | 409:
| _ 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | | | 417: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | | 425: | 2 | 1 | 0 | 0 | 0 | 4 | 3 | 0 | | | 433: | 0 | 2 | 1 | 2 | 6 | 2 | 1 | 3 | | | 441: | 3 | 2 | 1 | 1 | 1 | 5
5 | 3
5
2 | 6 | | | 449: | 2 | 7 | 1 | 4 | 5 | 5 | 5 | 7 | | | 457: | 3 | 4 | 7 | 0 | 1 | 4 | 2 | 1 | | | 465: | 1 | 1 | 2 | 2 | 1 | 4 | 2 | 1 | | | 473: | 1 | 1 | 2 | 2 | 3 | 1 | 1 | 1 | | | 481: | 1 | 2 | 2 | 2 | 0 | 1 | 1 | 2 | | | 489: | 1 | 1 | 1 | 2 | 1 | 3 | 2 | 0 | | | 497: | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | | | 505: | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 1 | | | 513: | 2 | 1 | 0 | 1 | 1 | 2 | 4 | 0 | | | 521: | 3 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | | 529: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | | 537: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 545: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 553: | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | | | 561: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | | 569: | 0 | 0 | 1 | 0 | 0 | 1
0 | 0 | | | | 577: | 0 | 0 | 0 | 1
0 | 0 | 0 | 0 | | | | 585: | 0 | 0 | 0
1 | 0 | 0 | 0 | 0 | | | | 593: | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | | | 601: | 0 | 0
1 | 0 | | 0 | 1 | 0 | | | | 609: | 0
2 | 1 | 4 | | 3 | 0 | 0 | | | | 617: | 0 | 1 | 0 | 4 | 2 | | 2 | | | | 625:
633: | 0 | 1 | 3 | | 2 | 5 | 2 | | | | 633:
641: | 2 | 2 | 1 | | 2 | 0 | 0 | | | | 649: | 1 | 2 | Ō | | 0 | | Ō | | | | 649:
657: | 0 | 0 | 0 | | ő | | 0 | | | | 665: | 0 | 0 | 0 | | ő | Ō | Ō | | | | 673: | 0 | 0 | 0 | | 0 | | 0 | | | | 681: | 0 | 0 | ĺ | 0 | 0 | | 0 | 0 | | | 689: | Ö | Ö | 1
0 | Ō | 0 | | | 0 | | | 697: | 0 | Ö | 0 | Ō | 0 | 1 | 0 | | | | 705: | Ŏ | Ö | 0 | 0 | 0 | | 0 | | | | 713: | Ö | Ö | 0 | 0 | 0 | | 0 | | | | 721: | Ō | 0 | 1 | . 0 | 0 | 0 | 0 | | | : | 729: | Ö | 0 | 0 | 0 | 1 | 0 | C | | | | 737: | 0 | 1 | 0 | 0 | 0 | | | | | : | 745: | 0 | 0 | 0 | 0 | 0 | | | . 0 | | | 753: | 0 | 0 | 0 | 0 | 1 | | | | | | 761: | 0 | 0 | 0 | 0 | 0 | | | | | | 769: | 0 | 0 | 1 | . 0 | 0 | | | | | | 777: | 0 | 0 | 0 | 1 | 0 | | | . 0 | | | 785: | 1 | 0 | 0 | 0 | 0 | | | | | | 793: | 0 | 0 | 0 | 0 | 0 | 0 | . (| 0 | | | | | | | | | | | | | Channel D | ata Repor | t | | 4/8/2016 | 5:46:0 |)2 PM | | Page 3 | |-----------|-----------|------------|----|----------|--------|-------|---|--------| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample Ti | tle: | 04 | | | | | | | Channel - | | - - | | | | | | | | 809: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 817: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | | 833: | 0 | 0 | 1 | 0 | . 0 | 1 | 0 | 0 | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | 857: | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 1 | | 865: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 873: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 881: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 889: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 897: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 905: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 913: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 921: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | | 937: | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | | 945: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 953: | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 961: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 977: | 0 | .0 | 0 | 0 | 0 | 0 | 0 | 0 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1001: | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 1009: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1017: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | Sample Description: SEDIMENT 2016-03-16B Spectrum File: \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 Batch Identification: 1603102A-TH Sample Identification: 05 Sample Geometry: Shelf 2 Procedure Description: Th iso Detector Name: Alpha 038 Chamber Serial Number: 04026478B Detector Serial Number: 91134 Reagent Blank: Env. Background: System Bkgd 149232 <not performed> Sample Size: 1.008E+000 +/- 0.000E+000 gram Sample Date/Time: 3/16/2016 6:14:10 AM Acquisition Date/Time: 4/8/2016 2:45:01 PM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 170.0 minutes Tracer Certificate: Tracer Quantity: Th229_S_TH-18A 0.233 mL Effective Efficiency: 0.1749 +/- 0.0151 Counting Efficiency: 0.1601 +/- 0.0028 on 12/11/2015 8:20:51 AM Chem. Recovery Factor: 1.0929 +/- 0.0961 Peak Match Tolerance: 0.175 MeV | | | | | | - | | | | |---------|---------|-----------------|----------------|--------------------|--------------------|--------------------|---------------|--| | | | | | | | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | TH-227 | | 5.822 | 19.66 | 44.65 | 0.34 | 0.00E+000 | 3.0 | | | TH-228 | | 5.381 | 70.32 | 23.50 | 0.68 | 0.00E+000 | 10.5 | | | TH-229 | ${f T}$ | 4.883 | 155.49 | 15.75 | 0.51 | 0.00E+000 | 5.0 | | | TH-230 | | 4.643 | 301.32 | 11.31 | 0.68 | 0.00E+000 | 34.4 | | | TH-232 | | 3.974 | 49.00 | 28.28 | 0.00 | 0.00E+000 | 4.2 | | T = Tracer Peak used for Effective Efficiency ---- NUCLIDE ANALYSIS RESULTS | | Id | Energy | Activity | MDA | |---------|-------|----------|-------------------------|-------------------------| | Nuclide | Conf. | (keV) | (pCi/gram) | (pCi/gram) | | | | | | | | TH-227 | 0.996 | 5850.00* | 3.03E-001 +/- 1.45E-001 | 7.38E-002 +/- 1.25E-002 | | TH-228 | 0.998 | 5400.00* | 1.08E+000 +/- 3.13E-001 | 8.68E-002 +/- 1.46E-002 | | TH-229 | 0.999 | 4872.00* | 2.35E+000 +/- 3.96E-001 | 7.92E-002 +/- 1.34E-002 | | TH-230 | 0.995 | 4672.00* | 4.53E+000 +/- 9.21E-001 | 8.49E-002 +/- 1.43E-002 | | TH-232 | 0.997 | 3997.00* | 7.36E-001 +/- 2.42E-001 | 9.01E-002 +/- 1.52E-002 | *************** ***** SPECTRAL DATA REPORT ***** ************* Sample Title: 05 Elapsed Live time: 10200 Elapsed Real Time: 10201 | Channel | - | | | | | | - | | |--------------|----------|-----|---|---------|---------|--------|-----------|-----| | 1: | oʻ | o ˈ | 0 | . 0 | 0 | 0 | 0 | 0 | | 9: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 17: | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 25: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 33: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 41: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 49: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 57: | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | | 65: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 97: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 121: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | 137: | 1 | 2 | 0 | 0 | 0 | 0 | 0
1 | | | 145: | 0 | 0 | 0 | 0 | 0 | 1 | | | | 153: | 0 | 0 | 0 | 1 | 0 | 0 | | | | 161: | 1 | 2 | 1 | 1 | 1
0 | 1
1 | | | | 169: | 1 | 0 | 0 | 0 | 2 | 7 | | | | 177: | 4 | 1 | 2 | 3
0 | 0 | 0 | | | | 185: | 2 | 1 | 0 | 0 | 1 | 0 | | | | 193: | 0 | 0 | 0 | 0 | 0 | 0 | | | | 201: | 0 | 0 | 0 | 0 | 0 | 0 | | | | 209: | 0 | 0 | 0 | 0 | 0 | 1 | | | | 217: | 0 | 0 | 0 | 0 | 0 | 0 | | | | 225:
233: | 0 | 0 | 0 | 0 | 0 | 0 | | | | 233:
241: | 1 | 0 | 0 | | 0 | ő | | | | 241: | 0 | 0 | 0 | | Ö | Ö | | | | 257: | 0 | 1 | 0 | | Ö | ō | | | | 265: | 0 | 0 | 0 | | Ō | Ō | | | | 203:
273: | 0 | Ö | ŏ | | | 0 | | | | 281: | Ô | o o | 1 | 0 | 0 | 0 | 1 | . 1 | | 289: | Ö | 0 | 0 | 0 | 0 | 1 | . 0 | 0 | | 297: | Ö | Ō | 0 | | | 0 | | . 0 | | 305: | Ō | 0 | 0 | | | | 1 | . 0 | | 313: | 0 | 1 | 0 | | | 0 |) (| 2 | | 321: | 0 | 0 | 0 | 0 | 1 | C | | | | 329: | 0 | 0 | 0 | . 0 | 0 | C | |) 0 | | 337: | 0 | 1 | 0 | 0 | 1 | C | | 0 | | 345: | 0 | 0 | 0 | 0 | 0 | C | |) 1 | | 353: | 1 | 0 | 1 | . 0 | 1 | 1 | _ (| | | 361: | 1 | 0 | 0 | 0 | 1 | 1 | . (|) 1 | | | | | | | | | | | Channel Data Report 4/8/2016 5:46:08 PM Page 2 369: 3 1 3 0 3 4 2 1 Sample Title: 05 | | sample. | ricie: | 05 | | | | | | |--------------|----------------|--------|---------------|------------|-------------|-----|----|-----| | Channel | l l _ . | | | _ | | | | | | 377: | 4 | 3 | 6 | 2 | 3 | 8 | 4 | 6 | | 385: | 4 | 6 | 4 | 4 | 6 | 3 | 7 | 7 | | 393: | 3 | 5 | 6 | 10 | 6 | 8 | 14 | 11 | | | 9 | 14 | 14 | 13 | 11 | 11 | 12 | 13 | | 401: | | | | 6 | | 1 | 0 | 1 | | 409: | 7 | 9 | 7 | | 0 | | | 1 | | 417: | 0 | 1 | 0 | 0 | 1 | 0 | 2 | | | 425: | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | | 433: | 1 | 0 | 4 | 0 | 0 | 1 | 1 | 1 | | 441: | 1 | 0 | 0 | 1 | 1 | 0 | 2 | 2 | | 449: | 0 | 1 | 2 | 0 | 3 | 2 | 6 | 5 | | 457: | 3 | 1 | 5 | 5 | 2 | 8 | 4 | 3 | | 465: | · 4 | 0 | 3 | 2 | 2 | 1 | 0 | ÷ 1 | | 473: | 3 | 2 | 3 | 0 | 1 | 2 | 0 | 0 | | 481: | 4 | 3 | 1 | 2 | 3 | 1 | 2 | 1 | | 489: | 2 | 2 | 1 | 0 | 2 | 2 | 1 | 0 | | 497: | 2
2 | 1 | 0 | 0 | 1 | 1 | 0 | 2 | | 505: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | 513: | ō | 0 | 0 | 1 | 3 | 1 | 1 | 0 | | 521: | ĺ | Ō | 1 | 2 | 1 | 3 | 2 | 0 | | 529: | Ō | Ö | <u>-</u>
1 | 0 | Ō | 1 | 2 | 0 | | 537: | ő | ő | 2 | Ö | Ö | Ō | 1 | 0 | | 545: | ő | 0 | 0 | ő | Ö | Ö | 0 | 0 | | 553: | 0 | 0 | 0 | Ö | Ö | Ö | Ö | Ö | | 561: | 0 | 0 | 0 | 0 | 0 | 0 | Ö | Ö | | | | 0 | 0 | 0 | 0 | 0 | Ö | Ö | | 569: | 0 | | | 0 | 0 | 0 | 0 | 0 | | 577 : | 0 | 0 | 0 | | | | 0 | 0 | | 585: | 0 | 0 | 1 | 0 | 0 | 0 | | 0 | | 593: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 601: | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | | 609: | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 | | 617: | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | | 625: | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | | 633: | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | | 641: | 2 | 0 | 2 | 2 | 1 | 1 | 0 | 3 | | 649: | 2 | 4 | 5 | 4 | 2 | 5 | 3 | 5 | | 657: | 3 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | | 665: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 673: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 681: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 689: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 697: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 705: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 713: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 721: | Ō | . 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 729: | ō | Ö | Ö | Ō | Ō | 0 | 0 | 0 | | 737: | 1 | Ö | Ö | Ō | 1 | 1 | 0 | 0 | | 745: | 1 |
1 | Õ | Ö | Ō | 3 | Ö | Ö | | 753: | Ō | 1 | Ö | Ö | Ö | 0 | Ö | Ö | | 761: | 1 | 1 | 0 | 0 | 0 | Ŏ | Ö | Ö | | 761:
769: | 0 | 1 | 0 | 1 | 0 | Ö | 0 | Ö | | | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 777: | | | | | 0 | 1 | 0 | 0 | | 785: | 0 | 0 | 0 | 0
1 | 0 | 0 | 0 | 0 | | 793: | 2 | 0 | 0 | Τ | U | . 0 | U | U | | Channel | Data Repo | rt | | 4/8/2016 | 5:46: | 08 PM | | Page | 3 | |---------|-----------|-------|--------------|----------|-------|-------|-----|------|---| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Sample T | itle: | 05 | | | | | | | | Channel | | | - - | | | | | | | | 809: | 0 | 0 | 0 | Ö | 0 | 0 | 0 | 1 | | | 817: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 849: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | | 857: | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | | 865: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 873: | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | | | 881: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 889: | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 897: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | : 0 | | | 905: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 913: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 921: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 929: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 937: | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | | | 945: | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | | | 953: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | | 961: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 993: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1001: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1009: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 1017: | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | | Sample Description: Spectrum File: Batch Identification: Sample Identification: Sample Geometry: Procedure Description: 1603102A-TH 06 Shelf 2 Th iso Detector Name: Chamber Serial Number: 06027396A Detector Serial Number: 83109 Reagent Blank: Alpha 039 Env. Background: System Bkgd 149233 <not performed> Sample Size: Sample Date/Time: 3/16/2016 6:14:10 AM Acquisition Date/Time: 4/8/2016 2:45:03 PM Acquisition Live Time: 170.0 minutes Acquisition Real Time: 1.013E+000 +/- 0.000E+000 gram \\OR-ALPHA1\Canberra\ApexAlpha\Root\Data\00001480 SEDIMENT 2016-03-16B DUP 170.0 minutes 170.0 minutes Tracer Certificate: Tracer Quantity: Effective Efficiency: 0.1711 +/- 0.0150 Counting Efficiency: 0.1862 +/- 0.0032 on 12/11/2015 8:20:49 AM Chem. Recovery Factor: 0.9189 +/- 0.0820 Th229 S TH-18A 0.233 mL Peak Match Tolerance: 0.175 MeV | | | | | | | | | | |--|---|---|---|---|--------------------------------------|---|-----------------------------------|--| | | | | PEAR | C AREA RI | EPORT | | | | | Nuclide | | Energy
(MeV) | Net
Pk Area | Pk Area
Error % | Ambient
Backgnd | Reagent
Backgnd | FWHM
(keV) | | | TH-227
TH-228
TH-229
TH-230
TH-232 | Т | 5.832
5.390
4.885
4.654
3.975 | 12.79
39.43
152.45
286.30
54.96 | 60.09
32.83
16.03
11.62
27.01 | 2.21
3.57
2.55
1.70
2.04 | 0.00E+000
0.00E+000
0.00E+000
0.00E+000
0.00E+000 | 4.5
11.0
4.5
18.8
5.5 | | T = Tracer Peak used for Effective Efficiency ---- NUCLIDE ANALYSIS RESULTS | Nuclide | Id
Conf. | Energy
(keV) | Activity
(pCi/gram) | MDA
(pCi/gram) | |------------------|----------------|----------------------|--|--| | TH-227 | 0.998 | 5850.00* | 2.01E-001 +/- 1.26E-001 | 1.26E-001 +/- 2.15E-002 | | TH-228
TH-229 | 0.999
0.999 | 5400.00*
4872.00* | 6.18E-001 +/- 2.29E-001
2.34E+000 +/- 4.02E-001 | 1.48E-001 +/- 2.53E-002
1.29E-001 +/- 2.21E-002 | | TH-230 | 0.998 | 4672.00* | 4.39E+000 +/- 9.09E-001 | 1.13E-001 +/- 1.93E-002 | | TH-232 | 0.998 | 3997.00* | 8.41E-001 +/- 2.69E-001 | 1.19E-001 +/- 2.04E-002 | *************** ***** SPECTRAL DATA REPORT ***** ************** Sample Title: 06 Elapsed Live time: 10200 Elapsed Real Time: 10201 10200 | Channel | - - - | | | _ | - - - - | | | - | |--------------|----------------|-----------|-------------|--------|--------------------------|--------|--------|---------------------------------| | 1: | ' o' | oʻ | o ˈ | oʻ | o ˙ | o · | 0 | 0 | | 9: | Ö | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 17: | 1 | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 25: | ō | Ō | 0 | 0 | 0 | 0 | 0 | 0 | | 33: | Ö | Ō | 0 | 0 | 1 | 0 | 0 | 1 | | 41: | Ö | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 49: | Ō | 1 | 2 | 0 | 0 | 0 | 0 | 0 | | 57: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 65: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 73: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 81: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 89: | 0 | 0 | 0 | 1 | 0 | 0 | 0 . | 0 | | 97: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 105: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 113: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 121: | 0 | 0 | 0 | 0 | 1. | 0 | 0 | 0 | | 129: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 137: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 145: | 1 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | | 153: | 0 | 4 | 1 | 2 | 1 | 1 | 0 | 0 | | 161: | 2 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | | 169: | 0 | 1 | 0 | 2 | 2 | 0 | 6 | 4 | | 177: | 1 | 2 | 5 | 2 | 4 | 1 | 1 | 2 | | 185: | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 193: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 201: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 209: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | 217: | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0 | | 225: | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 233: | 0 | 0 | 0 | 0 | 0 | 0
0 | 1 | 0 | | 241: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 249: | 0 | 0 | 0 | 0 | 0
0 | 0 | 0 | 0 | | 257: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 265: | 0 | 0 | 0 | 0
0 | 0 | 0 | Ö | ō | | 273: | 0 | 0 | 0 | 1 | 0 | 0 | Ö | Ö | | 281: | 0 | • | 0 | | 0 | 0 | 1 | ő | | 289: | 0 | 0 | 0
0 | 0
0 | 0 | 0 | 1 | ñ | | 297: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ô | | 305: | 0 | 0 | 0 | 0 | 0 | Ö | ő | Ô | | 313: | 0
0 | 0
0 | 0 | 0 | 0 | 0 | ŏ | Õ | | 321: | 0 | 0 | 0 | 0 | 0 | ő | Ö | Õ | | 329: | 0 | ນ
ວ | 0 | 0 | 0 | Ö | 1 | Ō | | 337:
345: | 0 | 2
0 | 0 | 1 | Ö | Ö | 1 | 2 | | 242:
252. | 0 | 0 | 1 | 0 | Ö | Ŏ | 0 | 0 | | 353: | 1 | 0 | 0
1
1 | 0 | · 1 | 3 | 0
1 | 0
0
0
0
0
0
2 | | 361: | <u>.</u> | v | _ | U | - | - | - | | 785: 793: | Channel | Data Repor | t | | 4/8/2016 | 5:46: | 16 PM | | Page 3 | |---------|------------|------|----|----------|-------|-------|----------------|--------| | 801: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample Ti | tle: | 06 | | | | | | | Channel | | | | | · | | · - | | | 809: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 817: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 841: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 849: | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 857: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 865: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 873: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 881: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 889: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 897: | . 0 ` | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 905: | 0 | 0 | 0 | 0 | 0 | Ō | 0 | 0 | | 913: | 0 | 0 | 0 | 0 | 0 | 1 | 0 | Ō | | 921: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 929: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 937: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 945: | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | 953: | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 961: | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | | 969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 985: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 993: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1001: | 0 | 0 | 0 | 0 , | 0 | 0 | 0 | 0 | | 1009: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1017: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # QA SUMMARY REPORT Review Of QA Results - Pulser Check Date : 4/8/2016 Time : 5:33:35 AM | CHAMBER | DEVICE | PARAMETER | FLAG | DATE | |-----------|--------------------|-----------|----------|---------------------| | Alpha 001 | 21f | ALL | Not Done | | | Alpha 002 | 21f | ALL | Not Done | | | Alpha 003 | 21f | ALL | Passed | 4/8/2016 4:54:33 AM | | Alpha 004 | 21f | ALL | Passed | 4/8/2016 4:54:34 AM | | Alpha 005 | 21f | ALL | Not Done | | | Alpha 006 | 21f | ALL | Not Done | | | Alpha 007 | 21f | ALL | Not Done | | | Alpha 008 | 21f | ALL | Not Done | | | Alpha 009 | 21f | ALL | Not Done | | | Alpha 010 | 21f | ALL | Passed | 4/8/2016 4:54:34 AM | | Alpha 011 | 21f | ALL | Passed | 4/8/2016 4:54:35 AM | | Alpha 012 | 21f | ALL | Passed | 4/8/2016 4:54:36 AM | | Alpha 013 | 21f | ALL | Not Done | | | Alpha 014 | 21f | ALL | Passed | 4/8/2016 4:54:37 AM | | Alpha 015 | 21f | ALL | Passed | 4/8/2016 4:54:38 AM | | Alpha 016 | 21f | ALL | Not Done | | | Alpha 033 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:39 AM | | Alpha 034 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:40 AM | | Alpha 035 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:42 AM | | Alpha 036 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:43 AM | | Alpha 037 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:45 AM | | Alpha 038 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:46 AM | | Alpha 039 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:48 AM | | Alpha 040 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:50 AM | | Alpha 041 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:51 AM | | Alpha 042 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:53 AM | | Alpha 043 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:54 AM | | Alpha 044 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:56 AM | | Alpha 045 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:58 AM | | Alpha 046 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:54:59 AM | | Alpha 047 |
Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:01 AM | | Alpha 048 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:03 AM | | Alpha 049 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:04 AM | | Alpha 050 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:06 AM | | Alpha 051 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:08 AM | | Alpha_052 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:09 AM | | Alpha 053 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:11 AM | | Alpha 054 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:13 AM | | Alpha 055 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:15 AM | | Alpha 055 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:17 AM | | Alpha 057 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:19 AM | | Alpha 057 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:20 AM | Review of QA Results - Pulser Check Page 2 of 2 4/8/2016 5:33:35 AM | CHAMBER | DEVICE | PARAMETER | FLAG | DATE | |-----------|--------------------|-----------|--------|---------------------| | Alpha 059 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:22 AM | | Alpha 060 | Alpha Analyst100DC | ALL | Passed | 4/8/2016 4:55:24 AM | APPROVED BY: APPROVAL DATE: 4/6-1 Nuclide Library Title: Thorium Nuclide Library Description: Th-227,-228,-229,-230,-232 | Nuclide | Half-Life | Energy | Energy | Yield | Yield | |--|--|---|-------------------------|--|--| | Name | (Seconds) | (keV) | Uncert. (keV) | (%) | Uncert.(Abs.+-) | | TH-227
TH-228
TH-229
TH-230
TH-232 | 6.873E+008
6.034E+007
2.487E+011
2.379E+012
4.434E+017 | 5850.000*
5400.000*
4872.000*
4672.000*
3997.000* | 0.000
0.000
0.000 | 97.5000
99.9400
99.5200
99.8200
100.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | ^{* =} key line TOTALS: ⁵ Nuclides ⁵ Energy Lines # SECTION X ANALYTICAL DATA (GAMMA SPECTROSCOPY) | | • | |----------------------|---------------------------| | Work Order | 16-03102 | | Analysis Code | Gamma | | Run | 1 | | Date Received | 3/21/2016 | | Lab Deadline | 4/12/2016 | | Client | Auxier & Associates, Inc. | | Project | WESTLAKE NCC | | Report Level | 4 | | Activity Units | pCi | | Aliquot Units | g | | Matrix | so | | Method | LANL ER-130 Modified | | Instrument Type | Gamma Spectroscopy | | Radiometric Tracer | | | Radiometric Sol# | | | Tracer Act (dpm/g) | | | Carrier | | | Carrier Conc (mg/ml) | | | | | | | | | | | | | | Tan I | | | | |----------------------|----------------|---|--------------|----------------|-------------------| | Internal
Fraction | Sample
Desc | Client
ID | Login
CPM | Sample
Date | Sample
Aliquot | | 01 | LCS | LCS | | 03/22/16 00:00 | 1.0000E+00 | | 02 | MBL | BLANK | | 03/22/16 00:00 | 1.0000E+00 | | 03 | DUP | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 4.4758E+02 | | 04 | DO | SEDIMENT 2016-03-16A | 36 | 03/16/16 13:35 | 4.4758E+02 | | 05 | TRG | SEDIMENT 2016-03-16B | 38 | 03/16/16 13:55 | 5.4129E+02 | | 06 | TRG | SEDIMENT 2016-03-16B DUP | 34 | 03/16/16 13:55 | 5.3601E+02 | | | | SATE STATE OF THE | · ••• | | · | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. Printed: 3/23/2016 10:37 AM Page 2 of 3 | Internal
Fraction | Sample
Desc | Tracer
Aliquot (g) | Tracer Total
ACT (dpm) | Radiometric
Tracer (pCi) | Radiometric
% Rec | Grav Carrier
Added (ml) | Grav Filter
Tare (g) | Grav Filter
Final (g) | Grav Filter
Net (g) | Grav
% Rec | Mean
% Rec | SAF
1* | SAF
2* | |----------------------|----------------|-----------------------|---------------------------|-----------------------------|----------------------|----------------------------|-------------------------|--------------------------|------------------------|---------------|---------------|-----------|-----------| | 01 | LCS | | | | 0.00 | | | | | | | | | | 02 | MBL | | | | 0.00 | | | | | | | | | | 03 | DUP | | | | 0.00 | | | | | | | | | | 04 | DO | | | | 0.00 | | | | | | | | | | 05 | TRG | | | | 0.00 | | | | | | | | | | 06 | TRG | | | | 0.00 | - | Arvira | <u> </u> | | | | | | | | - | | | | | ****** | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | - | 1 | | | | | | | 1 | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | - | Internal
Fraction | Sample
Desc | Rough Prep
Date | Rough Prep
By | Prep
Date | Prep
By | Sep t0
Date/Time | Sep t0
By | Sep t1
Date/Time | Sep t1
By | |----------------------|----------------|--------------------|------------------|---------------------------------------|------------|---------------------|--------------|---------------------|--------------| | 01 | LCS | | | | : | | | | | | 02 | MBL | | | | | | 1 | | | | 03 | DUP | | | | | | | | | | 04 | DO | 03/23/16 07:28 | KSALLINGS | | | | | | | | 05 | TRG | 03/23/16 07:28 | KSALLINGS | | | |) | | | | 06 | TRG | 03/23/16 07:28 | KSALLINGS | · · · · · · · · · · · · · · · · · · · | | , a so | | | | | | | | | | | , and | * | <u> </u> | 1 | 1000 | | | | | | | | 1 | ^{*} SAF1 is used for Gross Alpha and all other radionuclides. SAF2 is used for Gross Beta only. ^ Indicates estimated SAF value. ** Actual mass exceeded the calibration curve range. Results should be qualified as appropriate. ### Preliminary Data Report & Analytical Calculations ### Work Order: 16-03102-Gamma-1 Printed: 4/13/2016 2:32 PM Page 1 of 2 | F | Lab
raction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error
Estimate | MDA | LSC
Known | LCS
%R | LCS
Flag | RPD
Flag | Sample
Date | Sample
Aliquot | Counting
Date/Time | Identified | |----------|----------------|---------|----------------|--------------------------|-------------------|-----------|-------------------|----------|--------------|-----------|-------------|-------------|----------------|-------------------|-----------------------|------------| | \vdash | 01 | CO-60 | LCS | LCS | pCî/g | 1.38E+02 | 7.79E+00 | 7.44E-01 | 1.37E+02 | 100.71 | ок | | 03/22/16 00:00 | 1.00E+00 | 04/11/16 07:33 | YES | | | 01 | CS-137 | LCS | LCS | pCi/g | 8.88E+01 | 7.27E+00 | 9.37E-01 | 8.69E+01 | 102.15 | ок | | 03/22/16 00:00 | 1.00E+00 | 04/11/16 07:33 | YES | | 1 | 02 | AC-228 | MBL | BLANK | pCi/g | 8.69E-02 | 7.85E-02 | 1.64E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | \vdash | 02 | B!-214 | MBL | BLANK | pCi/g | -6.16E-04 | 4.64E-02 | 7.39E-02 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | - | 02 | K-40 | MBL | BLANK | pCi/g | -3.82E-01 | 3.60E-01 | 3.28E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | | 02 | PA-231 | MBL | BLANK | pCi/g | 4.98E-02 | 7.34E-01 | 1.15E+00 | - | | | | 03/22/16 00:00 |
1.00E+00 | 04/13/16 13:15 | NO | | \vdash | 02 | PB-210 | MBL | BLANK | pCi/g | 4.51E-01 | 4.95E-01 | 7.39E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | | 02 | PB-212 | MBL | BLANK | pCi/g | 3.90E-02 | 3.50E-02 | 6.07E-02 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | - | 02 | PB-214 | MBL | BLANK | pCi/g | 1.31E-02 | 5.06E-02 | 7.74E-02 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | 1 | 02 | RA-226 | MBL | BLANK | pCi/g | -6.16E-04 | 4.64E-02 | 7.39E-02 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | - | 02 | RA-228 | MBL | BLANK | pCi/g | 8.69E-02 | 7.85E-02 | 1,64E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | | 02 | TH-234 | MBL | BLANK | pCi/g | 1,32E-01 | 4.28E-01 | 5.89E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | \vdash | 02 | TL-208 | MBL | BLANK | pCi/g | 3.99E-02 | 5.67E-02 | 1.07E-01 | | | | | 03/22/16 00:00 | 1.00E+00 | 04/13/16 13:15 | NO | | - | 03 | AC-228 | DUP | SEDIMENT 2016-03-16A | pCi/g | 9.79E-01 | 3,27E-01 | 5.59E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | \vdash | 03 | BI-214 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.86E+00 | 2.34E-01 | 3.73E-01 | | | | ок | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | - | 03 | K-40 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.69E+01 | 2.40E+00 | 1.52E+00 | | | | oĸ | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | \vdash | 03 | PA-231 | DUP | SEDIMENT 2016-03-16A | pCi/g | 9.51E-01 | 2.17E+00 | 3.74E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | NO | | - | 03 | PB-210 | DUP | SEDIMENT 2016-03-16A | pCi/g | 4.78E+00 | 1.80E+00 | 2.74E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | + | 03 | PB-212 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.35E+00 | 1.80E-01 | 3.11E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | \vdash | 03 | PB-214 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.81E+00 | 2.41E-01 | 2.92E-01 | | | | OK | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | \vdash | 03 | RA-226 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.86E+00 | 2.34E-01 | 3.73E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | - | 03 | RA-228 | DUP | SEDIMENT 2016-03-16A | pCi/g | 9.79E-01 | 3.27E-01 | 5.59E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | + | 03 | TH-234 | DUP | SEDIMENT 2016-03-16A | pCi/g | 2.18E+00 | 1.80E+00 | 2.98E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | - | 03 | TL-208 | DUP | SEDIMENT 2016-03-16A | pCi/g | 1.06E+00 | 1.92E-01 | 5.65E-02 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 07:02 | YES | | - | 04 | AC-228 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.30E+00 | 2.92E-01 | 5.70E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | ┢ | 04 | BI-214 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.70E+00 | 2.29E-01 | 1.01E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | H | 04 | K-40 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.59E+01 | 2.22E+00 | 1.00E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | H | 04 | PA-231 | DO | SEDIMENT 2016-03-16A | pCi/g | 5.84E-01 | 1.00E+00 | 3.94E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | NO | | H | 04 | PB-210 | DO | SEDIMENT 2016-03-16A | pCi/g | 3.32E+00 | 2.14E+00 | 3.49E+00 | | | Ī | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | \vdash | 04 | PB-212 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.21E+00 | 1.75E-01 | 3.42E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | ŀ | 04 | PB-214 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.86E+00 | 2.42E-01 | 3.36E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | ŀ | 04 | RA-226 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.70E+00 | 2.29E-01 | 1.01E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | r 10 | 04 | RA-228 | DO | SEDIMENT 2016-03-16A | pCì/g | 1.30E+00 | 2.92E-01 | 5.70E-01 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | | 04 | TH-234 | DO | SEDIMENT 2016-03-16A | pCi/g | 1.43E+00 | 1.67E+00 | 2.24E+00 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | NO | | | 04 | TL-208 | DO | SEDIMENT 2016-03-16A | pCi/g | 9.38E-01 | 2.15E-01 | 5.65E-02 | | | | | 03/16/16 13:35 | 4.48E+02 | 04/13/16 08:07 | YES | | Trans. | 05 | AC-228 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.08E+00 | 2.05E-01 | 3.80E-01 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | | 05 | BI-214 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.13E+00 | 1.78E-01 | 8.31E-02 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | - | 05 | K-40 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.32E+01 | 1.89E+00 | 1.12E+00 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | Eberline Analytical Oak Ridge Laboratory ### Preliminary Data Report & Analytical Calculations # Work Order: 16-03102-Gamma-1 Printed: 4/13/2016 2:32 PM Page 2 of 2 | Lab
Fraction | Nuclide | Sample
Desc | Client
Identification | Activity
Units | Results | Error
Estimate | MDA | LSC
Known | LCS
%R | LCS
Flag | RPD
Flag | Sample
Date | Sample
Aliquot | Counting
Date/Time | Identified | |-----------------|---------|----------------|--------------------------|-------------------|----------|-------------------|----------|---------------|-----------|-------------|-------------|----------------|-------------------|-----------------------|------------| | 05 | PA-231 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.15E+00 | 1.64E+00 | 2.82E+00 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | МО | | 05 | PB-210 | TRG | SEDIMENT 2016-03-16B | pCi/g | 2.84E+00 | 1,41E+00 | 2.22E+00 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YEŞ | | 05 | PB-212 | TRG | SEDIMENT 2016-03-16B | pCi/g | 9.74E-01 | 1.43E-01 | 2.47E-01 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | 05 | PB-214 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.20E+00 | 1.50E-01 | 2.48E-01 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | 05 | RA-226 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.13E+00 | 1.78E-01 | 8.31E-02 | | | | | 03/16/16 13:55 | 5,41E+02 | 04/13/16 09:12 | YES | | 05 | RA-228 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.08E+00 | 2.05E-01 | 3.80E-01 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | 05 | TH-234 | TRG | SEDIMENT 2016-03-16B | pCi/g | 1.09E+00 | 1.46E+00 | 1.91E+00 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | NO | | 05 | TL-208 | TRG | SEDIMENT 2016-03-16B | pCi/g | 7.01E-01 | 1,50E-01 | 4.67E-02 | | | | | 03/16/16 13:55 | 5.41E+02 | 04/13/16 09:12 | YES | | 06 | AC-228 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 9.22E-01 | 2.43E-01 | 5.07E-01 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | BI-214 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.32E+00 | 2.05E-01 | 2.42E-01 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | K-40 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.43E+01 | 1.91E+00 | 4.63E-01 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | PA-231 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.09E+00 | 2.06E+00 | 3.14E+00 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | NO | | 06 | PB-210 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.59E+00 | 1.61E+00 | 2.68E+00 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | PB-212 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.09E+00 | 1.41E-01 | 2.68E-01 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | PB-214 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.38E+00 | 1.68E-01 | 2.48E-01 | . | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | RA-226 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 1.32E+00 | 2.05E-01 | 2.42E-01 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | RA-228 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 9.22E-01 | 2.43E-01 | 5.07E-01 | | 1 | 1 | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | TH-234 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 2.01E+00 | 1.70E+00 | 2.83E+00 | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | | 06 | TL-208 | TRG | SEDIMENT 2016-03-16B DUP | pCi/g | 7.31E-01 | | | | | | | 03/16/16 13:55 | 5.36E+02 | 04/13/16 10:13 | YES | Count Room Report Client: Auxier Associates, Inc. 16-03102-Gamma-1 (pCi/g) in SO Tracer ID: Mysmon Printed: 3/23/2016 10:37 AM Page 1 of 1 | Internal
Fraction | Sample
Desc | Client
ID | Sample
Date | Sample
Aliquot | Tracer
Aliquot (g) | Tracer
ACT (dpm) | Radiometric
Tracer (pCi) | Radiometric
% Rec | SAF
1* | SAF
2* | |----------------------|----------------|--------------------------|----------------|-------------------|-----------------------|---------------------|-----------------------------|----------------------|-----------|-----------| | - المكار | ŁCS | LCS | 03/22/16 00:00 | 1.0000 | | | | 0.00 | | | | 92 | MBL | BLANK | 03/22/16 00:00 | 1.0000 | | | | 0.00 | | | | 83 | DUP | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 447.5800 | | | | 0.00 | | | | _04 | DO | SEDIMENT 2016-03-16A | 03/16/16 13:35 | 447.5800 | | | | 0.00 | n | | | 05 | TRG | SEDIMENT 2016-03-16B | 03/16/16 13:55 | 541.2900 | | | | 0.00 | | | | 08 | TRG | SEDIMENT 2016-03-16B DUP | 03/16/16 13:55 | 536.0100 | | | | 0.00 | 7 | - ALLANDOOM - | | | | | | | | | | | | | | | - AMPERITY | | | | | | | | 1380 Seaboard Industrial Blvd. Atlanta, Georgia 30318 Tel 404-352-8677 Fax 404-352-2837 www.analyticsinc.com ### **CERTIFICATE OF CALIBRATION** Standard Radionuclide Source GAS-1302 #### 94268 Sand in 16 Ounce PP Taral Jar Filled to Top Customer: Eberline Analytical Corporation P.O. No.: 13 1304009, Item 7 Product Code: 8401-EG-SAN Reference Date: 01-Jul-2013
12:00 PM EST Grams of Master Source: 0.017994 This standard radionuclide source was prepared using aliquots measured gravimetrically from master radionuclide solutions. Additional radionuclides were added gravimetrically from solutions calibrated by gamma-ray spectrometry, ionization chamber, or liquid scintillation counting. Calibration and purity were checked using a germanium gamma spectrometer system. At the time of calibration no interfering gamma-ray emitting impurities were detected. The gamma-ray emission rates for the most intense gamma-ray lines are given. Eckert & Ziegler Analytics (EZA) maintains traceability to the National Institute of Standards and Technology through a Measurements Assurance Program as described in USNRC Regulatory Guide 4.15, Revision 2, July 2007, and compliance with ANSI N42.22-1995, "Traceability of Radioactive Sources to NIST." EZA is accredited by the Health Physics Society (HPS) for the production of NIST-traceable sources, and this source was produced in accordance with the HPS accreditation requirements. Customers may report any concerns with the accreditation program to the HPS Secretariat, 1313 Dolley Madison Blvd., Ste. 402, McLean, VA 22101. | | | | Master | | | rtainty | *,% | | |---------|--------------|------------|---------------|-------------|---------|---------------------------|-----|-------------| | | Gamma-Ray | Half-Life, | Source* | This Source | Ту | pe | | Calibration | | Nuclide | Energy (keV) | Days | γps/gram | γps | u_{A} | $\mathbf{u}_{\mathtt{B}}$ | บ | Method* | | Am-241 | 59.5 | 1.580E+05 | _ | 2.094E+03 | 0.1 | 1.7 | 3.5 | 4π LS | | Cd-109 | 0.88 | 4.626E+02 | 1.641E+05 | 2.952E+03 | 0.5 | 2.3 | 4.7 | HPGe | | Co-57 | 122.1 | 2.718E+02 | 8.865E+04 | 1.595E+03 | 0.4 | 2.0 | 4.1 | HPGe | | Ce-139 | 165.9 | 1.376E+02 | 1.243E+05 | 2.236E+03 | 0.4 | 1,9 | 3.9 | HPGe | | Hg-203 | 279.2 | 4.661E+01 | 2.627E+05 | 4.727E+03 | 0.3 | 1.9 | 3.8 | HPGe | | Sn-113 | 391.7 | 1.151E+02 | 1.736E+05 | 3.124E+03 | 0.4 | 1.9 | 3.9 | HPGe | | Cs-137 | 661.7 | 1.098E+04 | 1.120E+05 | 2.015E+03 | 0.7 | 1.9 | 4.0 | HPGe | | Y-88 | 898.0 | 1.066E+02 | 4.197E+05 | 7.553E+03 | 0.5 | 1.9 | 3.9 | HPGe | | Co-60 | 1173.2 | 1.925E+03 | 2,074E+05 | 3.732E+03 | 0.6 | 1.9 | 4.0 | HPGe | | Co-60 | 1332.5 | 1.925E+03 | 2.074E+05 | 3.732E+03 | 0.7 | 1.9 | 4.0 | HPGe | | Y-88 | 1836.1 | 1.066E+02 | 4.444E+05 | 7.996E+03 | 0.7 | 1.9 | 4.0 | HPGe | ^{*} Master Source refers to Analytics' 8-isotope mixture which is calibrated quarterly. Calibration Methods: 4π LS - 4 pi Liquid Scintillation Counting, HPGe - High Purity Germanium Gamma-Ray Spectrometer, IC - Ionization Chamber. Uncertainty: U - Relative expanded uncertainty, k = 2. See NIST Technical Note 1297, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results." (Certificate continued on reverse side) MGS Certificate Rev 4, 23 August 2012 Page 1 of 2 Eberline Analytical Oak Ridge Laboratory # **Aliquot Worksheet** Printed: 3/23/2016 10:37 AM Page 1 of 1 | Work Order | Run | Analysis Code | Rpt Units | Lab Deadline | Technician | |------------|-----|---------------|-----------|--------------|------------| | 16-03102 | 1 | Gamma | grams | 4/12/2016 | KSALLINGS | | Auxier & Associates, Inc. | Sample | Muffle Data | | Dilution Data | | Aliquo | t Data | MS Aliq | uot Data | H-3 Solid | ls Only | |---------------------------|--------|--|-------------------------|--|---------------------------------|--|---|---|---|--|-----------------| | Client ID | | Ratio
Post/Pre | No of Dils | Dil Factor | Ratio | Aliquot | Net Equiy | Aliquot | Net Equiv | Water Added
(ml) | H3 Dist
Aliq | | | | | | | | 1.0000E+00 | 1.0000E+00 | | | | | | | | | | | | 1.0000E+00 | 1.0000E+00 | | | | | | | | | | | | 4.4758E+02 | 4,4758E+02 | | | | | | | | | | | | 4.4758E+02 | 4.4758E+02 | | | | | | | | | | | | 5.4129E+02 | 5.4129E+02 | | | | | | | | | | | | 5.3601E+02 | 5.3601E+02 | | | | | | <u> </u> | g de la viga de colo | | | | | - | - | | | | | | | *************************************** | | | - | | | | | | | | | | | | | | | | | DESENDEN EN SERVE EN | alitan (Disabah baky) (b.)
Birana bakat bakat hajiy | Client ID Type | Ratio Type Post/Pre | Ratio No. of Dils | Ratio No of Dils Dil Factor | Ratio No. of Dils Dil Factor Ratio | Ratio No of Dils Dil Factor Ratio Aliquot | Ratio No of Dils Dil Factor Ratio Aliquot Net Equiv | Ratio Post/Pre No of Dils Dil. Factor Ratio Aliquot Net Equiv Aliquot | Ratio Post/Pre No of Dils Dil Factor Ratio Aliquot Net Equiv Aliquot Net Equiv | Ratio | | * | I |
 |
 | | |----------|---|------|------|--| | Comments | | | | | | | 1 | |
 | | Technician: Kerry Saes Date: 3,23,16 # Rough Sample Preparation Log Book Printed: 3/23/2016 7:28 AM Page 1 of 1 | Work Order | Lab Deadline | Date Received in Prep | Date Sealed | Date Returned | Technician | |------------|--------------|-----------------------|-------------|---------------|------------| | 16-03102 | 4/12/2016 | 3/22/2016 | 3/23/2016 | 3/24/2016 | KSALLINGS | | Eberline | Auxier & Associates, Inc. | Tare (g) | Gross | (g) | Net | (g) | Perce | nt | Gamı | na | Special | |----------|---------------------------|----------|-----------|----------|--|----------|--------|--------|---------|----------|---------| | Fraction | Client ID | Pan Wt | Wet Wt. | Dry Wt. | Wet Wt. | Dry Wt. | Liquid | Solid | Dry Wt. | LEPS Wt. | Info | | 04 | SEDIMENT 2016-03-16A | 28.8600 | 1273.0600 | 743.5800 | 1244.2000 | 714.7200 | 42.56% | 57.44% | 0.0000 | 0.0000 | | | 05 | SEDIMENT 2016-03-16B | 29.1400 | 1389.3600 | 944,9200 | The state of s | 915.7800 | 32.67% | 67.33% | 0.0000 | 0.0000 | | | 06 | SEDIMENT 2016-03-16B DUP | 29.0300 | 1180,8600 | 824.3000 | | 795.2700 | 30.96% | 69.04% | 0.0000 | 0.0000 | i | | | SEDIMENT 2010-03-10B BOI | | 110010000 | - | i | l | Comments | | |---------------|--| | Special Codes | H: Hot, O: Organic Hazard, P: PCB Hazard, R: Rush, T: Other (see comments) | Technician: Kenysie Analysis Report for 1603102-01 GAS-1302 4/1114 ### GAMMA SPECTRUM ANALYSIS Sample Identification Sample Description Sample Type Sample Size Facility . .. : 7.360E+02 grams : Countroom : 1603102-01 : GAS-1302 : SOIL Sample Taken On Acquisition Started : 7/1/2013 7:10:52AM : 4/11/2016 7:33:44AM Procedure Operator Detector Name Geometry Geometry Live Time Real Time : GAS-1402 pCi : Administrator : GE2 : GAS-1402 : 1800.0 seconds : 1825.6 seconds Dead Time : 1.40 % Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance : 2.50 : 1 - 4096 : 5 - 4096 : 1.000 keV Energy Calibration Used Done On Efficiency Calibration Used Done On : 11/2/2014 : 4/6/2016 **Efficiency Calibration Description** . Sample Number
: 35517 ### PEAK-TO-TOTAL CALIBRATION REPORT Peak-to-Total Efficiency Calibration Equation 4/13/16 GAS-1302 # PEAK LOCATE REPORT Peak Locate Performed on : 4/11/2016 8:04:13AM Peak Locate From Channel : 1 : 4096 Peak Locate To Channel Peak Search Sensitivity : 2.50 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 1 | 12.12 | 12.25 | 0.0000 | 0.00 | | 2 | 21.93 | 22.05 | 0.0000 | 0.00 | | 3 | 24.91 | 25.03 | 0.0000 | 0.00 | | 4 | 31.87 | 31.98 | 0,000 | 0.00 | | 5 | 50.36 | 50.46 | 0.0000 | 0.00 | | 6 | 59.17 | 59.27 | 0.0000 | 0.00 | | 7 | 67.80 | 67.90 | 0.0000 | 0.00 | | 8 | 85.28 | 85.36 | 0.0000 | 0.00 | | 9 | 87.79 | 87.87 | 0.0000 | 0.00 | | 10 | 121.83 | 121.89 | 0.0000 | 0.00 | | 11 | 136.18 | 136.23 | 0.0000 | 0.00 | | 12 | 165.54 | 165.58 | 0.0000 | 0.00 | | 13 | 238.31 | 238.30 | 0.0000 | 0.00 | | 14 | 392.07 | 391.99 | 0.0000 | 0.00 | | 15 | 511.09 | 510.95 | 0.000 | 0.00 | | 16 | 583.53 | 583.35 | 0.000 | 0.00 | | 17 | 661.82 | 661.60 | 0.000 | 0.00 | | 18 | 740.20 | 739.95 | 0.000 | 0.00 | | 19 | 848.60 | 848.30 | 0.0000 | 0.00 | | 20 | 1169.83 | 1169.40 | 0.0000 | 0.00 | | 21 | 1173.82 | 1173.40 | 0.0000 | 0.00 | | 22 | 1333.20 | 1332.72 | 0.0000 | 0.00 | | 23 | 1666.82 | 1666.24 | 0.0000 | 0.00 | | 24 | 1670.82 | 1670.24 | 0.0000 | 0.00 | | 25 | 1837.28 | 1836.66 | 0.0000 | 0.00 | | 26 | 1853.40 | 1852.77 | 0.0000 | 0.00 | | 27 | 1866.80 | 1866.17 | 0.0000 | 0.00 | | 28 | 1982.29 | 1981.64 | 0.0000 | 0.00 | | 29 | 1991.93 | 1991.28 | 0.0000 | 0.00 | | 30 | 2056.35 | 2055.69 | 0.0000 | 0.00 | | 31 | 2110.54 | 2109.87 | 0.0000 | 0.00 | | 32 | 2305.47 | 2304.77 | 0.0000 | 0.00 | | 33 | 2344.44 | 2343.72 | 0.0000 | 0.00 | | 34 | 2362.34 | 2361.63 | 0.0000 | 0.00 | | 35 | 2369.34 | 2368.62 | 0.0000 | 0.00 | | 36 | 2506.87 | 2506.14 | 0.000 | 0.00 | | 37 | 2615.48 | 2614.74 | 0.0000 | 0.00 | ? = Adjacent peak noted Errors quoted at 2.000sigma Analysis Report for 1603102-01 GAS-1302 # PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/11/2016 8:04:13AM Peak Analysis From Channel Peak Analysis To Channel : 1 : 4096 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |---|----------------------|-----------------|-------------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | - | 1 | 12.12 | 10 - | 15 | 12.25 | 7.21E+03 | 355.07 | 1.96E+04 | 1.17 | | М | 2 | 21.93 | 19 - | 28 | 22.05 | 7.97E+04 | 570.24 | 8.99E+03 | 1.10 | | m | 3 | 24.91 | 19 - | 28 | 25.03 | 2.72E+04 | 416.63 | 6.75E+03 | 1.28 | | | $\overset{\circ}{4}$ | 31.87 | 30 - | 35 | 31.98 | 1.64E+03 | 243.74 | 1.07E+04 | 1.17 | | М | 5 | 50.36 | 45 - | 62 | 50.46 | 4.61E+03 | 305.90 | 1.46E+04 | 1.46 | | m | 6 | 59.17 | 45 - | 62 | 59,27 | 7.44E+04 | 638.58 | 1.16E+04 | 1.46 | | | 7 | 67.80 | 66 - | 71 | 67.90 | 6.40E+02 | 307.21 | 1.84E+04 | 2.86 | | M | 8 | 85.28 | 83 – | 92 | 85.36 | 8.41E+02 | 279.28 | 1.50E+04 | 2.36 | | m | 9 | 87.79 | 83 - | 92 | 87.87 | 2.86E+04 | 376.76 | 7.61E+03 | 1.03 | | | 10 | 121.83 | 11ε - | 124 | 121.89 | 5.50E+03 | 290.09 | 1.13E+04 | 1.10 | | | 11 | 136.18 | 133 - | 139 | 136.23 | 5.73E+02 | 248.02 | 1.08E+04 | 1.35 | | | 12 | 165.54 | 163 - | 169 | 165.58 | 4,92E+02 | 233.18 | 9.52E+03 | 1.41 | | | 13 | 238.31 | 237 - | 240 | 238.30 | 1.75E+02 | 145.33 | 5.10E+03 | 1.29 | | | 14 | 392.07 | 390 - | 395 | 391.99 | 2.18E+02 | 157.42 | 4.77E+03 | 1.96 | | | 15 | 511.09 | 508 - | 514 | 510.95 | 1.87E+02 | 151.65 | 4.04E+03 | 2.09 | | | 16 | 583.53 | 581 - | 586 | 583.35 | 1.21E+02 | 120.16 | 2.79E+03 | 2.77 | | | 17 | 661.82 | 657 - | 666 | 661.60 | 2.76E+04 | 375.45 | 4.36E+03 | 1.87 | | | 18 | 740.20 | 738 - | 743 | 739.95 | 1.08E+02 | 109.94 | 2.34E+03 | 1.65 | | | 19 | 848.60 | 846 - | 850 | 848.30 | 9.90E+01 | 100.46 | 2.15E+03 | 1.19 | | М | 20 | 1169.83 | 1168 - 3 | 1178 | 1169.40 | 3.91E+01 | 35.82 | 4.27E+02 | 2.11 | | m | 21 | 1173.82 | 1168 - 3 | 1178 | 1173.40 | 2.33E+04 | 312.79 | 9.41E+02 | 1.79 | | | 22 | 1333.20 | 1327 - 3 | 1338 | 1332.72 | 2.12E+04 | 299.23 | 5.65E+02 | 2.01 | | М | 23 | 1666.82 | 1665 - 1 | 1675 | 1666.24 | 2.65E+01 | 8.60 | 1.40E+01 | 2.67 | | m | 24 | 1670.82 | 1665 - 3 | 1675 | 1670.24 | 2.17E+01 | 23.07 | 5.60E+01 | 2.68 | | | 25 | 1837.28 | 1832 - 1 | 1840 | 1836.66 | 3.90E+01 | 32.12 | 1.34E+02 | 2.40 | | | 26 | 1853.40 | 1842 - 1 | 1863 | 1852.77 | 6.05E+01 | 44.00 | 1.21E+02 | 17.76 | | | 27 | 1866.80 | 1864 - 1 | 1870 | 1866.17 | 1.28E+01 | 15.17 | 3.43E+01 | 2.86 | | | 28 | 1982.29 | 1973 - 1 | 1987 | 1981.64 | 4.71E+01 | 33.40 | 9.78E+01 | 8.69 | | | 29 | 1991.93 | 1988 - | | 1991.28 | 1.44E+01 | 17.89 | 4.33E+01 | 2.36 | | | 30 | 2056.35 | 2051 - 3 | 2059 | 2055.69 | 1.94E+01 | 19.97 | 4.91E+01 | 6.61 | | | 31 | 2110.54 | 2107 - 3 | 2112 | 2109.87 | 1.47E+01 | 12.77 | 2.05E+01 | 1.93 | | | 32 | 2305.47 | 2302 - 1 | 2308 | 2304.77 | 9.16E+00 | 12.23 | 1.97E+01 | 1.88 | | | 33 | 2344.44 | 2341 - | | 2343.72 | 9.38E+C0 | 10.82 | 1.52E+01 | 1.52 | | | 34 | 2362.34 | 2357 - | | 2361.63 | 8.53E+00 | 10.99 | 1.29E+01 | 1.67 | | | 35 | 2369.34 | 2366 - | | 2368.62 | 9.77E+00 | 7.50 | 2.45E+00 | 1.18 | | | 36 | 2506.87 | 2502 - | | 2506.14 | 2.38E+02 | 30.85 | 0.00E+00 | 2.37 | | | 37 | 2615.48 | 2609 - | 2619 | 2614.74 | 1.90E+01 | 8.72 | 0.00E+00 | 4.33 | Analysis Report for 1603102-01 GAS-1302 M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/11/2016 8:04:13AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI
siart | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |---|-------------|-----------------|------------------|------------|------------------|-------------------------|---------------------|-------------------| | | 1 | 12.12 | 10 - | 15 | 7.21E+03 | 355.07 | 1,96E+04 | 2.56E+02 | | М | 2 | 21.93 | 19 - | 28 | 7.97E+04 | 570.24 | 8.99E+03 | 1.56E+02 | | m | 3 | 24.91 | 19 - | 28 | 2.72E+04 | 416.63 | 6.75E+03 | 1.35E+02 | | | 4 | 31.87 | 30 - | 35 | 1.64E+03 | 243.74 | 1.07E+04 | 1.89E+02 | | Μ | 5 | 50.36 | 45 - | 62 | 4.61E+03 | 305.90 | 1.46E+04 | 1.99E+02 | | m | 6 | 59.17 | 45 - | 62 | 7.44E+04 | 638.58 | 1.16E+04 | 1.77E+02 | | | 7 | 67.80 | 66 - | 71 | 6.40E+02 | 307.21 | 1.84E+04 | 2.49E+02 | | М | 8 | 85.28 | 83 - | 92 | 8.41E+02 | 279.28 | 1.50E+04 | 2.01E+02 | | m | 9 | 87.79 | 83 - | 92 | 2.86E+04 | 376.76 | 7.61E+03 | 1.43E+02 | | | 10 | 121.83 | 118 - | 124 | 5.50E+03 | 290.09 | 1.13E+04 | 2.05E+02 | | | 11 | 136.18 | 133 - | 139 | 5.73E+02 | 248.02 | 1.08E+04 | 2.00E+02 | | | 12 | 165.54 | 163 - | 169 | 4.92E+02 | 233.18 | 9.52E+03 | 1.88E+02 | | | 13 | 238.31 | 237 - | 240 | 1.75E+02 | 145.33 | 5.10E+03 | 1.17E+02 | | | 14 | 392.07 | 390 - | 395 | 2.18E+02 | 157.42 | 4.77E+03 | 1.27E+02 | | | 15 | 511.09 | 508 - | 514 | 1.87E+02 | 151.65 | 4.04E+03 | 1.23E+02 | | | 16 | 583.53 | 581 - | 586 | 1.21E+02 | 120.16 | 2.79E+03 | 9.71E+01 | | | 17 | 661.82 | 657 - | 666 | 2.76E+04 | 375.45 | 4.36E+03 | 1.44E+02 | | | 18 | 740.20 | 738 - | 743 | 1.08E+02 | 109.94 | 2.34E+03 | 8.87E+01 | | | 19 | 848.60 | 846 - | 850 | 9.90E+01 | 100.46 | 2.15E+03 | 8.09E+01 | | М | 20 | 1169.83 | 1168 - | 1178 | 3.91E+01 | 35.82 | 4.27E+02 | 3.40E+01 | | m | 21 | 1173.82 | 1168 - | 1178 | 2.33E+04 | 312.79 | 9.41E+02 | 5.04E+01 | | | 22 | 1333.20 | 1327 - | 1338 | 2.12E+04 | 299.23 | 5.65E+02 | 5.57E+01 | | М | 23 | 1666.82 | 1665 - | 1675 | 2.65E+01 | 8.60 | 1.40E+01 | 6.15E+00 | | m | 24 | 1670.82 | 1665 - | 1.675 | 2.17E+01 | 23.07 | 5.60E+01 | 1.23E+01 | | | 25 | 1837.28 | 1832 - | 1840 | 3.90E+01 | 32.12 | 1.34E+02 | 2.43E+01 | | | 26 | 1853.40 | 1842 - | 1863 | 6.05E+01 | 44.00 | 1.21E+02 | 3.38E+01 | | | 27 | 1866.80 | 1864 - | 1870 | 1.28E+01 | 15.17 | 3.43E+01 | 1.10E+01 | | | 28 | 1982,29 | 1973 - | 1987 | 4.71E+01 | 33.40 | 9.78E+01 | 2.50E+01 | | | 29 | 1991.93 | 1988 - | 1995 | 1.44E+01 | 17.89 | 4.33E+01 | 1.33E+01 | | | 30 | 2056.35 | 2051 - | 2059 | 1.94E+01 | 19.97 | 4.91E+01 | 1.47E+01 | | | 31 | 2110.54 | 2107 - | 2112 | 1.47E+01 | 12.77 | 2.05E+01 | 8.38E+00 | Analysis Report for 1603102-01 GAS-1302 | Peak | Energy | ROI | ROI | Net Peak | Net Area | Continuum | Critical | |------|---------|--------|------|----------|-------------|-----------|----------| | No. | (keV) | start | end | Area | Uncertainty | Counts | Level | | 32 | 2305.47 | 2302 - | 2308 | 9.16E+00 | 12.23 | 1.97E+01 | 8.73E+00 | | 33 | 2344.44 | 2341 - | 2347 | 9.38E+00 | 10.82 | 1.52E+01 | 7.33E+00 | | 34 | 2362.34 | 2357 - | 2365 | 8.53E+00 | 10.99 | 1.29E+01 | 7.65E+00 | | 35 | 2369.34 | 2366 - | 2372 | 9.77E+00 | 7.50 | 2.45E+00 | 3.41E+00 | | 36 | 2506.87 | 2502 - | 2510 | 2.38E+02 | 30.85 | 0.00E+00 | 0.00E+00 | | 37 | 2615.48 | 2609 - | 2619 | 1.90E+01 | 8.72 | 0.00E+00 | 0.00E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # PEAK WITH NID REPORT Peak Analysis Performed on : 4/11/2016 8:04:13AM Peak Analysis From Channel Peak Analysis To Channel . ! Peak Analysis to Charine : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Peak Match Tolerance : 1.000 keV | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |---|-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|----------------------------| | | 1 | 12.12 | 10 - | 1.5 | 12.25 | 7.21E+03 | 355.07
| 1.96E+04 | | | М | 2 | 21.93 | 19 - | 28 | 22.05 | 7.97E+04 | 570.24 | 8.99E+03 | | | m | 3 | 24.91 | 19 - | 28 | 25.03 | 2.72E+04 | 416.63 | 6.75E+03 | TH-231 | | | 4 | 31.87 | 30 - | 35 | 31.98 | 1.64E+03 | 243.74 | 1.07E+04 | | | M | 5 | 50.36 | 45 | 62 | 50.46 | 4.61E+03 | 305.90 | 1.46E+04 | TH-227
TE-132 | | m | 6 | 59,17 | 45 - | 62 | 59.27 | 7.44E+04 | 638.58 | 1.16E+04 | AM-241 | | ш | 7 | 67.80 | 66 - | 71 | 67.90 | 6.40E+02 | 307.21 | 1.84E+04 | TA-182
TI-44
TH-230 | | М | 8 | 85,28 | 83 - | 92 | 85.36 | 8.41E+02 | 279,28 | 1.50E+04 | | | m | 9 | 87.79 | 83 - | 92 | 87.87 | 2.36E+04 | 376.76 | 7.61E+03 | SN-126
CD-109
LU-176 | | | 10 | 121.83 | 118 - | 124 | 121.89 | 5.50E+03 | 290.09 | 1.13E+04 | EU-152
CO-57
SE-75 | | | 11 | 136.18 | 133 - | 139 | 136.23 | 5.73E+02 | 248.02 | 1.08E+04 | SE-75
CO-57 | | | 12 | 165.54 | 163 - | 169 | 165.58 | 4.92E+02 | 233.18 | 9.52E+03 | CE-139 | Analysis Report for 16 1603102-01 GAS-1302 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |-----|-------------|-----------------|-------------------|------------|------------------|------------------|-------------------------|---------------------|----------------------| | | 13 | 238.31 | 237 - | 240 | 238.30 | 1.75E+02 | 145.33 | 5.10E+03 | PB-212 | | | 14 | 392.07 | 390 - | 395 | 391.99 | 2.18E+02 | 157.42 | 4.77E+03 | SN-113 | | | 15 | 511.09 | 508 - | 514 | 510.95 | 1.87E+02 | 151.65 | 4.04E+03 | | | | 16 | 583.53 | 581 - | 586 | 583.35 | 1.21E+02 | 120.16 | 2.79E+03 | TL-208 | | | 17 | 661.82 | 657 - | 666 | 661.60 | 2.76E+04 | 375.45 | 4.36E+03 | CS-137 | | | 18 | 740.20 | 738 - | 743 | 739.95 | 1.08E+02 | 109.94 | 2.34E+03 | MO-99 | | | 19 | 848.60 | 846 - | 850 | 848.30 | 9.90E+01 | 100.46 | 2.15E+03 | | | М | 20 | 1169.83 | 1168 - | 1178 | 1169.40 | 3.91E+01 | 35.82 | 4.27E+02 | | | m | 21 | 1173.82 | 1168 - | 1178 | 1173.40 | 2.33E+04 | 312.79 | 9.41E+02 | CO-60 | | ••• | 22 | 1333.20 | 1327 - | 1338 | 1332.72 | 2.12E+04 | 299.23 | 5.65E+02 | CO-60 | | М | 23 | 1666.82 | 1665 - | 1675 | 1666.24 | 2.65E+01 | 8.60 | 1.40E+01 | | | m | 24 | 1670.82 | 1665 - | 1675 | 1670.24 | 2.17E+01 | 23.07 | 5.60E+01 | | | | 25 | 1837.28 | 1832 - | 1840 | 1836.66 | 3.90E+01 | 32.12 | 1.34E+02 | | | | 26 | 1853.40 | 1942 - | 1863 | 1852.77 | 6.05E+01 | 44.00 | 1.21E+02 | | | | 27 | 1866.80 | 1865 - | 1870 | 1866.17 | 1.28E+01 | 15.17 | 3.43E+01 | | | | 28 | 1982.29 | 1973 - | 1987 | 1981.64 | 4.71E+01 | 33.40 | 9.78E+01 | | | | 29 | 1991.93 | 1988 - | 1995 | 1991.28 | 1.44E+01 | 17.89 | 4.33E+01 | | | | 30 | 2056.35 | 2051 - | 2059 | 2055.69 | 1.94E+01 | 19.97 | 4.91E+01 | | | | 31 | 2110.54 | 2107 - | 2112 | 2109.87 | 1.47E+01 | 12.77 | 2.05E+01 | | | | 32 | 2305.47 | 2302 - | 2308 | 2304.77 | 9.16E+00 | 12.23 | 1.97E+01 | | | | 33 | 2344.44 | 2341 - | 2347 | 2343.72 | 9.38E+00 | 10.82 | 1.52E+01 | | | | 34 | 2362.34 | 2357 - | 2365 | 2361.63 | 8,53E+00 | 10.99 | 1.29E+01 | | | | 35 | 2369.34 | 2366 - | 2372 | 2368.62 | 9.77E+00 | 7.50 | 2.45E+00 | | | | 36 | 2506.87 | 2502 - | 2510 | 2506.14 | 2.38E+02 | 30.85 | 0.00E+00 | | | | 37 | 2615.48 | 2609 - | 2619 | 2614.74 | 1.90E+01 | 8.72 | 0.00E+00 | TL-208 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/11/2016 8:04:13AM | | Peak | Energy | Net Peak | Net Area | Peak | Efficiency | |--------|-----------------------|---|--|--|--|--| | | No. | (keV) | Area | Uncertainty | Efficiency | Uncertainty | | M
m | 1
2
3
4
5 | 12.12
21.93
24.91
31.87
50.36 | 7.21E+03
7.97E+04
2.72E+04
1.64E+03
4.61E+03 | 355.07
570.24
416.63
243.74
305.90 | 5.26E-06
1.23E-03
2.48E-03
6.90E-03
1.91E-02 | 1.66E-03
1.66E-03
1.66E-03
1.66E-03 | 1603102-01 GAS-1302 | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | | |---|-------------|-----------------|------------------|-------------------------|----------------------|---------------------------|--| | | _ | - 0 4 5 | D 445 04 | C20 F0 | 2.26E-02 | 1.66E-03 | | | m | 6 | 59.17 | 7.44E+04 | 638.58
307.21 | 2.46E-02 | 1.84E-03 | | | | 7 | 67.80 | 6.40E+02 | 279.28 | 2.40E-02
2.60E-02 | 2.22E-03 | | | M | 8 | 85.28 | 8.41E+02 | 376.76 | 2.60E-02
2.60E-02 | 2.27E-03 | | | m | 9 | 87.79 | 2.86E+04 | 290.09 | 2.45E-02 | 2.26E-03 | | | | 10 | 121.83 | 5.50E+03 | | 2.43E-02
2.34E-02 | 2.32E-03 | | | | 11 | 136.18 | 5.73E+02 | 248.02 | 2.13E-02 | 2.43E-03 | | | | 12 | 165.54 | 4.92E+02 | 233.18 | 1.70E-02 | 2.43E-03
2.31E-03 | | | | 13 | 238.31 | 1.75E+02 | 145.33 | 1.70E-02
1.20E-02 | 2.05E-03 | | | | 14 | 392.07 | 2.18E+02 | 157.42 | | 1.43E-03 | | | | 15 | 511.09 | 1.87E+02 | 151.65 | 9.76E-03 | 1.06E-03 | | | | 16 | 583.53 | 1.21E+02 | 120.16 | 8.79E-03 | 6.52E-04 | | | | 17 | 661.82 | 2.76E+04 | 375.45 | 7.93E-03 | 7.53E-04 | | | | 18 | 740.20 | 1.08E+02 | 109.94 | 7.24E-03 | 7.55E-04
8.92E-04 | | | | 19 | 848.60 | 9.90E+01 | 100.46 | 6.46E-03 | 6.92E-04
4.06E-04 | | | M | 20 | 1169.83 | 3.91E+01 | 35.82 | 4.98E-03 | | | | m | 21 | 1173.82 | 2.33E+04 | 312.79 | 4.97E-03 | 3.99E-04 | | | | 22 | 1333.20 | 2.12E+04 | 299.23 | 4.51E-03 | 3.63E-04 | | | M | 23 | 1666.82 | 2.65E+01 | 8.60 | 3.89E-03 | 3.88E-04 | | | m | 24 | 1670.82 | 2.17E+01 | 23.07 | 3.89E-03 | 3.88E-04 | | | | 25 | 1837.28 | 3.90E+01 | 32.12 | 3.70E-03 | 4.01E-04 | | | | 26 | 1853.40 | 6.05E+01 | 44.00 | 3.68E-03 | 4.01E-04 | | | | 27 | 1866.80 | 1.28E+01 | 15.17 | 3.67E-03 | 4.01E-04 | | | | 28 | 1982.29 | 4.71E+01 | 33.40 | 3.57E-03 | 4.01E-04 | | | | 29 | 1991.93 | 1.44E+01 | 17.89 | 3.57E-03 | 4.01E-04 | | | | 30 | 2056.35 | 1.94E+01 | 19.97 | 3.53E-03 | 4.01E-04 | | | | 31 | 2110.54 | 1.47E+01 | 12.77 | 3.50E-03 | 4.01E-04 | | | | 32 | 2305.47 | 9.16E+00 | 12.23 | 3.42E-03 | 4.01E-04 | | | | 33 | 2344.44 | 9.38E+00 | 10.82 | 3.41E-03 | 4.01E-04 | | | | 34 | 2362.34 | 8.53E+00 | 10.99 | 3,41E-03 | 4.01E-04 | | | | 35 | 2369.34 | 9.77E+00 | 7.50 | 3.41E-03 | 4.01E-04 | | | | 36 | 2506.87 | 2.38E+02 | 30.85 | 3.39E-03 | 4.01E-04 | | | | 37 | 2615.48 | 1.90E+01 | 8.72 | 3.40E-03 | 4.01E-04 | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma ## BACKGROUND SUBTRACT REPORT Peak Analysis Performed on : 4/11/2016 8:04:13AM Env. Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035177.CNF 1603102-01 | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |---|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|--------------------|-----------------------| | | 1 | 12.12 | 7.21E+03 | 355.07 | 4.19E+02 | 2.00E+01 | 6.79E+03 | 3.56E+02 | | М | 2 | 21.93 | 7.97E+04 | 570.24 | | | 7.97E+04 | 5.70E+02 | | m | 3 | 24.91 | 2.72E+04 | 416.63 | | | 2.72E+04 | 4.17E+02 | | | 4 | 31.87 | 1.64E+03 | 243.74 | | | 1.64E+03 | 2.44E+02 | | М | 5 | 50.36 | 4.61E+03 | 305.90 | | | 4.61E+03 | 3.06E+02 | | m | 6 | 59.17 | 7.44E+04 | 638.58 | | | 7.44E+04 | 6.39E+02 | | * | . 7 | 67.80 | 6.40E+02 | 307.21 | | | 6.40E+02 | 3.07E+02 | | М | 8 | 85.28 | 8.41E+02 | 279.28 | | . • | 8.41E+02 | 2.79E+02 | | m | 9 | 87.79 | 2.86E+04 | 376.76 | 2.94E+00 | 4.08E+00 | 2.86E+04 | 3.77E+02 | | | 10 | 121.83 | 5.50E+03 | 290.09 | | | 5.50E+03 | 2.90E+02 | | | 11 | 136.18 | 5.73E+02 | 248.02 | | | 5.73E+02 | 2.48E+02 | | | 12 | 165.54 | 4.92E+02 | 233.18 | | | 4.92E+02 | 2.33E+02 | | | 13 | 238.31 | 1.75E+02 | 145.33 | 5.33E+00 | 3.43E+00 | 1.70E+02 | 1.45E+02 | | | 14 | 392.07 | 2.18E+02 | 157.42 | | | 2.18E+02 | 1.57E+02 | | | 15 | 511.09 | 1.87E+02 | 151.65 | 3.57E+01 | 2.57E+00 | 1.51E+02 | 1.52E+02 | | | 16 | 583.53 | 1.21E+02 | 120.16 | | | 1.21E+02 | 1.20E+02 | | | 17 | 661.82 | 2.76E+04 | 375.45 | 8.21E-01 | 1.60E+00 | 2.76E+04 | 3.75E+02 | | | 18 | 740.20 | 1.08E+02 | 109.94 | | | 1.08E+02 | 1.10E+02 | | | 19 | 848.60 | 9.90E+01 | 100.46 | | | 9.90E+01 | 1.00E+02 | | Μ | 20 | 1169.83 | 3.91E+01 | 35.82 | | | 3.91E+01 | 3.58E+01 | | m | 21 | 1173.82 | 2.33E+04 | 312.79 | | | 2.33E+04 | 3.13E+02 | | | 22 | 1333.20 | 2.12E+04 | 299.23 | 2.19E+00 | 1.11E+00 | 2.12E+04 | 2.99E+02 | | М | 23 | 1666.82 | 2.65E+01 | 8.60 | | * | 2.65E+01 | 8.60E+00 | | m | 24 | 1670.82 | 2.17E+01 | 23.07 | | | 2.17E+01 | 2.31E+01 | | | 25 | 1837.28 | 3.90E+01 | 32.12 | | | 3.90E+01 | 3.21E+01 | | | 26 | 1853.40 | 6.05E+01 | 44.00 | | | 6.05E+01 | 4.40E+01 | | | 27 | 1866.80 | 1.28E+01 | 15.17 | | | 1.28E+01 | 1.52E+01 | | | 28 | 1982.29 | 4.71E+01 | 33.40 | | | 4.71E+01 | 3.34E+01 | | | 29 | 1991.93 | 1.44E+01 | 17.89 | | | 1.44E+01 | 1.79E+01 | | | 30 | 2056.35 | 1.94E+01 | 19.97 | | | 1.94E+01 | 2.00E+01 | | | 31 | 2110.54 | 1.47E+01 | 12.77 | | | 1.47E+01 | 1.28E+01 | | | 32 | 2305.47 | 9.16E+00 | 12.23 | | | 9.16E+00 | 1.22E+01 | | | 33 | 2344.44 | 9.38E+00 | 10.82 | | | 9.38E+00 | 1.08E+01 | | | 34 | 2362.34 | 8.53E+00 | 10.99 | | | 8.53E+00 | 1.10E+01 | | | 35 | 2369.34 | 9.77E+00 | 7.50 | | | 9.77E+00 | 7.50E+00 | | | 36 | 2506.87 | 2.38E+02 | 30.85 | | | 2.38E+02 | 3.09E+01 | | | 37 | 2615.48 | 1.90E+01 | 8.72 | | | 1.90E+01 | 8.72E+00 | | | | | | | | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma 1603102-01 GAS-1302 ## AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis
Performed on : 4/11/2016 8:04:13AM Ref. Peak Energy ; 0.00 Reference Date Peak Ratio : 0.00 Uncertainty : 0.00 Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035177.CNF Corrected Area is: Original * Peak Ratio - Background | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-----|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | | 1. | 12.12 | 7.21E+03 | 355.07 | 4.19E+02 | 2.00E+01 | 6.79E+03 | 3.56E+02 | | М | 2 | 21.93 | 7.97E+04 | 570.24 | | | 7.97E+04 | 5.70E+02 | | m | 3 | 24.91 | 2.72E+04 | 416.63 | | | 2.72E+04 | 4.17E+02 | | ••• | 4 | 31.87 | 1.64E+03 | 243.74 | | | 1.64E+03 | 2.44E+02 | | M | 5 | 50.36 | 4.61E+03 | 305.90 | | | 4.61E+03 | 3.06E+02 | | m | 6 | 59.17 | 7.44E+04 | 638.58 | | | 7.44E+04 | 6.39E+02 | | | 7 | 67.80 | 6.40E+02 | 307.21 | | | 6.40E+02 | 3.07E+02 | | Μ | 8 | 85.28 | 8.41E+02 | 279.28 | | | 8.41E+02 | 2.79E+02 | | m | 9 | 87.79 | 2.86E+04 | 376.76 | 2.94E+00 | 4.08E+00 | 2.86E+04 | 3.77E+02 | | | 10 | 121.83 | 5.50E+03 | 290.09 | | | 5.50E+03 | 2.90E+02 | | | 11 | 136.18 | 5.73E+02 | 248.02 | | | 5.73E+02 | 2.48E+02 | | | 12 | 165.54 | 4.92E+02 | 233.18 | | | 4.92E+02 | 2.33E+02 | | | 13 | 238.31 | 1.75E+02 | 145.33 | 5.33E+00 | 3.43E+00 | 1.70E+02 | 1.45E+02 | | | 14 | 392.07 | 2.18E+02 | 157.42 | | | 2.18E+02 | 1.57E+02 | | | 15 | 511.09 | 1.87E+02 | 151.65 | 3.57E+01 | 2.57E+00 | 1.51E+02 | 1.52E+02 | | | 16 | 583.53 | 1.21E+02 | 120.16 | | | 1.21E+02 | 1.20E+02 | | | 17 | 661.82 | 2.76E+04 | 375.45 | 8.21E-01 | 1.60E+00 | 2.76E+04 | 3.75E+02 | | | 18 | 740.20 | 1.08E+02 | 109.94 | | | 1.08E+02 | 1.10E+02 | | | 19 | 848.60 | 9.90E+01 | 100.46 | | | 9.90E+01 | 1.00E+02 | | М | | 1169.83 | 3.91E+01 | 35.82 | | | 3.91E+01 | 3.58E+01 | | m | 21 | 1173.82 | 2.33E+04 | 312.79 | | | 2.33E+04 | 3.13E+02
2.99E+02 | | | | 1333.20 | 2.12E+04 | 299.23 | 2.19E+00 | 1.11E+00 | 2.12E+04 | | | Μ | | 1666.82 | 2.65E+01 | 8.60 | | | 2.65E+01 | 8.60E+00
2.31E+01 | | m | | 1670.82 | 2.17E+01 | 23.07 | | | 2.17E+01 | 3.21E+01 | | | | 1837.28 | 3.90E+01 | 32.12 | | | 3.90E+01 | 4.40E+01 | | | 26 | 1853.40 | 6.05⊑+01 | 44.00 | | | 6.05E+01 | 1.52E+01 | | | 27 | 1866.80 | 1.28E+01 | 15.17 | | | 1.28E+01 | 3.34E+01 | | | 28 | 1982.29 | 4.71E+01 | 33.40 | | | 4.71E+01 | 1.79E+01 | | | 29 | 1991.93 | 1.44E+01 | 17.89 | | | 1.44E+01 | | | | 30 | 2056.35 | 1.94E+01 | 19.97 | | | 1.94E+01 | 2.00E+01 | | | 31 | 2110.54 | 1.47E+01 | 12.77 | | | 1.47E+01 | 1.28E+01 | | | 32 | 2305.47 | 9.16E+00 | 12.23 | | | 9.16E+00 | 1.22E+01 | | | | 2344.44 | 9.38E+00 | 10.82 | | | 9.38E+00 | 1.08E+01 | | | 34 | 2362.34 | 8.53E+00 | 10.99 | | | 8.53E+00 | 1.10E+01 | | | 35 | 2369.34 | 9.77E+00 | 7.50 | | | 9.77E+00 | 7.50E+00 | | | 36 | 2506.87 | 2.38E+02 | 30.85 | | | 2.38E+02 | 3.09E+01 | | | 37 | 2615.48 | 1.90E+01 | 8.72 | | | 1.90E+01 | 8.72E+00 | 1603102-01 GAS-1302 M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ## NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide Name | ld Confidence | Energy (keV) | | Yield(%) | Activity
(బCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|---|----------|-------------------------|-------------------------| | CO-57 | 0.923 | 122.06 | * | 85.51 | 7.20E+01 | 7.72E+00 | | | | 136.48 | * | 10.60 | 6.33E+01 | 2.82E+01 | | CO-60 | 0.931 | 1173.22 | * | 100.00 | 1.38E+02 | 1.12E+01 | | | | 1332.49 | * | 100.00 | 1.38E+02 | 1.13E+01 | | CD-109 | 0.967 | 88.03 | * | 3.72 | 2.74E+03 | 2.91E+02 | | SN-113 | 0.626 | 255.12 | | 1.93 | | | | ON 110 | * * | 391.69 | * | 64.90 | 2.58E+02 | 1.92E+02 | | SN-126 | 0.992 | 87.57 | * | 37.00 | 6.05E+01 | 5.33E+00 | | CS-137 | 0.996 | 661.65 | * | 85.12 | 8.88E+01 | 7.41E+00 | | CE-139 | 0.750 | 165.85 | * | 80.35 | 9.74E+01 | 4.75E+01 | | TL-208 | 0.829 | 583.14 | * | 30.22 | 9.30E-01 | 9.30E-01 | | 11 2.00 | 0,025 | 860.37 | | 4.48 | | | | | | 2614.66 | * | 35.85 | 3.18E-01 | 1.51E-01 | | PB-212 | 0.879 | 238.63 | * | 44.60 | 4.56E-01 | 3.95E-01 | | ED-717 | 0.075 | 300.09 | | 3.41 | | | | AM-241 | 0.979 | 59.54 | * | 35.90 | 1.88E+02 | 1.40E+01 | - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/11/2016 8:04:13AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 1603102-01 GAS-1302 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | |----|--------|--------------|-----------------|-----------------------------|--------------|----------------------| | • | 1 | 12.12 | 3.77432E+00 | 2.62 | | | | M | 2 | 21.93 | 4.42901E+01 | 0.36 | | | | m | 3 | 24.91 | 1.50919E+01 | 0.77 | Tol. | TH-231 | | | 4 | 31.87 | 9.13275E-01 | 7.41 | | | | M | 5 | 50.36 | 2.56281E+00 | 3.32 | Tol. | TE-132 | | | | • | | | | TH-227 | | | 7 | 67.80 | 3.55454E-01 | 24.01 | Tol. | TI-44 | | | | | | | | TA-182 | | | | | | 1.0.01 | | TH-230 | | M | 8 | 85.28 | 4.67079E-01 | 16.61 | | | | | 15 | 511.09 | 8.40313E-02 | 50.14 | | | | | 18 | 740.20 | 5.97466E-02 | 51.11 | Tol. | MO-99 | | | 19 | 848.60 | 5.49972E-02 | 50.74 | | | | M | 20 | 1169.83 | 2.17262E-02 | 45.80 | | | | M | 23 | 1666.82 | 1.47056E-02 | 16.25 | | | | m | 24 | 1670.82 | 1.20428E-02 | 53.20 | | | | | 25 | 1837.28 | 2.16614E-02 | 41.19 | | | | | 26 | 1853.40 | 3.36226E-02 | 36.35 | | | | | 27 | 1866.80 | 7.12963E-03 | 59.12 | * | | | | 28 | 1982.29 | 2.61603E-02 | 35.46 | | | | | 29 | 1991.93 | 7.97840E-03 | 62.28 | | | | | 30 | 2056.35 | 1.08018E-02 | 51.35 | | | | | 31 | 2110.54 | 8.18889E-03 | 43.31 | | | | | 32 | 2305.47 | 5.08772E-03 | 66.76 | | | | | 33 | 2344.44 | 5.21242E-03 | 57.64 | | | | | 34 | 2362.34 | 4.74074E-03 | 64.39 | | | | | 35 | 2369.34 | 5.42929E-03 | 38.37 | | | | | 36 | 2506.87 | 1.32222E-01 | 6.48 | Sum | | | | | | | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OK GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** 1603102-01 GAS-1302 | Nuclide | ld | Energy | | Yield(%) | Activity | Activity | | |---------|------------|---------|---|----------|-------------|-------------|--| | Name | Confidence | (keV) | | | (pCi/grams) | Uncertainty | | | CO-57 | 0.92 | 122.06 | * | 85.51 | 7.20E+01 | 7.72E+00 | | | 00 0. | | 136.48 | * | 10.60 | 6.33E+01 | 2.82E+01 | | | CO-60 | 0.93 | 1173.22 | * | 100.00 | 1.38E+02 | 1.12E+01 | | | | | 1332.49 | * | 100.00 | 1.38E+02 | 1.13E+01 | | | CD-109 | 0.96 | 88.03 | * | 3,72 | 2.74E+03 | 2.91E+02 | | | SN-113 | 0.62 | 255.12 | | 1.93 | | | | | | | 391.69 | * | 64.90 | 2.58E+02 | 1.92E+02 | | | SN-126 | 0.99 | 87.57 | * | 37.00 | 6.05E+01 | 5.33E+00 | | | CS-137 | 0.99 | 661.65 | * | 85.12 | 8.88E+01 | 7.41E+00 | | | CE-139 | 0.75 | 165.85 | * | 80.35 | 9.74E+01 | 4.75E+01 | | | TL-208 | 0.82 | 583.14 | * | 30.22 | 9.30E-01 | 9.30E-01 | | | | | 860.37 | | 4.48 | | | | | | | 2614.66 | * | 35.85 | 3.18E-01 | 1.51E-01 | | | PB-212 | 0.87 | 238.63 | * | 44.60 | 4.56E-01 | 3.95E-01 | | | | | 300.09 | | 3.41 | | | | | AM-241 | 0.97 | 59.54 | * | 35.90 | 1.88E+02 | 1.40E+01 | | | | | | | ***** | | | | ^{* =} Energy line found in the spectrum. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma # INTERFERENCE CORRECTED REPORT | | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |---|-----------------|-----------------------------|------------------------------------|------------------------------------|----------| | | CO-57 | 0.923 | 7.14E+01 | 7.45E+00 | | | | CO-60 | 0.931 | 1.38E+02 | 7.95E+00 | | | ? | CD-109 | 0.967 | 2.74E+03 | 2.91E+02 | | | · | SN-113 | 0.626 | 2.58E+02 | 1.92E+02 | | | ? | SN-126 | 0.992 | 6.05E+01 | 5.33E+00 | | | • | CS-137 | 0.996 | 8.88E+01 | 7.41E+00 | | | | CE-139 | 0.750 | 9.74E+01 | 4.75E+01 | | | | TL-208 | 0.829 | 3.34E-01 | 1.49E-01 | | | | PB-212 | 0.879 | 4.56E-01 | 3.95E-01 | | | | AM-241 | 0.979 | 1.88E+02 | 1.40E+01 | | ^{- =} Manually added nuclide. ^{? =} Manually edited nuclide. ^{@ =} Energy line not used for Weighted Mean Activity 1603102-01 GAS-1302 - ? = nuclide is part of an undetermined solution - X = nuclide rejected by the interference analysis - @ = nuclide contains energy lines not used in Weighted Mean Activity Errors quoted at 2.000sigma GAS-1302 ### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/11/2016 8:04:13AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----|--------|--------------|-----------------|-----------------------------|--------------|----------------------|--| | | 1 | 12.12 | 3.77432E+00 | 2.62 | | | | | M | 2 | 21.93 | 4.42901E+01 | 0.36 | | | | | m | 3 | 24.51 | 1.50919E+01 | 0.77 | Tol. | TH-231 | | | | 4 | 31.87 | 9.13275E-01 | 7.41 | | | | | M | 5 | 50.36 | 2.56281E+00 | 3.32 | Tol. | TE-132 | | | | | | | | | TH-227 | | | | 7 | 67.80 | 3.55454E-01 | 24.01 | Tol. | TI-44 | | | | | | | | | TA-182 | | | | | | | | | TH-230 | | | M | 8 | 85.28 | 4.67079E-01 | 16.61 | | | | | | 15 | 511.09 | 8.40313E-02 | 50.14 | | | | | | 18 | 740.20 | 5.97466E-02 | 51.11 | Tol. | MO-99 | | | | 19 | 848.60 | 5.49972E-02 | 50.74 | | | | | М | 20 | 1169.83 | 2.17262E-02 | 45.80 | | | | | M | 23 | 1666.82 | 1.47056E-02 | 16.25 | | | | | m | 24 | 1670.82 | 1.20428E-02 | 53.20 | | |
 | | 25 | 1837.28 | 2.16614E-02 | 41.19 | | | | | | 26 | 1853.40 | 3.36226E-02 | 36.35 | | | | | | 27 | 1866.80 | 7.12963E-03 | 59.12 | | | | | | 28 | 1982.29 | 2.61603E-02 | 35.46 | | | | | | 29 | 1991.93 | 7.97840E-03 | 62.28 | | | | | | 30 | 2056.35 | 1.08018E-02 | 51.35 | | | | | | 31 | 2110.54 | 8.18889E-03 | 43.31 | | | | | | 32 | 2305.47 | 5.08772E-03 | 66.76 | | | | | | 33 | 2344.44 | 5.21242E-03 | 57.64 | | | | | | 34 | 2362.34 | 4.74074E-03 | 64.39 | | | | | | 35 | 2369.34 | 5.42929E-03 | 38.37 | | | | | | 36 | 2506.87 | 1.32222E-01 | 6.48 | Sum | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma GAS-1302 ## NUCLIDE MDA REPORT | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | |-----------------|--------------------|-----|----------------|-------------------------|----------------------------|-------------------------| | BE-7 | 477.59 | | 10.42 | -4.21E+05 | 2.10E+06 | 2.10E+06 | | NA-22 | 1274.54 | | 99.94 | -4.49E-02 | 6.27E-01 | 6.27E-01 | | @ NA-24 | 1368.52 | | 99.99 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | 0 | 2754.09 | | 99.86 | 0.00E+00 | | 1.00E+26 | | AL-26 | 1808.65 | | 99.76 | -3.05E-02 | 2.16E-01 | 2.16E-01 | | K-40 | 1460.81 | | 10.67 | -6.61E-01 | 1.94E+00 | 1.94E+00 | | @ AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | TI-44 | 67.88 | | 94.40 | 1.41E-01 | 2.73E-01 | 3.02E-01 | | | 78.34 | | 96.00 | -4.92E-02 | | 2.73E-01 | | SC-46 | 889.25 | | 99.98 | 9.49E+01 | 2.82E+03 | 2.93E+03 | | V-48 | 1120.51
983.52 | | 99.99
99.98 | -2.12E+02
-6.60E+18 | 4.30E+18 | 2.82E+03
9.01E+18 | | V-40 | 1312.10 | | 97.50 | -2.29E+18 | | 4,30E+18 | | CR-51 | 320.08 | | 9.83 | 1.72E+11 | 3.63E+11 | 3.63E+11 | | MN-54 | 834.83 | | 99.97 | 3.63E+00 | 5.62E+00 | 5.62E+00 | | CO-56 | 846.75 | | 99.96 | -1.03E+03 | 1.98E+03 | 4.53E+03 | | | 1037.75 | | 14.03 | 1.78E+04 | | 3.66E+04 | | | 1238.25 | | 67.00 | -6.51E+02 | | 3.80E+03 | | | 1771.40 | | 15.51 | -2.14E+03 | | 9.85E+03 | | | 2598.48 | .1. | 16.90 | 2.69E+02 | E 41D100 | 1.98E+03
5.41E+00 | | CO-57 | 122.06 | * | 85.51 | 7.20E+01 | 5.41E+00 | 4.45E+01 | | GO F.0 | 136.48 | * | 10.60
99.40 | 6.33E+01
1.44E+03 | 1.18E+04 | 1.18E+04 | | CO-58 | 810.76 | | 56.50 | 9.16E+05 | 4.65E+06 | 8.86E+06 | | FE-59 | 1099.22
1291.56 | | 43.20 | -1.82E+05 | 4.030100 | 4.65E+06 | | CO-60 | 1173.22 | * | 100.00 | 1.38E+02 | 7.44E-01 | 1.14E+00 | | 00 00 | 1332.49 | * | 100.00 | 1.38E+02 | | 7.44E-01 | | ZN-65 | 1115.52 | | 50.75 | 3.63E+01 | 2.47E+01 | 2.47E+01 | | @ GA-67 | 93.31 | | 35.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | @ | 208.95 | | 2.24 | 1.00E+26 | | 1.00E+26 | | @ | 300.22 | | 16.00 | 1.00E+26 | • | 1.00E+26 | | SE-75 | 121.11 | | 16.70 | 9.76E+03 | 1.63E+02 | 8.10E+02 | | | 136.00 | | 59.20 | 3.27E+02 | • | 1.63E+02 | | | 264.65 | | 59.80 | 6.42E+01
-1.02E+02 | | 1.88E+02
4.49E+02 | | | 279.53
400.65 | | 25.20
11.40 | -3.75E+01 | | 1.18E+03 | | RB-82 | 776.52 | | 13.00 | 6.37E+11 | 3.73E+12 | 3.73E+12 | | RB-83 | 520.41 | | 46.00 | -5.36E+02 | | 2.87E+03 | | | | | | | | | | | 529.64 | | 30.30 | 7.91E+02 | | 4.43E+03 | 1603102-01 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|------------------|-----|---------------|-------------------------|----------------------------|-------------------------|--| | | | | | | | | | | | | KR-85 | 513.99 | | 0.43 | -6.23E+00 | 1.05E+02 | 1.05E+02 | | | + | | 513.99 | | 99.27 | -1.17E+03 | 1.99E+04 | 1.99E+04 | | | + | SR-85 | | | 93.40 | 1.63E+02 | 2.09E+02 | 5.48E+02 | | | ÷ | Y-88 | 898.02 | | | 2.36E+02 | 2.035102 | 2.09E+02 | | | | NED COM | 1836.01
16.57 | | 99.38
9.43 | 1.35E+03 | 5.54E+02 | 5.54E+02 | | | + | NB-93M | 702.63 | | 100.00 | 2.63E-02 | 4.79E-01 | 4.79E-01 | | | + | NB-94 | | | 100.00 | 2.26E-02 | 4.750 01 | 6.25E-01 | | | + | NB-95 | 871.10
765.79 | | 99.81 | 6.10E÷07 | 2.72E+08 | 2.72E+08 | | | | @ NB-95M | 235.69 | | 25.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | | 724.18 | | 43.70 | 7.54E+03 | 5.41E+04 | 6.62E+04 | | | + | ZR-95 | | | 55.30 | 5.01E+03 | J.4ILF.C | 5.41E+04 | | | + | @ MO-99 | 756.72
181.06 | | 6.20 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | т | | 739.58 | | 12.80 | 1.00E+26 | 2.001,20 | 1.00E+26 | | | | @
@ | 778.00 | | 4.50 | 1.00E+26 | • | 1.00E+26 | | | + | RU-103 | 497.08 | | 89.00 | -1.57E+06 | 2.54E+07 | 2.54E+07 | | | + | RU-106 | 621.84 | | 9.80 | 2.23E+01 | 3.24E+01 | 3.24E+01 | | | | AG-108M | 433.93 | | 89.90 | 2.09E-01 | 4.56E-01 | 4.56E-01 | | | + | AG-100M | 614.37 | | 90.40 | -4.20E-01 | 1.002 01 | 5.13E-01 | | | | | 722.95 | | 90.50 | 8.90E02 | | 5.48E-01 | | | + | CD-109 | 88.03 | * | 3.72 | 2.74E+03 | 5.89E+01 | 5.89E+01 | | | + | AG-110M | 657.75 | | 93.14 | 7.59E-01 | 1.53E+01 | 2.49E+01 | | | | | 677.61 | | 10.53 | 4.41E+01 | | 7.51E+01 | | | | | 706.67 | | 16.46 | 1.12E+01 | | 4.85E+01 | | | | | 763.93 | | 21.98 | -1.65E+01 | | 3.93E+01 | | | | | 884.67 | | 71.63 | 1.83E+00 | | 1.54E+01 | | | | 4404 | 1384.27 | | 23.94 | 5.02E+00 | 1.58E+03 | 1.53E+01
1.58E+03 | | | + | CD-113M | | | 0.02 | -9.39E+00 | | 7.59E+03 | | | + | SN-113 | 255.12 | | 1.93 | 5.23E+03 | 3.05E+02 | | | | | mm | 391.69 | * | 64.90 | 2.58E+02
4.98E+01 | 1.11E+02 | 3.05E+02
1.11E+02 | | | + | TE123M | 159.00 | | 84.10 | | 4.65E+04 | 5.64E+04 | | | + | SB-124 | 602.71 | | 97.87 | 2.41E+04 | 4.056+04 | 7.89E+05 | | | | | 645.85
722.78 | | 7.26
11.10 | -1.46E+04
8.51E+04 | | 5.23E+05 | | | | • | 1691.02 | | 49.00 | -1.83E+04 | | 4.65E+04 | | | + | I-125 | 35.49 | | 6.49 | 1.32E+06 | 1.02E+06 | i.02E+06 | | | + | SB-125 | 176.33 | | 6.89 | 3.72E+00 | 2.71E+00 | 7.98E+00 | | | • | 00 120 | 427.89 | | 29.33 | -4.52E-01 | | 2.71E+00 | | | | | 463.38 | | 10.35 | 2.69E+00 | | 8.65E+00 | | | | | 600.56 | | 17.80 | 1.14E+00 | | 5.18E+00 | | | | | 635.90 | | 11.32 | 4.63E+00 | | 8,55E+00 | | | + | @ SB-126 | 414.70 | | 83.30 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | 0 | 666.33 | | 99.60 | 1.00E+26 | | 1.00E+26 | | | | @ | 695.00 | | 99.60 | 1.00E+26 | | 1.00E+26 | | | | @
@ | 720.50 | -1- | 53.80 | 1.00E+26 | 1 205:00 | 1.00E+26
1.30E+00 | | | + | SN-126 | 87.57 | * | 37.00 | 6.05E+01 | 1.30E+00 | | | | + | @ SB-127 | 473.00 | | 25.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | @ | 685.20 | | 35.70 | 1.00E+26 | | 1.00E+26 | | | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|------------------|---|---------------|-------------------------|----------------------------|-------------------------|---| | | @ SB-127 | 783.80 | | 14.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | - | | + | I-129 | 29.78 | | 57.00 | -1.75E+01 | 1.57E+00 | 1,57E+00 | | | • | 1 123 | 33.60 | | 13.20 | -3.30E+01 | | 4.69E+00 | | | | | 39.58 | | 7.52 | -9.30E+00 | | 5.93E+00 | | | + | @ I-131 | 284.30 | | 6.05 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | @ | 364.48 | | 81.20 | 1.00E+26 | | 1.00E+26 | | | | <u>@</u> | 636.97 | | 7.26 | 1.00E+26 | | 1.00E+26 | | | | @ | 722.89 | | 1.80 | 1.00E+26 | | 1.00E+26 | | | + | @ TE-132 | 49.72 | | 13.10 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | @ | 228.16 | | 88.00 | 1.00E+26 | | 1.00E+26 | | | + | BA-133 | 81.00 | | 33.00 | 2.73E-01 | 7.02E-01 | 9.30E-01 | | | | | 302.84 | | 17.80 | -2.51E-01 | | 2.20E+00 | | | | | 356.01 | | 60.00 | 9.76E-02 | | 7.02E-01 | | | + | 0 I-133 | 529.87 | | 86.30 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | @ XE-133 | 81.00 | | 38.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | • | | + | CS-134 | 563.23 | | 8.38 | -4.66E+00 | 1.20E+00 | 1.13E+01 | | | | | 569.32 | | 15.43 | -8.47E-01 | | 6.20E+00 | | | | | 604.70 | | 97.60 | -8.39E-01 | | 1.20E+00 | | | | | 795.84 | | 85.40 | 1.65E+00 | | 1.68E+00
1.58E+01 | | | | 90 105 | 801.93 | | 8.73
16.00 | -1.03E+01
-8.85E-01 | 1.97E+00 | 1.97E+00 | | | + | CS-135 | 268.24 | | | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | @ I-135 | 1131.51 | | 22.50 | | 1.005+20 | 1.00E+26 | | | | @ | 1260.41 | | 28.60 | 1.00E+26
1.00E+26 | | 1.00E+26 | | | | 0
0 CC 136 | 1678.03 | | 9.54
7.46 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | @ CS-136 | 153.22 | | 4.61 | 1.00E+26 | 1.000.20 | 1.00E+26 | | | | <u>@</u> | 163.89
176.55 | | 13.56 | 1.00E+26 | | 1.00E+26 | | | | <u>@</u> | 273.65 | | 12.66 | 1.00E+26 | | 1.00E+26 | | | | @ | 340.57 | | 48.50 | 1.00E+26 | | 1.00E+26 | | | | <u>@</u> | 818.50 | | 99.70 | 1.00E+26 | | 1.00E+26 | | | | <u>e</u> | 1048.07 | | 79.60 | 1.00E+26 | | 1.00E+26 | | | | <u> </u> | 1235.34 | | 19.70 | 1.00E+26 | | 1.00E+26 | | | + | CS-137 | 661.65 | * | 85.12 | 8.88E+01 | 9.37E-01 | 9.37E-01 | | | + | LA-138 | 788.74 | | 34.00 | 5.97E-01 | 3.03E-01 | 1.60E+00 | | | | | 1435.80 | | 66.00 | 7.59E-02 | | 3.03E-01 | | | + | CE-139 | 165.85 | * | 80.35 | 9.74E+01 | 7.51E+01 | 7.51E+01 | | | + | @ BA-140 | 162.64 | | 6.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | @ | 304.84 | | 4.50 | 1.00E+26 | | 1.00E+26 | | | | @ | 423.70 | | 3.20 | 1.00E+26 | | 1.00E+26 | | | | @ | 437.55 | | 2.00 | 1.00E+26 | | 1.00E+26 | | | | @ | 537.32 | | 25.00 | 1.00E+26 | | 1.00E+26 | | | + | @ LA-140 | 328.77 | | 20.50 | 1.00E+26 | | 1.00E+26 | | | | @ | 487.03 | | 45.50 | 1.00E+26 | | 1.00E+26 | | | | 0 | 815.85 | | 23.50 | 1.00E+26 | | 1.00E+26 | | | | @
GE 141 | 1596.49 | | 95.49 | 1.00E+26 | | 1.00E+26
1.32E+09 | | | + | CE-141 | 145.44 | • | 48.40 | 5.42E+08 | | 1.00E+26 | | | + | @ CE-143 | 57.36 | | 11.80 | 1.00E+26 | | 1.00E+26 | | | | 0 | 293.26 | | 42.00 | 1.00E+26 | | 1.005720 | | | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-------|-----------------
--|----------------|-------------------------|----------------------------|-------------------------|---| | ····· | @ CE-143 | 664.55 | 5.20 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | CE-144 | 133.54 | 10.80 | 4.00E-01 | 2.93E+01 | 2.93E+01 | | | + | PM-144 | 476.78 | 42.00 | -1.39E+00 | 3.23E+00 | 6.91E+00 | | | • | 111 111 | 618.01 | 98.60 | -9.45E-01 | | 3.23E+00 | | | | | 696.49 | 99.49 | 1.53E-01 | | 3.31E+00 | | | + | PM-145 | 36.85 | 21.70 | 3.25E+00 | 1.39E+00 | 2.64E+00 | | | | | 37.36 | 39.70 | 1.72E+00 | | 1.39E+00 | | | | | 42.30 | 15.10 | -4.83E+00 | | 3.23E+00 | | | | | 72.40 | 2.31 | 5.96E+00 | 1 507,00 | 1.26E+01 | | | + | PM-146 | 453.90 | 39.94 | -2.49E-01 | 1.52E+00 | 1.52E+00 | | | | | 735.90 | 14.01 | -7.88E-01 | | 5.09E+00
5.50E+00 | | | | A 270 147 | 747.13 | 13:10
28.90 | 1.35E+00
1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | @ ND-147 | 91.11 | | 1.00E+26 | 1.000.20 | 1.00E+26 | | | | 0
0 DM 140 | 531.02
285.90 | 13.10
3.10 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | @ PM-149 | 121.78 | 20.50 | 2.50E+01 | 1.61E+00 | 2.12E+00 | | | + | EU-152 | | 5.40 | -3.65E+00 | 1.010,00 | 6.84E+00 | | | | | 244.69
344.27 | 19.13 | 3.23E-01 | | 2.06E+00 | | | | | 778.89 | 9.20 | -2.68E-02 | | 6.60E+00 | • | | | | 964.01 | 10.40 | -1.18E-01 | | 8,18E+00 | | | | | 1085.78 | 7.22 | 3.33E+00 | | 1.13E+01 | | | | | 1112.02 | 9.60 | 2.48E+00 | | 8.51E+00 | | | | | 1407.95 | 14.94 | 5.58E-01 | 400.01 | 1.61E+00 | | | + | GD-153 | 97.43 | 31.30 | 5.84E+00 | 1.40E+01 | 1.40E+01 | | | | | 103.18 | 22.20 | -6.93E+00 | 1.05E+00 | 1.98E+01
1.16E+00 | | | + | EU-154 | 123.07 | 40.50 | 1.33E+01 | 1.055+00 | 3.08E+00 | | | | | 723.30 | 19.70
11.50 | 5.02E-01
-2.18E+00 | | 6.78E+00 | | | | | 873.19
996.32 | 10.30 | -2.16E+00 | • | 8.09E+00 | | | | | 1004.76 | 17.90 | 4.31E-01 | | 4.69E+00 | | | | | 1274.45 | 35.50 | -7.50E-02 | | 1.05E+00 | | | + | EU-155 | 86.50 | 30.90 | 1.10E+02 | 1.72E+00 | 3.32E+00 | | | | | 105.30 | 20.70 | -6.69E-01 | | 1.72E+00 | | | + | @ EU-156 | 811.77 | 10.40 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | @ | 1153.47 | 7.20 | 1.00E+26 | | 1.00E+26 | | | | 0 | 1230.71 | 8.90 | 1.00E+26 | | 1.00E+26 | | | + | HO-166M | the state of s | 72.60 | 8.73E-02 | 3.94E-01 | 3.94E-01 | | | | | 280.45 | 29.60 | -2.44E-01 | | 1.08E+00 | | | | | 410.94 | 11.10 | 1.34E+00 | | 3.49E+00
8.65E-01 | | | | mv 171 | 711.69
66.72 | 54.10
0.14 | -6.38E-01
5.35E+02 | 5.40E+02 | 5.40E+02 | | | + | TM-171 | | 4.52 | -2.92E-01 | 6.08E+00 | 1.58E+01 | | | + | HF-172 | 81.75 | 11.30 | -7.69E-01 | 0.005.00 | 6.08E+00 | • | | + | @ LU-172 | 125.81
181.53 | 20.60 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | 7 | | 810.06 | 16.63 | 1.00E+26 | 2.002.20 | 1.00E+26 | | | | @
@ | 912.12 | 15.25 | 1.00E+26 | | 1.00E+26 | | | | <u>@</u> | 1093.66 | 62.50 | 1.00E+26 | | 1,00E+26 | | | + | LU-173 | 100.72 | 5.24 | 1.30E+00 | 6.23E+00 | 1.87E+01 | | | • | 20 1.0 | 272.11 | 21.20 | 6.85E-01 | | 6.23E+00 | | | | | _,_,_ | | | | | | | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|--------------------|-------|----------------|-------------------------|----------------------------|-------------------------|--| | | | (,,,,, | ····· | | | | | | | + | HF-175 | 343.40 | | 84.00 | -5.79E+03 | 9.39E+03 | 9.39E+03 | | | + | LU-176 | 88.34 | | 13.30 | 1.74E+02 | 3.42E-01 | 5.17E+00 | | | | | 201.83 | | 86.00 | -6.24E-02 | | 3.42E-01 | | | | | 306.78 | | 94.00 | 2.09E-02 | | 3.53E-01 | | | + | TA-182 | 67.75 | | 41.20 | 1.47E+02 | 3.14E+02 | 3.14E+02 | | | | | 1121.30 | | 34.90 | -1.25E+02 | - | 8.43E+02
1.31E+03 | | | | | 1189.05 | | 16.23
26.98 | -7.99E+01
-1.39E+02 | | 6.53E+02 | | | | | 1221.41
1231.02 | | 11.44 | 1.58E+02 | | 1.48E+03 | | | + | IR-192 | 308.46 | | 29.68 | -1.08E+04 | 1.24E+04 | 1.50E+04 | | | | | 468.07 | | 48.10 | -1.73E+02 | | 1.24E+04 | | | + | HG-203 | 279.19 | | 77.30 | 3.22E+04 | 1.48E+06 | 1.48E+06 | | | + | BI-207 | 569.67 | | 97.72 | -5.57E-02 | 4.08E-01 | 4.08E-01 | | | | | 1063.62 | | 74.90 | 1.27E-01 | | 9.65E-01 | | | + | TL-208 | 583.14 | * | 30.22 | 9.30E-01 | 4.53E-02 | 1.51E+00 | | | | | 860.37 | .1. | 4.48 | 1.56E+00 | | 1.39E+01
4.53E-02 | | | | BI-210M | 2614.66
262.00 | * | 35.85
45.00 | 3.18E-01
-1.74E-01 | 7.12E-01 | 7.12E-01 | | | + | PI-SIOM | 300.00 | | 23.00 | 1.17E+00 | | 1.43E+00 | | | + | PB-210 | 46.50 | | 4.25 | -8.04E+01 | 1.28E+01 | 1.28E+01 | | | + | PB-211 | 404.84 | | 2.90 | 2.78E±00 | 1.32E+01 | 1.32E+01 | | | · | | 831.96 | | 2.90 | 6.66E+00 | | 2.02E+01 | | | + | BI-212 | 727.17 | | 11.80 | -3.68E-01 | 4.12E+00 | 4.12E+00 | | | | | 1620.62 | | 2.75 | -2.47E-01 | | 7.43E+00 | | | + | PB-212 | 238.63 | * | 44.60 | 4.56E-01 | 6.39E-01 | 6.39E-01 | | | | 014 | 300.09 | | 3.41 | 7.88E+00 | 1.02E+00 | 9.63E+00
1.02E+00 | | | + | BI-214 | 609.31 | | 46.30 | 5.82E-01
-3.18E-01 | 1.025400 | 4.24E+00 | | | | | 1120.29
1764.49 | | 15.10
15.80 | 1.15E+00 | | 1.39E+00 | | | | | 2204.22 | | 4.98 | 8.11E-01 | | 3.86E+00 | | | + | PB-214 | 295.21 | | 19.19 | -5.76E-01 | 9.51E-01 | 1.69E+00 | | | | | 351.92 | | 37.19 | -3.94E-02 | | 9.51E-01 | | | + | RN-219 | 401.80 | | 6.50 | -1.49E+00 | 5.80E+00 | 5.80E+00 | | | + | RA-223 | 323.87 | | 3.88 | -6.16E+00 | 8.53E+00 | 8.53E+00 | | | + | RA-224 | 240.98 | | 3.95 | 3.18E+00 | 8.28E+00 | 8.28E+00 | | | + | @ RA-225 | 40.00 | | 31.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | + | RA-226 | 186.21 | | 3.28 | -3.27E+00 | 8.80E+00 | 8.80E+00 | | | + | TH-227 | 50.10 | | 8.40 | 2.70E+01 | 2.86E+00 | 7.06E+00
2.86E+00 | | | | | 236.00 | | 11.50 | 1.55E+00
1.37E+00 | | 5.18E+00 | | | 1 | AC-228 | 256.20
338.32 | | 6.30
11.40 | 1.64E+00 | 2.56E+00 | 3.06E+00 | | | + | AC-220 | 911.07 | | 27.70 | 1,25E+00 | | 2.56E+00 | | | | | 969.11 | | 16.60 | -1.02E+00 | | 4.15E+00 | | | + | TH-230 | 48.44 | | 16.90 | 1.08E+01 | 3.52E+00 | 3.52E+00 | | | | | 62.85 | | 4,60 | -3.88E+00 | | 5.31E+00 | | | | | 67.67 | | 0.37 | 3.50E+01 | 1 400.01 | 7.48E+01
2.04E+01 | | | + | PA-231 | 283.67 | | 1.60 | 1.91E+01 | 1.42E+01 | 1.42E+01 | | | | | 302.67 | | 2.30 | -1.61E+00 | | T.47DTVI | | 1603102-01 GAS-1302 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|--------------------|----------------------------|---|-------------------------|----------------------------------|----------------------------|----------------------------------|--| | + | TH-231 | 25.64 | | 14.70 | 1.14E+03 | 4.11E+00 | 3.67E+01 | | | | | 84.21 | | 6.40 | -3.07E-03 | | 4.11E+00 | | | + | PA-233 | 311.98 | | 38.60 | 1.40E+11 | 1.78E+11 | 1.78E+11 | | | + | PA-234 | 131.20 | | 20.40 | -2.39E-01 | 1.23E+00 | 1.23E+00 | | | · | | 733.99
946.00 | | 8.80
12.00 | -2.16E+00
-2.15E+00 | | 5.61E+00
6.30E+00 | | | + | PA-234M | 1001.03 | | .0.92 | 1.12E+01 | 7.30E+01 | 7.30E+01 | | | + | TH-234 | 63.29 | | 3.80 | -4.68E+00 | 6.40E+00 | 6.40E+00 | | | + | U-235 | 143.76 | | 10.50 | 1.69E-01 | 2.41E+00 | 2.41E+00 | | | | | 163.35
205.31 | | 4.70
4.70 | -1.34E+00
1.87E+00 | E E3E1100 | 5.70E+00
6.39E+00
5.53E+00 | | | + | NP-237 | 86.50 | | 12.60 | 1.84E+02 | 5.53E+00 | | | | + | @ NP-239
@
@ | 106.10
228.18
277.60 | | 22.70
10.70
14.10 | 1.00E+26
1.00E+26
1.00E+26 | 1.00E+26 | 1.00E+26
1.00E+26
1.00E+26 | | | + | AM-241 | 59.54 | * | 35.90 | 1.88E+02 | 3.02E+00 | 3.02E+00 | | | + | AM-243 | 74.67 | | 66.00 | -1.27E-01 | 3.90E-01 | 3.90E-01 | | | + | CM-243 | 209.75 | | 3.29 | -1.92E+00 | 2.43E+00 | 1.01E+01 | | | | | 228.14
277.60 | | 10.60
14.00 | 2.41E-01
5.54E-01 | | 3.27E+00
2.43E+00 | | - + = Nuclide identified during the nuclide identification - * = Energy line found in the spectrum - > = MDA value not calcula ad - @ = Half-life too short to be able to perform the
decay correction - ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level ## NUCLIDE MDA REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| |
BE-7 | 477.59 | 10.42 | 2.10E+06 | 2.10E+06 | -4.21E+05 | 1.03E+06 | | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|------------------------|-----------------|-------------------------|----------------------------|-------------------------|---------------------------| | | NA-22 | 1274.54 | 99.94 | 6.27E-01 | 6.27E-01 | -4.49E-02 | 3.01E-01 | | a | NA-24 | 1368.53 | 99.99 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | 6 | | 2754.09 | 99.86 | 1.00E+26 | | 0.00E+00 | 1.00E+20 | | C | AL-26 | 1808.65 | 99.76 | 2.16E-01 | 2.16E-01 | -3.05E-02 | 1.01E-01 | | | K-40 | 1460.81 | 10.67 | 1.94E+00 | 1.94E+00 | -6.61E-01 | 9.10E-01 | | a | AR-41 | 1293.64 | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | • | TI-44 | 67.88 | 94.40 | 3.02E-01 | 2.73E-01 | 1.41E-01 | 1.50E-01 | | | | 78.34 | 96.00 | 2.73E-01 | | -4.92E-02 | 1.36E-01 | | | SC-46 | 889.25 | 99.98 | 2.93E+03 | 2.82E+03 | 9.49E+01 | 1.45E+03 | | | | 1120.51 | 99.99 | 2.82E+03 | | -2.12E+02 | 1.39E+03 | | | V-48 | 983.52 | 99.98 | 9.01E+18 | 4.30E+18 | -6.60E+18 | 4.44E+18 | | | | 1312.10 | 97.50 | 4.30E+18 | | -2.29E+18 | 2.07E+18 | | | CR-51 | 320.08 | 9.83 | 3.63E+11 | 3.63E+11 | 1.72E+11 | 1.79E+11 | | | MN-54 | 834.83 | 99.97 | 5.62E+00 | 5.62E+00 | 3.63E+00 | 2.77E+00 | | | CO-56 | 846.75 | 99.96 | 4.53E+03 | 1.98E+03 | -1.03E+03 | 2.23E+03
1.80E+04 | | | | 1037.75 | 14.03 | 3.66E+04 | | 1.78E+04 | 1.83E+03 | | | | 1238.25 | 67.00 | 3.80E+03 | | -6.51E+02
-2.14E+03 | 4.57E+03 | | | | 1771.40 | 15.51 | 9.85E+03 | | 2.69E+02 | 6.27E+02 | | | | 2598.48 | 16.90 | 1.98E+03 | E 4112.00 | 7.20E+01 | 2.69E+00 | | + | CO-57 | 122.06 * | 85.51 | 5.41E+00 | 5.41E+00 | 6.33E+01 | 2.21E+01 | | | | 135.48 * | 10.60 | 4.45E+01 | 1.18E+04 | 1.44E+03 | 5.79E+03 | | | CO-58 | 810.76 | 99.40 | 1.18E+04 | 4.65E+06 | 9.16E+05 | 4.36E+06 | | | FE-59 | 1099.32 | 56.50 | 8.86E+06
4.65E+06 | 4.005100 | -1.82E+05 | 2.23E+06 | | | aa 60 | 1291.50 × | 43.20
100.00 | 1.14E+00 | 7.44E-01 | 1.38E+02 | 5.62E-01 | | + | CO-60 | 1173.22 *
1332.49 * | 100.00 | 7.44E-01 | TO der. | 1.38E+02 | 3.63E-01 | | | DN CE | 1115.52 | 50.75 | 2.47E+01 | 2.47E+01 | 3.63E+01 | 1.22E+01 | | | ZN-65
GA-67 | 93.31 | 35.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | | 208.95 | 2.24 | 1.00E+26 | 1,002.20 | 1.00E+26 | 1.00E+20 | | (| 3 | 300.22 | 16.00 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | , | se-75 | 121.11 | 16.70 | 8.10E+02 | 1.63E+02 | 9.76E+03 | 4.02E+02 | | | 5 <u>5</u> 75 | 136.00 | 59.20 | 1.63E+02 | | 3.27E+02 | 8.10E+01 | | | | 264.65 | 59.80 | 1.88E+02 | | 6.42E+01 | 9.30E+01 | | | | 279.53 | 25.20 | 4.49E+02 | | -1.02E+02 | 2,22E+02 | | | | 400.65 | 11.40 | 1.18E+03 | | -3.75E+01 | 5.82E+02 | | | RB-82 | 776.52 | 13.00 | 3.73E+12 | 3.73E+12 | 6.37E+11 | 1.84E+12 | | | RB-83 | 520.41 | 46.00 | 2.87E+03 | 2.87E+03 | -5.36E+02 | 1.41E+03 | | | | 529.64 | 30.30 | 4.43E+03 | | 7.91E+02 | 2.18E+03 | | | | 552.65 | 16.40 | 7.93E+03 | | 1.01E+02 | 3.90E+03 | | | KR-85 | 513.99 | 0.43 | 1.05E+02 | 1.05E+02 | -6.23E+00 | 5.20E+01 | | | SR-85 | 513.99 | 99.27 | 1.99E+04 | 1.99E+04 | -1.17E+03 | 9.79E+03 | | | Y-88 | 893.02 | 93.40 | 5,48E+02 | 2.09E+02 | 1.63E+02 | 2.70E+02 | | | | 1836.01 | 99.38 | 2.09E+02 | 4 00 | 2.36E+02 | 9.91E+01
2.75E+02 | | | NB-93M | 16.57 | 9.43 | 5.54E+02 | 5.54E+02 | 1.35E+03 | 2.75E+02
2.36E-01 | | | NB-94 | 702.63 | 100.00 | 4.79E-01 | 4.79E-01 | 2.63E-02 | 3.08E-01 | | | | 871.10 | 100.00 | 6.25E-01 | 0 505+00 | 2.26E-02
6.10E+07 | 1.34E+08 | | | NB-95 | 765.79 | 99.81 | 2.72E+08 | 2.72E+08 | 1.00E+26 | 1.00E+20 | | | @ NB-95M | 235.69 | 25.00 | 1.00E+26 | 1.00E+26
5.41E+04 | 7.54E+03 | 3.26E+04 | | | ZR-95 | 724.18 | 43.70 | 6.62E+04 | J.4151V4 | 5.01E+03 | 2.66E+04 | | | 0 | 756.72 | 55.30 | 5,41E+04
1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ MO-99 | 181.06 | 6.20 | 1.00E+26
1.00E+26 | I.UUETZ0 | 1.00E+26 | 1.00E+20 | | | @ | 739.58 | 12.80 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | @ | 778.00 | 4.50 | 1.00£720 | | 1.001.20 | | 1603102-01 | | | • | | وفصوت والمداد | | A. C. S. Sama | A411 .141 . | Dec. Level | |------|---|---------|---|---------------|-------------|----------------------|------------------------|-------------| | | Nuclide | Energy | | Yield(%) | Line MDA | Nuclide MDA | Activity | | | | Name | (keV) | | : | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | **** | RU-103 | 497.08 | | 89.00 | 2.54E+07 | 2.54E+07 | -1.57E+06 | 1.25E+07 | | | RU-106 | 621.84 | | 9.80 | 3.24E+01 | 3.24E+01 | 2.23E+01 | 1.60E+01 | | | AG-108M | 433.93 | | 89.90 | 4.56E-01 | 4.56E-01 | 2.09E-01 | 2.25E-01 | | | | 614.37 | | 90.40 | 5.13E-01 | | -4.20E-01 | 2.53E-01 | | | | 722.95 | | 90.50 | 5.48E-01 | | 8.90E-02 | 2.70E-01 | | + | CD-109 | | * | 3.72 | 5.89E+01 | 5.89E+01 | 2.74E+03 | 2.93E+01 | | | AG-110M | 657.75 | | 93.14 | 2.49E+01 | 1.53E+01 | 7.59E-01 | 1.24E+01 | | | | 677.61 | | 10.53 | 7.51E+01 | | 4.41E+01 | 3.70E+01 | | | | 706.67 | | 16.46 | 4.85E+01 | | 1.12E+01 | 2.39E+01 | | | | 763.93 | | 21.98 | 3.93E+01 | | -1.65E+01 | 1.93E+01 | | | | 884.67 | | 71.63 | 1.54E+01 | | 1.83E+00 | 7.62E+00 | | | | 1384.27 | | 23.94 | 1.53E+01 | • | 5.02E+00 | 7.23E+00 | | | CD-113M | 263.70 | | 0.02 | 1.58E+03 | 1.58E+03 | -9.39E+00 | 7.82E+02 | | + | SN-113 | 255.12 | | 1.93 | 7.59E+03 | 3.05E+02 | 5.23E+03 | 3.76E+03 | | • | 011 110 | | * | 64.90 | 3.05E+02 | | 2.58E+02 | 1.51E+02 | | | TE123M | 159.00 | | 84.10 | 1.11E+02 | 1.11E+02 | 4.98E+01 | 5.47E+01 | | | SB-124 | 602.71 | | 97.87 | 5.64E+04 | 4.65E+04 | 2.41E+04 | 2.78E+04 | | | DD 124 | 645.85 | | 7.26 | 7.89E+05 | | -1.46E+04 | 3.89E+05 | | | | 722.78 | | 11.10 | 5.23E+05 | | 8.51E+04 | 2.58E+05 | | | | 1691.02 | | 49.00 | 4.65E+04 | | -1.83E+04 | 2.15E+04 | | | I-125 | 35.49 | | 6.49 | 1.02E+06 | 1.02E+06 | 1.32E+06 | 5.05E+05 | | | SB-125 | 176.33 | | 6.83 | 7.98E+00 | 2.71E+00 | 3.72E+00 | 3.95E+00 | | | 3B-123 | 427.89 | | 29.33 | 2.71E+00 | | -4.52E-01 | 1.34E+00 | | | | 463.38 | | 10.35 | 8.65E+00 | | 2.69E+00 | 4.28E+00 | | | | 600.56 | | 17.80 | 5.18E+00 | | 1.14E+00 | 2.55E+00 | | | | 635.90 | | 11.32 | 8.55E+00 | | 4.63E+00 | 4.21E+00 | | | @ SB-126 | 414.70 | | 83.30 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | | 666.33 | | 99.60 | 1.00E+26 | 2.00 | 1.00E+26 | 1.00E+20 | | | @
@ | 695.00 | | 99.60 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | <u>e</u> | 720.50 | | 53.80 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | + | SN-126 | 87.57 | * | 37.00 | 1.30E+00 | 1.30E+00 | 6.05E+01 | 6.47E-01 | | 7 | | 473.00 | | 25.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | | 685.20 | | 35.70 | 1.00E+26 | 1.002.20 | 1.00E+26 | 1.00E+20 | | | @
@ | 783.80 | | 14.70 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | | 29.78 | | 57.00 | 1.57E+00 | 1.57E+00 | -1.75E+01 | 7.78E-01 | | | I-129 | 33.60 | | 13.20 | 4.69E+00 | 1.0,2.00 | -3.30E+01 | 2.32E+00 | | | | 39.58 | | 7.52 | 5.93E+00 | | -9.30E+00 | 2.94E+00 | | | A T 101 | 284.30 | | 6.05 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ I-131 | 364.48 | | 81.20 | 1.00E+26 | 1.001.20 | 1.00E+26 | 1.00E+20 | | | @
@ | | | 7.26 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | 6 | 636.97 | | 1.80 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | 0
0 mm 130 | 722.89 | | 13.10 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ TE-132 | 49.72 | | 88.00 | 1.00E+26 | 1.001120 | 1.00E+26 | 1.00E+20 | | | 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 228.16 | | 33.00 | 9.30E-01 | 7.02E-01 | 2.73E-01 | 4.61E-01 | | | BA-133 | 81.00 | | | 2.20E+00 | 7.025-01 | -2.51E-01 | 1.09E+00 | | | | 302.84 | | 17.80 | 7.02E-01 | | 9.76E-02 | 3.47E-01 | | | 0 T 100 | 356.01 | | 60.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ I-133 | 529.87 | | 86.30 | | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ XE-133 | 81.00 | | 38.00 | 1.00E+26 | 1.00E+26
1.20E+00 | -4.66E+00 | 5.55E+00 | | | CS-134 | 563.23 | | 8.38 | 1.13E+01 | 1,205700 | -8.47E-01 | 3.05E+00 | | | | 569.32 | | 15.43 | 6.20E+00 | | -8.47E-01
-8.39E-01 | 5.93E-01 | | | | 604.70 | | 97.60 | 1.20E+00 | | 1.65E+00 | 8.30E-01 | | | • | 795.84 | | 85.40 | 1.68E+00 | • | -1.03E+01 | 7.80E+00 | | | | 801.93 | | 8.73 | 1.58E+01 | | -1,036+01 | 7.002100 | | Nuc
Nan | | Energy
(keV) | Y | ield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-------------|--------------|------------------|----|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | CS- | 135 | 268.24 | | 16.00 | 1,97E+00 | 1.97E+00 | -8.85E-01 | 9.75E-01 | | @ I-1 | | 1131.51 | | 22.50 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | 6 | 50 | 1260.41 | | 28.60 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ | | 1678.03 | | 9.54 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | | 136 | 153.22 | | 7.46 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | 0 | | 163.89 | | 4.61 | 1.00E+26 | • | 1.00E+26 | 1.00E+20 | | <u>@</u> | | 176.55 | | 13.56 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @
@ | | 273.65 | | 12.66 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ | | 340.57 | | 48.50 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @
@ | | 818.50 | | 99.70 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ | | 1048.07 | | 79.60 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | <u>e</u> | | 1235.34 | | 19.70 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | + CS- | ·137 | 661.65 | * |
85.12 | 9.37E-01 | 9.37E-01 | 8.88E+01 | 4.64E-01 | | LA- | 138 | 788.74 | | 34.00 | 1.60E+00 | 3.03E-01 | 5.97E-01 | 7.89E-01 | | | | 1435.80 | | 66.00 | 3.03E-01 | | 7.59E-02 | 1.42E-01 | | | ·139 | 165.85 | * | 80.35 | 7.515+01 | 7.51E+01 | 9.74E+01 | 3.73E+01 | | @ BA- | -140 | 162.64 | | 6.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | @ | | 304.84 | | 4.50 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ | | 423.70 | | 3.20 | 1.00E+26 | | 1.00E+26 | 1.00E+20
1.00E+20 | | @ | | 437.55 | | 2.00 | 1.00E+26 | | 1.00E+26 | 1.00E+20
1.00E+20 | | @ . | | 537.32 | | 25.00 | 1.00E+26 | 1 000.00 | 1.00E+26 | 1.00E+20
1.00E+20 | | | -140 | 328.77 | | 20.50 | 1.00E+26 | 1.00E+26 | 1.00E+26
1.00E+26 | 1.00E+20 | | @
@
@ | | 487.03 | | 45.50 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ | | 815.85 | | 23.50 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | • | | 1596.49 | | 95.49 | 1.00E+26
1.32E+09 | 1.32E+09 | 5.42E+08 | 6.55E+08 | | | -141 | 145.44 | | 48.40 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | -143 | 57.36 | | 11.80
42.00 | 1.00E+26 | 1.0015120 | 1.00E+26 | 1.00E+20 | | 0 | | 293.26 | | 5,20 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | (e | 1 1 1 | 664.55
133.54 | | 10.80 | 2.93E+01 | 2.93E+01 | 4.00E-01 | 1.45E+01 | | | -144
-144 | 476.78 | | 42.00 | 6.91E+00 | 3.23E+00 | -1.39E+00 | 3.41E+00 | | PM- | -144 | 618.01 | | 98.60 | 3.23E+00 | 3.202,00 | -9.45E-01 | 1.59E+00 | | | | 696.49 | | 99.49 | 3.31E+00 | | 1.53E-01 | 1.63E+00 | | -Ma | -145 | 36.85 | | 21.70 | 2.64E+00 | 1.39E+00 | 3.25E+00 | 1.30E+00 | | F 14 | -143 | 37.36 | | 39.70 | 1.39E+00 | _, | 1.72E+00 | 6.88E-01 | | | | 42.30 | | 15.10 | 3.23E+00 | | -4.83E+00 | 1.60E+00 | | | | 72.40 | | 2.31 | 1.26E+01 | | 5.96E+00 | 6.25E+00 | | PM- | -146 | 453.90 | | 39.94 | 1.52E+00 | | -2.49E-01 | 7.49E-01 | | | | 735.90 | | 14.01 | 5.09E+00 | | -7.88E-01 | 2.51E+00 | | | | 747.13 | ** | 13.10 | 5.50E+00 | * | 1.35E+00 | 2.71E+00 | | @ ND- | -147 | 91.11 | | 28.90 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | @ | | 531.02 | | 13.10 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | @ PM· | -149 | 285.90 | • | 3.10 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | -152 | 121.78 | | 20.50 | 2.12E+00 | 1.61E+00 | 2.50E+01 | 1.06E+00 | | | | 244.69 | | 5.40 | 6.84E+00 | | -3.65E+00 | 3.38E+00 | | | | 344.27 | | 19.13 | 2.06E+00 | | 3.23E-01 | 1.02E+00 | | | | 778.89 | | 9.20 | 6.60E+00 | | -2.68E-02 | 3.25E+00 | | | | 964.01 | | 10.40 | 8.18E+00 | | -1.18E-01 | 4.04E+00 | | | | 1085.78 | | 7.22 | 1.13E+01 | | 3.33E+00 | 5.55E+00 | | | | 1112.02 | | 9.60 | 8.51E+00 | | 2.48E+00 | 4,19E+00 | | | | 1407.95 | | 14.94 | 1.61E+00 | | 5.58E-01 | 7.54E-01 | | GD: | -153 | 97.43 | | 31.30 | | | 5.84E+00 | 6.93E+00
9.83E+00 | | | | 103.18 | | 22.20 | 1.98E+01 | ; . | -6.93E+00 | 9.03E+UU | 1603102-01 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|-------------------|---|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | | EU-154 | 123,07 | • | 40.50 | 1.16E+00 | 1.05E+00 | 1.33E+01 | 5.76E-01 | | | | 723.30 | | 19.70 | 3.08E+00 | • | 5.02E-01 | 1.52E+00 | | | | 873.19 | | 11.50 | 6.78E+00 | | -2.18E+00 | 3.34E+00 | | | | 996.32 | | 10.30 | 8.09E+00 | | -2.57E+00 | 3.98E+00 | | | | 1004.76 | | 17.90 | 4.69E+00 | . , | 4.31E-01 | 2.31E+00 | | | | 1274.45 | | 35.50 | 1.05E+00 | | -7.50E-02 | 5.03E-01 | | | EU-155 | 86.50 | | 30.90 | 3.32E+00 | 1.72E+00 | 1.10E+02 | 1.66E+00 | | | | 105.30 | | 20.70 | 1.72E+00 | | -6.69E-01 | 8.51E-01
1.00E+20 | | | EU-156 | 811.77 | | 10.40 | 1.00E+26 | 1.00E+26 | 1.00E+26
1.00E+26 | 1.00E+20
1.00E+20 | | (| <u>ā</u> | 1153.47 | | 7.20 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | (| | 1230.71 | | 8.90 | 1.00E+26
3.94E-01 | 3.94E-01 | 8.73E-02 | 1.95E-01 | | | HO-166M | 184.41 | | 72.60
29.60 | 1.08E+00 | 3.940-01 | -2.44E-01 | 5.34E-01 | | | | 280.45
410.94 | | 11.10 | 3.49E+00 | | 1.34E+00 | 1.73E+00 | | | | 711.69 | | 54.10 | 8.65E-01 | | -6.38E-01 | 4.26E-01 | | | TM-171 | 66.72 | | 0.14 | 5.40E+02 | 5.40E+02 | 5.35E+02 | 2.68E+02 | | | HF-171 | 81.75 | | 4.52 | 1.58E+01 | 6.08E+00 | -2.92E-01 | 7.84E+00 | | | HF-1/2 | 125.81 | | 11.30 | 6.08E+00 | 0,002.00 | -7.69E-01 | 3.01E+00 | | (| § LU-172 | 181.53 | | 20.60 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | 9 HO-172 | 810.06 | | 16.63 | 1.00E+26 | 2 | 1.00E+26 | 1.00E+20 | | ì | 3 | 912.12 | | 15.25 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | ì | <u> </u> | 1093.66 | | 62.50 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | , | LU-173 | 100.72 | | 5.24 | 1.87E+01 | 6.23E+00 | 1.30E+00 | 9.28E+00 | | | | 272.11 | | 21.20 | 6.23E+00 | | 6.85E-01 | 3.08E+00 | | | HF-175 | 343.40 | | 84.00 | 9.39E+03 | 9.39E+03 | -5.79E+03 | 4.64E+03 | | | LU-176 | 88.34 | | 13.30 | 5.17E+00 | 3.42E-01 | 1.74E+02 | 2.58E+00 | | | | 201.83 | | 86.00 | 3.42E-01 | | -6.24E-02 | 1.69E-01 | | | | 306.78 | | 94.00 | 3.53E-01 | | 2.09E-02 | 1.75E-01 | | | TA-182 | 67.75 | | 41.20 | 3.14E+02 | 3.14E+02 | 1.47E+02 | 1.56E+02 | | | | 1121.30 | | 34.90 | 8.43E+02 | | -1.25E+02 | 4.14E+02 | | | | 1189.05 | | 16.23 | 1.31E+03 | | -7.99E+01 | 6.40E+02 | | | | 1221.41 | | 26.98 | 6.53E+02 | | -1.39E+02 | 3.16E+02
7.16E+02 | | | | 1231.02 | | 11.44 | 1.48E+03 | 1 045 04 | 1.58E+02
-1.08E+04 | 7.16E+02
7.43E+03 | | | IR-192 | 308.46 | | 29.68 | 1.50E+04 | 1.24E+04 | -1.73E+02 | 6.14E+03 | | | | 468.07 | | 48.10 | 1.24E+04
1.48E+06 | 1.48E+06 | 3.22E+04 | 7.34E+05 | | | HG-203 | 279.19 | | 77.30
97.72 | 4.08E-01 | 4.08E-01 | -5.57E-02 | 2.01E-01 | | | BI-207 | 569.67
1063.62 | | 74.90 | 9.65E-01 | 4.005-01 | 1.27E-01 | 4.75E-01 | | | TL-208 | 583.14 | * | 30.22 | 1.51E+00 | 4.53E-02 | 9.30E-01 | 7.47E-01 | | + | 11-200 | 860.37 | | 4.48 | 1.39E+01 | 1.004 02 | 1.56E+00 | 6.86E+00 | | | | 2614.66 | * | 35.85 | 4.53E-02 | | 3.18E-01 | 0.00E+00 | | | BI-210M | 262.00 | | 45.00 | 7.12E-01 | 7.12E-01 | -1.74E-01 | 3.52E-01 | | | DI ZIOM | 300.00 | | 23.00 | 1.43E+00 | | 1.17E+00 | 7.06E-01 | | | PB-210 | 46.50 | | 4.25 | 1.28E+01 | 1.28E+01 | -8.04E+01 | 6.36E+00 | | | PB-211 | 404.84 | | 2.90 | 1.32E+01 | 1.32E+01 | 2.78E+00 | 6.53E+00 | | | | 831.96 | | 2.90 | 2.02E+01 | | 6.66E+00 | 9.96E+00 | | | BI-212 | 727.17 | | 11.80 | 4.12E+00 | 4.12E+00 | -3.68E-01 | 2.03E+00 | | | | 1620.62 | | 2.75 | 7.43E+00 | | -2.47E-01 | 3.46E+00 | | + | PB-212 | 238.63 | * | 44.60 | 6.39E-01 | 6.39E-01 | 4.56E-01 | 3.16E-01 | | | | 300.09 | | 3,41 | 9.63E+00 | • | 7.88E+00 | 4.76E+00 | | | BI-214 | 609.31 | | 46.30 | 1.02E+00 | 1.02E+00 | 5.82E-01 | 5.05E-01 | | | | 1120.29 | | 15.10 | 4.24E+00 | | -3.18E-01 | 2.08E+00 | | | | 1764.49 | | 15.80 | 1.39E+00 | | 1.15E+00 | 6.48E-01 | | | | | | | | | | _ | | | Nuclide
Name | Energy | Yield(%) | Line MDA | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----------|-----------------|---------|----------|-------------|----------------------------|-------------------------|---------------------------| | | Name | (keV) | | (pCi/grams) | (pci/granis) | (pc//grains) | (porgrams) | | | BI-214 | 2204.22 | 4.98 | 3.86E+00 | 1.02E+00 | 8.11E-01 | 1.77E+00 | | | PB-214 | 295.21 | 19.19 | 1.69E+00 | 9.51E-01 | -5.76E-01 | 8.35E-01 | | | | 351.92 | 37.19 | 9.51E-01 | | -3.94E-02 | 4.70E-01 | | | RN-219 | 401.80 | 6.50 | 5.80E+00 | 5.80E+00 | -1.49E+00 | 2.87E+00 | | | RA-223 | 323.87 | 3.88 | 8.53Ė+00 | 8.53E+00 | -6.16E+00 | 4.21E+00 | | | RA-224 | 240.98 | 3.95 | 8.28E+00 | 8.28E+00 | 3.18E+00 | 4.10E+00 | | <u>a</u> | RA-225 | 40.00 | 31.00 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | _ | RA-226 | 186.21 | 3.28 | 8.80E+00 | 8.80E+00 | -3.27E+00 | 4.36E+00 | | | TH-227 | 50.10 | 8.40 | 7.06E+00 | 2.86E+00 | 2.70E+01 | 3.51E+00 | | | | 236.00 | 11.50 | 2.86E+00 | | 1.55E+00 | 1.41E+00 | | | | 256.20 | 6.30 | 5.18E+00 | | 1.37E+00 | 2.56E+00 | | | AC-228 | 338.32 | 11.40 | 3.06E+00 | 2.56E+00 | 1.64E+00 | 1.51E+00 | | | | 911.07 | 27.70 | 2.56E+00 | | 1.25E+00 | 1.26E+00 | | | | 969.11 | 16.60 | 4.15E+00 | | -1.02E+00 | 2.04E+00 | | | TH-230 | 48.44 | 16.90 | 3.52E+00 | 3.52E+00 | 1.08E+01 | 1.75E+00 | | | | 62.85 | 4:60 | 5.31E+00 | | -3.88E+00 | 2,63E+00 | | | | 67.67 | 0.37 | 7.48E+01 | | 3.50E+01 | 3.71E+01 | | | PA-231 | 283.67 | 1.60 | 2.04E+01 | 1.42E+01 | 1.91E+01 | 1.01E+01 | | | | 302.67 | 2.30 | 1.42E+01 | | -1.61E+00 | 7.00E+00 | | | TH-231 | 25.64 | 14.70 | 3.67E+01 | 4.11E+00 | 1.14E+03 | 1.83E+01 | | | | 84.21 | 6.40 | 4.11E+00 | | -3.07E-03 | 2.04E+00 | | | PA-233 | 311.98 | 38.60 | 1.78E+11 | 1.78E+11 | 1.40E+11 | 8.81E+10 | | | PA-234 | 131.20 | 20.40 | 1.23E+00 | 1.23E+00 | -2.39E-01 | 6.07E-01 | | | | 733.99 | 8.80 | 5.61E+00 | | -2.16E+00 | 2.76E+00 | | | | 946.00 | 12.00 | 6.30E+00 | | -2.15E+00 | 3.11E+00 | | | PA-234M | 1001.03 | 0.92 | 7.30E+01 | 7.30E+01 | 1.12E+01 | 3.60E+01 | | | TH-234 | 63.29 | 3.80 | 6.40E+00 | 6.40E+00 | -4.68E+00 | 3.17E+00 | | | υ−235 | 143.76 | 10.50 | 2.41E+00 | 2.41E+00 | 1.69E-01 | 1.20E+00 | | | | 163.35 | 4.70 | 5.70E+00 | | -1.34E+00 | 2.82E+00 | | | | 205.31 | 4.70 | 6.39E+00 | | 1.87E+00 | 3.16E+00 | | | NP-237 | 86.50 | 12.60 | 5.53E+00 | 5.53E+00 | 1.84E+02 | 2.75E+00 | | (| | 106.10 | 22.70 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | (| | 228.18 | 10.70 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | (6 | | 277.60 | 14.10 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | + | AM-241 | 59.54 * | 35.90 | 3.02E+00 | 3.02E+00 | 1.88E+02 | 1.51E+00 | | | AM-243 | 74.67 | 66.00 | 3.90E-01 | 3.90E-01 | -1.27E-01 | 1.93E-01 | | | CM-243 | 209.75 | 3.29 | 1.01E+01 | 2.43E+00 | -1.92E+00 | 4.98E+00 | | | | 228.14 | 10.60 | 3.27E+00 | | 2.41E-01 | 1.62E+00 | | | | 277.60 | 14.00 | 2.43E+00 | | 5.54E-01 | 1.20E+00 | ^{+ =} Nuclide identified during the nuclide identification ^{* =} Energy line found in the spectrum > = MDA value not calculated ^{@ =} Half-life too short to be able to
perform the decay correction 4/11/2016 8:04:22AM Page 26 of 26 Analysis Report for 1603102-01 GAS-1302 No Action Level results available for reporting purposes. ## DATA REVIEW COMMENTS REPORT Creation Date Comment User No Data Review Comments Entered. ***************** Sample Title: GAS-1302 Elapsed Live time: Elapsed Real Time: 1800 1826 | Ohammall | 1 | L | | | | | | | |--------------|------------|------------|------------|------------|------------|------------|------------|-------------| | Channel 1: | 0 | 0 | 0 | 0 | 2 ' | 85 | 1194 | 1630 | | 9: | 1504 | 1494 | 2235 | 6765 | 2504 | 1823 | 2190 | 1260 | | 17: | 1767 | 2450 | 1102 | 2004 | 6806 | 69700 | 9280 | 3943 | | 25 : | 21358 | 3868 | 1046 | 676 | 718 | 819 | 1031 | 2378 | | 33: | 1148 | 828 | 802 | 1148 | 1072 | 988 | 1033 | 1159 | | 41: | 1234 | 1448 | 1673 | 1865 | 1957 | 2085 | 2498 | 3338 | | 49: | 4492 | 4942 | 4446 | 4215 | 4291 | 4375 | 4550 | 4893 | | 57 : | 5175 | 5596 | 50420 | 34580 | 1169 | 1162 | 1191 | 1254 | | 65 : | 1382 | 1582 | 1705 | 1703 | 1643 | 1656 | 1561 | 1584 | | 73: | 1598 | 1499 | 1631 | 1557 | 1597 | 1601 | 1496 | 1597 | | 81: | 1585 | 1603 | 1597 | 1775 | 1750 | 1762 | 4939 | 26023 | | 89: | 1784 | 854 | 836 | 843 | 870 | 819 | 803 | 810 | | 97: | 794 | 838 | · 878 | 818 | 802 | 831 | 849 | 827 | | 105: | 799 | 859 | 794 | 861 | 803 | 859 | 846 | 849 | | 113: | 876 | 813 | 809 | 828 | 868 | 868 | 893 | 878 | | 121: | 1414 | 5367 | 978 | 742 | 754 | 797 | 739 | 798 | | 129: | 805 | 725 | 764 | 781 | 774 | 758 | 798
702 | 1203
748 | | 137: | 939 | 729 | 751 | 772 | 747 | 740
708 | 702 | 740
696 | | 145: | 721 | 736 | 711 | . 674 | 687
659 | 708 | 680 | 727 | | 153: | 733 | 673 | 712 | 691
696 | 814 | 987 | 705 | 680 | | 161: | 705 | 657 | 710
673 | 724 | 680 | 682 | 697 | 658 | | 169: | 662
701 | 694
713 | 654 | 678 | 698 | 702 | 717 | 719 | | 177:
185: | 691 | 720 | 697 | 752 | 750 | 750 | 717 | 781 | | 193: | 747 | 751 | 733 | 682 | 726 | 710 | 700 | 625 | | 201: | 670 | 665 | 663 | 757 | 676 | 679 | 676 | 680 | | 209: | 756 | 720 | 712 | 693 | 754 | 789 | 751 | 726 | | 217: | 777 | 796 | 767 | 731 | 730 | 726 | 761 | 710 | | 225: | 732 | 729 | 740 | 727 | 648 | 665 | 676 | 691 | | 233: | 664 | 683 | 704 | 664 | 619 | 780 | 699 | 628 | | 241: | 643 | 690 | 669 | 635 | 610 | 600 | 613 | 630 | | 249: | 610 | 590 | 596 | 561 | 561 | 641 | 617 | 600 | | 257: | 612 | 577 | 618 | 572 | 571 | 578 | 575 | 552 | | 265: | 558 | 508 | 544 | 500 | 558 | 562 | 555 | 545 | | 273: | 551 | 550 | 540 | 501 | 526 | 535 | 511 | 517 | | 281: | 485 | 522 | 524 | 577 | 496 | 518 | 480 | 535 | | 289: | 482 | 500 | 500 | 494 | 508 | 470 | 537 | 479 | | 297: | 469 | 518 | 482 | | | 474 | | | | 305: | 528 | 478 | 462 | | | 510
468 | 502 | 445 | | 313: | 432 | 477 | | | 429
474 | 453 | | | | 321: | 491 | 423 | 454 | | | 451 | | | | 329: | 448 | 495 | 452
454 | | | 404 | | | | 337: | 492 | 465 | 454 | | | | | | | 345: | 426 | 446
446 | 427 | | | | | | | 353 : | 452 | | 473 | • | | | | | | 361: | 404 | 424 | 401 | 421 | 322 | 4.4.2 | 100 | | 801: 193 138 224 197 209 232 231 225 Sample Title: GAS-1302 | | Sample | Title: | GAS-1302 | | | | | | |----------------|------------|------------|------------|------------|------------|----------------|------------|------------| | | | , | , | 1 | | | 1 | 1 | | , | | | | | | 200 | 223 | 236 | | 809: | 221 | 227 | 219 | 202 | 223
221 | 209
229 | 228 | 212 | | 817: | 222 | 230 | 233 | 202 | 230 | 205 | 217 | 226 | | 825: | 228 | 210 | 201 | 221 | 230 | 226 | 206 | 228 | | 833: | 235 | 244 | 241 | 219 | 233
218 | 214 | 244 | 240 | | 841: | 216 | 230 | 214 | 206 | 210 | 238 | 238 | 248 | | 849: | 278 | 200 | 230 | 244 | 249 | 230 | 265 | 222 | | 857: | 252 | 242 | 226 | 247
233 | 229 | 265 | 237 | 222 | | 865: | 258
239 | 273
258 | 224
228 | 237 | 258 | 269 | 244 | 264 | | 873:
881: | 239
276 | 273 | 251 | 233 | 258 | 287 | 268 | 264 | | 889: | 266 | 240 | 249 | 265 | 264 | 283 | 258 | 266 | | 897: | 253 | 334 | 309 | 299 | 272 | 289 | 265 | 257 | | 905: | 310 | 298 | 258 | 302 | 308 | 269 | 302 | 278 | | 913: | 285 | 279 | 276 | 267 | 287 | 293 | 303 | 311 | | 921: | 296 | 306 | 316 | 332 | 296 | 295 | 302 | 304 | | 929: | 288 | 302 | 310 | 294 | 278 | 277 | 329 | 293 | | 937: | 317 | 297 | 284 | 311 | 339 | 262 | 328 | 308 | | 945: | 293 | 320 | 304 | 310 | 297 | 338 | 328 | 319 | | 953: | 324 | 288 | 299 | 321 | 330 | 327 | 316 | 323 | | 961: | 308 | 320 | 301 | 280 | 287 | 253 | 247 | 232 | | 969: | 293 | 216 | 237 | 238 | 226 | 232 | 249 | 233 | | 977: | 227 | | - 253 | 206 | 226 | 247 | 223 | 219 | | 985: | 214 | 220 | 220 | 244 | 242 | 220 | 224 | 234 | | 993: | 227 | 235 | 225 | 225 | 208 | 205 | 223 | 223 | | 1001: | 237 | 212 | 201 | 247 | 216 | 219 | 220 | 221 | | 1009: | 212 | 245 | 215 | 237 | 220 | 226 | 203 | 211
221 | | 1017: | 223 | 240 | 244 | 234 | 198 | 222
224 | 213
227 | 200 | | 1025: | 203 | 205 | 199
222 | 204
215 | 222
193 | 213 | 216 | 203 | | 1033: | 219
205 | 226
181 | 222
188 | 235 | 179 | 196 | 210 | 202 | | 1041:
1049: | 203 | 224 | 212 | 190 | 202 | 221 | 212 | 194 | | 1049: | 199 | 185 | 197 | 189 | 202 | 191 | 213 | 190 | | 1065: | 235 | 226 | 220 | 206 | 228 | 198 | 211 | 207 | | 1003: | 171 | 203 | 204 | 182 | 177 | 200 | 196 | 214 | | 1081: | 190 | 230 | 214 | 197 | | 212 | 220 | 228 | | 1089: | 214 | 205 | 189 | 213 | 189 | 207 | 211 | 227 | | 1097: | 207 | 215 | 215 | 202 | 224 | 208 | 204 | 222 | | 1105: | 205 | 195 | 208 | 201 | 220 | 192 | 178 | 243 | | 1113: | 211 | 221 | 191 | 200 | 195 | 173 | 164 | 147 | | 1121: | 169 | 182 | 134 | 156 | 142 | 138 | 141 | 129 | | 1129: | 123 | 135 | 141 | 130 | 141 | 142 | 120 | 121 | | 1137: | 124 | 131 | 132 | 134 | 121 | 114 | 130 | 128 | | 1145: | 136 | 107 | 127 | 129 | 115 | 121 | 124 | 114 | | 1153: | 103 | 119 | 124 | 139 | 123 | 110 | 119 | 119 | | 1161: | 137 | | | 126 | 109 | 103 | 117 | 97 | | 1169: | 129 | 121 | 255 | 2355 | | 8974 | 1424 | 114 | | 1177: | 86 | 78 | 87 | 85 | 100 | 81 | 86 | 77 | | 1185: | 93 | 74 | 88 | 71 | 80 | 81 | 65 | 70 | | 1193: | 72 | 69 | | 92 | 87 | 68
5.0 | 68
64 | 68
63 | | 1201: | 69 | 51 | 64 | 52 | 59 | 59
51 | 54
56 | 55 | | 1209: | 56 | 62
5.5 | 44
52 | 62
53 | 49
48 | 5±
49 | 38 | 47 | | 1217: | 49
60 | 55
43 | 53
62 | 40 | 48
48 | 49 | 30
41 | 51 | | 1225: | 60 | 43 | 02 | 40 | 40 | 4 T | 4 7 | ЭI | | Chamal | Data Para | nt | ,; | /11/2016 | ር ይ+በ// | :28 AM | | Page | 4 | |-------------------|-------------|----------|------------------|----------|----------|--------------|----------|---------------------------------|---| | Channer | Data Repo | | | | | | | | 1 | | 1233: | 40 | 51 | 36 | 36 | 34 | 47 | 44 | 35 | | | | Sample T | itle: | GAS-1302 | | | • | | • | | | Channall | 1 | 1 | | | | | | | | | Channel
1241: | 33 | 26 | 45 | 33 | 42 | 26 | 23 ່ | 32 ່ | | | 1249: | 33 | 24 | 28 | 36 | 30 | 30 | 34 | 37 | | | 1257: | 28 | 27 | 38 | 35 | 28 | 25 | 34 | 27 | | | 1265:
1273: | 32
30 | 33
32 | 26
34 | 32
28 | 29
21 | 31
26 | 29
31 | 25
23 | | | 1273: | 21 | 32
37 | 29 | 26 | 24 | 31 | 28 | 25 | | | 1289: | 24 | 25 | 25 | 28 | 32 | 19 | 26 | 20 | | | 1297: | 30 | 25 | 27 | 31 | 22 | 31 | 25 | 28 | | | 1305: | 24 | 28 | 31 | 23
38 | 36
40 | . 27
29 | 41
34 | 29
28 | | | 1313:
1321: | 24
37 | 27
34 | 20
36 | 30
37 | 30 | 34 | 33 | 44 | | | 1329: | 28 | 91 | 1079 | 7012 | 10026 | 2945 | 206 | 23 | | | 1337: | 21 | 12 | 17 | 14 | 21 | 9 | 13 | 13 | | | 1345: | 15 | 13 | 15 | 10 | 3 | 16 | 8
10 | 14
8 | | | 1353:
1361: | 16
8 | 13
11 | 14
7 | 11
15 | 22
14 | 12
9 | 13 | 13 | | | 1369: | 11 | 22 | 10 | 16 | 12 | 9 | 7 | 11 | | | 1377: | 8 | 16 | 12 | 11 | 16 | 9 | 14 | 10 | | | 1385: | 15 | 18 | 10 | 11 | 10 | 12 | 11
15 | 16 | | | 1393:
1401: | 16
12 | 14
11 | 15
8 | 14
8 | 9
11 | 12
12 | 15
10 | 9
12 | | | 1401: | 17 | 10 | 8 | 10 | 10 | 9 | 5 | 17 | | | 1417: | 8 | 17 | 9 | 5 | 12 | 12 | 9 | 7 | | | 1425: | 4 | 15 | 10 | 4 | 12 | 9 | 7 | 18
8 | | | 1433:
1441: | 11
9 | 10
17 | 8
15 | 6
9 | 8
10 | 10
10 | 1.0
9 | 10 | | | 1449: | 12 | 11 | 10 | 13 | 11 | 3 | 12 | 12 | - | | 1457: | 8 | 5 | 13 | 13 | 15 | 13 | 8 | 14 | | | 1465: | 13 | 9 | 15
7 | 10 | 4 | 7
6 | 13
13 | 6
10 | | | 1473:
1481: | 17
8 | 10
12 | 10 | 13
8 | 5
4 | 10 | 12 | 10
13 | | | 1489: | 11 | 5 | 6 | 8
15 | 10 | 10
9
8 | 8 | - 7 | | | 1497: | 10 | 15 | 5 | 15 | 11 | 8 | 11 | 4 | | | 1505: | 5 | 7
12 | 4
7 | 8
13 | 13
4 | 15
6 | 6
7 | 11
11 | | | 1513:
1521: | 8
13 | 10 | | 13
7 | 2 | 5 | 9 | 14 | | | 1529: | 7 | 9 | 9
9
9
7 | 8
7 | 9
8 | 7 | 10 | 3 | | | 1537: | 9 | 4 | 9 | 7 | 8 | 5 | 8 | 10 | | | 1545: | 10
9 | 10
8 | 7
8 | 6
12 | 11
6 | 8
4 | 8
5 | 11
8 | | | 1553:
1561: | 10 | 3 | 7 | 6 | 4 | 7 | 10 | 13 | | | 1569: | 9 | 6 | 10 | 5
11 | 10 | 1 | 13 | 3 | | | 1577 : | 9 | 11 | 8 | 11 | 8 | 9 | 11 | 3
8
7
5
4
6
8 | | | 1585: | 9
8 | 11
11 | 7
7 | 5
8 | 12
8 | 16
8 | 6
6 | · / | | | 1593:
1601: | 8 | 9 | 8 | 10 | 10 | 10 | 8 | 4 | | | 1609: | 6 | 4 | 5 | 12 | 6 | 5 | 12 | 6 | | | 1617: | 6
3
7 | 9
5 | 11 | 4 | 10 | 8 | 4 | | | | 1625:
1633: | 7
7 | 5
8 | 6
7 | 4 6 | 4
12 | 7
5 | 8
4 | 14
6 | | | 1633:
1641: | ,
5 | 8
8 | 7 | 4 | 4 | 5
5
5 | 10 | 6
3
8 | | | 1649: | 5
6 | 4 | 8 | 8 | 6 | 5 | 6 | | | | 1657: | 6 | 6 | 4 | 8 | 7 | 11 | 9 | 4 | | 4/11/2016 8:04:28 AM Page Channel Data Report 12 7 19 1665: Sample Title: GAS-1302 3 8 9 9 7 5 8 10 7 5 1673: 3 4 .5 5 1681: 1689: 1697: 1705: . 3 1713: 1721: 1729: 6 1737: 1745: 1753: 4 1761: - 4 1769: 8 7 4 5 8 4 5 5 1777: 1785: 1793: 7
1801: 1809: 1817: 1825: 5 2 5 3 4 6 6 10 26 8 7 1833: 1841: 1849: 6 1857: 1865: 7 1873: 1881: 9 3 5 2 4 3 3 5 7 1889: 5 3 1897: 1905: 1913: 1921: 4 1929: 1937: 2 2 5 5 6 5 1945: 1953: 1961: 1969: 1977: 3 1985: 1993: 2001: 5 8 2009: 2017: 6 4 10 2 2025: 2033: 2041: 2049: 2057: 2065: 2073: 2081: 2089: 7 | Channel | Data Repor | :t | • | 4/11/2016 | 8:04: | 28 AM | | Page | 6 | |--|--|---|--|-----------|--|---|---|--|---| | 2097: | 2 | 4 | 3 | 4 | 9 | 6 | 4 | 7 | | | | Sample Ti | .tle: | GAS-130 | 2 | | | | | | | Chanel 1 21129: :::::::::::::::::::::::::::::: | 33632155352361624132747336116241011001001103000021610
410 | 06135540435645546386325420430412520202151010111022300 | 434303443446407525444386432122024113200111120200210211 | | -43302564387573775568466441301031002002312110010020101 | 75462362521565823335464901121331133212012020020120000 | 8278533451930544455557444334221233101112210011101102000 | 03313832243383237735922162411731501120021011021001 | | | Channel | Data Repo | rt | | 4/11/2016 | 8:04: | 28 AM | | Page | |---|-----------|--------------------------------------|---------|--|---|---|--------------------------------------|---| | 2529: | 0 | 0 | 0 | 1 | 0 | O | 1 | 1. | | | Sample T | itle: | GAS-130 | 2 | | | | | | Chasses:::::::::::::::::::::::::::::::::: | | 000000000000000000000000000000000000 | | 0010000030000000100031010000000100100100 | 000010000110000200000100000010000010001 | 000000051100001000000000000000000000000 | 010000004000010000000000000000000000 | 010100003000000010000001000000000000000 | | 2961: 0 0 1 1 0 0 1 0 Sample Title: GAS-1302 Channel | 0 | |--|---| | Channel | 0
0
0
0
0
1
0
0 | | 2969: 0 0 1 0 <td>0
0
0
0
0
1
0
0</td> | 0
0
0
0
0
1
0
0 | | 3065: 0 <td>000100000000000000000000000000000000000</td> | 000100000000000000000000000000000000000 | | Channel | Data Rep | ort | 4 | /11/2016 | 8:04: | 28 AM | | Page | |--|----------|--------|---|---|---|---|---|---| | 3393: | 0 | O | 0 | 0 | O | 0 | 0 | 0 | | | Sample ' | Title: | GAS-1302 | | | | | | | Change 1 34017:::::::::::::::::::::::::::::::::::: | | | 000000001001000000001100000000000000000 | 010000000000000000000000000000000000000 | 000000110000011000000000000000000000000 | 000000000000000000000000000000000000000 | 101000000000000000000000000000000000000 | 000000010000010000000000000000000000000 | | Channel | Data Rep | ort | 4/ | 11/2016 | 8:04: | 28 AM | | Page 10 | |----------------|----------|--------|----------|---------|--------|--------|--------|---------| | 3825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Sample | Title: | GAS-1302 | | | - | | | | Channel | - | | | | | | | | | 3833: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3841: | 0 | Ō | O | 0 | 0 | 0 | 0 | 0 | | 3849: | 0 | Ō | 0 | 0 | 0 | 1 | 0 | 0 | | 3857: | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | | 3865: | 0 | 0 | 1 | 0 | 0
0 | 0
0 | 0
0 | 0
0 | | 3873: | 0 | 0 | 1
0 | 0
0 | 0 | Ü | 0 | 0 | | 3881:
3889: | 0
0 | 0
0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3897: | 0 | 0 | 0 | 0 | 1 | Ö | Ő | ő | | 3905: | 0 | 0 | ŏ | ő | Ō | Ö | Ŏ | Ö | | 3913: | ŏ | Õ | Ŏ | Ö | Ŏ | Ö | 0 | Ö | | 3921: | Ŏ | Ö | 1 | Ō | 0 | 0 | 0 | 0 | | 3929: | 0 | Ó | 1 | Ö | 0 | 0 | . 0 | 0 | | 3937: | 0 | Ô | 0 | 0 | 0 | 0 | 0 | 0 | | 3945: | 0 | 0 | 0 . | 0 | 0 | 0 | 0 | 0 | | 3953 : | 0 | 1. | 0 | 0 | 0 | 0 | 0 | 1 | | 3961: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3969: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3977: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0 | | 3985: | 0 | 0 | 0 | 0
0 | 0
0 | 0
0 | 0
0 | 0 | | 3993:
4001: | 0
0 | 0
0 | 0
0 | 0 | 0 | 0 | 0 | 0 | | 4001: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 4009. | 0 | 0 | 0 | Ö | Õ | ő | Ö | 0 | | 4025: | ŏ | Ö | ŏ | Ö | Ŏ | Ö | Õ | Ō | | 4033: | Ŏ | Ö | . 0 | Õ | Ō | 0 | 0 | 0 | | 4041: | Ō | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 4049: | 0 | 0 | 0 | 0 | 0 | 0 | 0- | 1 | | 4057: | 0 | 0 | 0 | 1 | 0 | C | Ó | 0 | | 4065: | 0 | 0 | 0 | Ü | 0 | 0 | 0 | 0 | | 4073: | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 4081: | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 4089: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | 0000035517.CNF Page 1 of 22 Analysis Report for 1603102-02 **BLANK** #### GAMMA SPECTRUM ANALYSIS Sample Identification Sample Description Sample Type Sample Size Facility Sample Taken On Acquisition Started Procedure Operator **Detector Name** Geometry Live Time Real Time **Dead Time** Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance Energy Calibration Used Done On Efficiency Calibration Used Done On **Efficiency Calibration Description** Sample Number : 1603102-02 : BLANK . : SOIL : 7.834E+02 grams : Countroom : 4/13/2016 7:11:17AM : 4/13/2016 1:15:30PM : GAS-1402 pCi : Administrator : GE3 : GAS-1402 : 3600.0 seconds ; 3611.9 seconds : 0.33 % : 2.50 : 1 - 4096 : 9 - 4096 : 1.000 keV : 10/25/2014 : 10/25/2014 : 35733 #### PEAK-TO-TOTAL CALIBRATION REPORT Peak-to-Total Efficiency Calibration Equation **BLANK** ## PEAK LOCATE REPORT Peak Locate Performed on : 4/13/2016 2:15:43PM Peak Locate From Channel : 1 Peak Locate To Channel : 4096 Peak Search Sensitivity : 2.50 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | . 1 | 77.05 | 77.26 | 0.0000 | 0.00 | | 2 | 142.85 | 143.03 | 0.0000 | . 0.00 | | 3 | 367.53 | 367.59 | 0.0000 | 0.00 | | 4 | 530.01 | 530.00 | 0.000 | 0.00 | | 5 | 591.66 | 591.61 | 0.0000 | 0.00 | | 6 | 848.30 | 848.14 | 0.0000 | 0.00 | | 7 | 941.80 | 941.59 | 0.0000 | 0.00 | | 8 | 968.83 | 968.61 | 0.000 | 0.00 | | 9 | 984.95 | 984.72 | 0.0000 | 0.00 | | 10 | 1059.94 | 1069.67 | 0.0000 | 0.00 | | 11 | 1173.16 | 1172.86 | 0.0000 | 0.00 | | 12 | 1193.39 | 1193.08 | 0.0000 | 0.00 | | 13 | 1439.16 | 1438.75 | 0.0000 | 0.00 | | 14 | 1764.96 | 1764,43 | 0.0000 | 0.00 | ^{? =} Adjacent peak noted Errors quoted at 2.000sigma **BLANK** ### PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 2:15:43PM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | Peak
No. | Energy
(keV) | ROI ROI
start end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |-------------|-----------------|----------------------|------------------|------------------|-------------------------|---------------------|---------------| | 1 | 77.05 | 74 - 81 | 77.26 | 3.73E+01 | 37.68 | 2.11E+02 | 2.88 | | 2 | 142.85 | 139 - 146 | 143.03 | 3.70E+01 | 28.43 | 1.06E+02 | 2.19 | | 3 | 367.53 | 363 - 373 | 367.59 | 2.99E+01 | 19.22 | 3.43E+01 | 8.46 | | 4 | 530.01 | 527 - 533 | 530.00 | 1.08E+01 | 11.00 | 1.44E+01 | 3.73 | | 5 | 591.66 | 588 - 595 | 591.61 | 1.10E+01 | 13.71 | 2.40E+01 | 3.53 | | 6 | 848.30 | 844 - 851 | 848.14 | 1.00E+01 | 9.38 | 8.00E+00 | 1.24 | | 7 | 941.80 | 939 - 944 | 941.59 | 8.31E+00 | 8.89 | 9.38E+00 | 3.77 | | 8 | 968.83 | 964 - 972 | 968.61 | 1.05E+01 | 10.02 | 9.00E+00 | 1.60 | | 9 | 984.95 | 980 - 983 | 984.72 | 8.69E+00 | 9.62 | 8.62E+00 | 3.65 | | 10 | 1069.94 | 1067 - 1071 | 1069.67 | 6.78E+00 | 6.96 | 4.44E+00 | 1.20 | | 11 | 1173.16 | 1169 - 1175 | 1172.86 | 1.61E+01 | 9.18 | 3.72E+00 | 2.84 | | 12 | 1193.39 | 1190 - 1196 | 1193.08 | 7.56E+00 | 6.95 | 2.89E+00 | 2.68 | | 13 | 1439.16 | 1435 - 1441 | 1438.75 | 4.42E+00 | 6.02 | 3.17E+00 | 2.56 | | 14 | 1764.96 | 1761 - 1767 | 1764.43 | 7.00E+00 | 5.29 | 0.00E+00 |
1.98 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 2:15:43PM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | Peak | Energy | ROI | ROI | Net Peak | Net Area | Continuum | Critical | |------|--------|-------|-----|----------|-------------|-----------|----------| | No. | (keV) | start | end | Area | Uncertainty | Counts | Level | | 1 | 77.05 | 74 - | 31 | 3.73E+01 | 37.68 | 2.11E+02 | 2.93E+01 | **BLANK** | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |-------------|-----------------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | 2 | 142.85 | 139 - | 146 | 3.70E+01 | 28.43 | 1.06E+02 | 2.11E+01 | | 3 | 367.53 | 363 - | 373 | 2.99E∻01 | 19.22 | 3.43E+01 | 1.30E+01 | | 4 | 530.01 | 527 - | 533 | 1.08E+01 | 11.00 | 1.44E+01 | 7.25E+00 | | 5 | 591.66 | 588 - | 595 | 1.10E+01 | 13.71 | 2.40E+01 | 9.86E+00 | | 6 | 848.30 | 844 - | 851 | 1.00E+01 | 9.38 | 8.00E+00 | 5.70E+00 | | 7 | 941.80 | 939 – | 944 | 8.31E+00 | 8.89 | 9.38E+00 | 5.56E+00 | | 8 | 968.83 | 964 - | 972 | 1.05E+01 | 10.02 | 9.00E+00 | 6.29E+00 | | 9 | 984.95 | 980 - | 988 | 8.69E+00 | 9.€2 | 8.62E+00 | 6.25E+00 | | 10 | 1069.94 | 1067 - | 1071 | 6.78E+00 | 6.96 | 4.44E+00 | 3.80E+00 | | 11 | 1173.16 | 1169 - | 1175 | 1.61E+01 | 9.18 | 3.72E+00 | 3.65E+00 | | 12 | 1193.39 | 1190 - | 1196 | 7.56E+00 | 6.95 | 2.89E+00 | 3.49E+00 | | 13 | 1439.16 | 1435 - | 1441 | 4.42E+00 | 6.02 | 3.17E+00 | 3.54E+00 | | 14 | 1764.96 | 1761 - | 1767 | 7.00E+00 | 5.29 | 0.00E+00 | 0.00E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK WITH NID REPORT Peak Analysis Performed on : 4/13/2016 2:15:43PM Peak Analysis From Channel Peak Analysis To Channel : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRcot\Countroom\Library\TMA2.NLB Peak Match Tolerance : 1.000 keV | Peak
No. | Energy
(keV) | ROI
start | RO!
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|----------------------| | 1 | 77.05 | 74 - | 81 | 77.26 | 3.73E+01 | 37.68 | 2.11E+02 | | | 2 | 142.85 | 139 - | 146 | 143.03 | 3.70E+01 | 28.43 | 1.06E+02 | U-235 | | 3 | 367.53 | 363 - | 373 | 367.59 | 2.99E+01 | 19.22 | 3.43E+01 | | | 4 | 530.01 | 527 – | 533 | 530.00 | 1.08E+01 | 11.00 | 1.44E+01 | I-133 | | | | | | | | | | RB-83 | | 5 | 591.66 | 588 - | 595 | 591.61 | 1.10E+01 | 13.71 | 2.40E+01 | | | 6 | 848.30 | 844 - | 851 | 848.14 | 1.00E+01 | 9.38 | 8.00E+00 | | | 7 | 941.80 | 939 - | 944 | 941.59 | 8.31E+00 | 8.89 | 9.38E+00 | | | 8 | 968.83 | 964 - | 972 | 968.61 | 1.05E+01 | 10.02 | 9.00E+00 | AC-228 | | 9 | 984.95 | 980 - | 988 | 984.72 | 8.69E+00 | 9.62 | 8.62E+00 | | | 10 | 1069.94 | 1067 - | 1071 | 1069.67 | 6.78E+00 | 6.96 | 4.44E+00 | | | 11 | 1173.16 | 1169 - | 1175 | 1172.86 | 1.61E+01 | 9.18 | 3.72E+00 | CO-60 | 1603102-02 **BLANK** | Peak | Energy | ROi | ROI | Peak | Net Peak | Net Area | Continuum | Tentative | |----------------|-------------------------------|----------------------------|------|-------------------------------|----------------------------------|----------------------|----------------------------------|-----------| | No. | (keV) | start | end | Centroid | Area | Uncertainty | Counts | Nuclide | | 12
13
14 | 1193.39
1439.16
1764.96 | 1190 -
1435 -
1761 - | 1441 | 1193.08
1438.75
1764.43 | 7.56E+00
4.42E+00
7.00E+00 | 6.95
6.02
5.29 | 2.89E+00
3.17E+00
0.00E+00 | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ## PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/13/2016 2:15:43PM | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |-------------|-----------------|------------------|-------------------------|--------------------|---------------------------| | 1 | 77.05 | 3.73E+01 | 37.68 | 2.398-02 | 2.16E-03 | | 2 | 142.85 | 3.70E+01 | 28.43 | 2.15E-02 | 1.63E-03 | | 3 | 367.53 | 2.99E+01 | 19.22 | 1.07E-02 | 8.72E-04 | | 4 | 530.01 | 1.08E+01 | 11.00 | 7.76E-03 | 6.99E-04 | | 5 | 591.66 | 1.10E+01 | 13.71 | 7.05E-03 | 6.38E-04 | | 6 | 848.30 | 1.00E+01 | 9.38 | 5.16E-03 | 4.15E-04 | | 7 | 941.80 | 3.31E+00 | 8.89 | 4.72E-03 | 3.67E-04 | | 8 | 968.83 | 1.05E+01 | 10.02 | 4.61E-03 | 3.61E-04 | | 9 | 984.95 | 8,69E+00 | 9.62 | 4.548-03 | 3.58E-04 | | 10 | 1069.94 | 6.78E+00 | 6.96 | 4.24E-03 | 3.43E-04 | | 11 | 1173.16 | 1.61E+01 | 9.18 | 3.92E-03 | 3.23E-04 | | 12 | 1193.39 | 7.56E+00 | 6.95 | 3.87E-03 | 3.19E-04 | | 13 | 1439.16 | 4.42E+00 | 6.02 | 3.33E-03 | 2.73E-04 | | 14 | 1764.96 | 7.00E+00 | 5.29 | 2.86E-03 | 2.24E-04 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma 1603102-02 **BLANK** # BACKGROUND SUBTRACT REPORT Peak Analysis Performed on : 4/13/2016 2:15:43PM Env. Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|--------------------|-----------------------| | 1 | 77.05 | 3.73E+01 | 37.68 | | | 3.73E+01 | 3.77E+01 | | 2 | 142.85 | 3.70E+01 | 28.43 | | | 3.70E+01 | 2.84E+01 | | 3 | 367.53 | 2.99E+01 | 19.22 | | | 2.99E+01 | 1.92E+01 | | 4 | 530.01 | 1.08E+01 | 11.00 | | | 1.08E+01 | 1.10E+01 | | 5 | | 1.10E+01 | 13.71 | | | 1.10E+01 | 1.37E+01 | | 6 | 848.30 | 1.00E+01 | 9.38 | | | 1.00E+01 | 9.38E+00 | | 7 | 941.80 | 8.31E+00 | 8.89 | | | 8.31E+00 | 8.89E+00 | | 8 | 968.83 | 1.05E+01 | 10.02 | | | 1.05年+01 | 1.00E+01 | | 9 | 984.95 | 8.69E+00 | 9.62 | | | 8.69E+00 | 9.62E+00 | | 10 | 1069.94 | 6.78E+00 | 6.96 | • | | 6.78E+00 | 6.96E+00 | | 11 | 1173.16 | 1.61E+01 | 9.18 | | | 1.61E+01 | 9.18E+00 | | 12 | 1193.39 | 7.56E+00 | 6.95 | | | 7.56E+00 | 6.95E+00 | | 13 | 1439.16 | 4.42E+00 | 6.02 | | | 4.4CE+00 | 6.02E+00 | | 14 | 1764.96 | 7.00E+00 | 5.29 | | * | 7.00E+00 | 5.29E+00 | M = First peak in a multiplet region m = Other peak in a multiplat region F = Fitted singlet Errors quoted at 2.000sigma # AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis Performed on : 4/13/2016 2:15:43PM Ref. Peak Energy : 0.00 Reference Date Peak Ratio : 0.00 Background File : 0.00 Uncertainty : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Corrected Area is: Original * Peak Ratio - Background | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | 1 | 77.05 | 3,73E+01 | 37.63 | | | 3.73E+01 | 3.77E+01 | | $\bar{2}$ | 142.85 | 3.70E+01 | 28.43 | | | 3.70E+01 | 2.84E+01 | | 3 | 367.53 | 2.99E+01 | 19.22 | | | 2.99E+01 | 1.92E+01 | | 4 | 530.01 | 1.08E+01 | 11.00 | | | 1.08E+01 | 1.10E+01 | t for 1603102-02 **BLANK** | Peak
No. | <i>"</i> 10 | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-------------|-------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | 5 | 591.66 | L.10E+01 | 13.71 | , | • | 1.10E+01 | 1.37E+01 | | 6 | 848.30 | 1.00E+01 | 9.38 | • • | | 1.00E+01 | 9.38E+00 | | 7 | • | 8.31E+09 | 8.89 | | | 8.31E+00 | 8.89E+00 | | . 8 | | 1.65H+01 | 10.02 | 4 | • | 1.05E+01 | 1.00E+01 | | 9 | | 8.69E+00 | 9,62 | | | 8.69E+00 | 9.62E+00 | | 10 | | 6.78E+00 | 6.96 | | | 6.78E+00 | 6.96E+00 | | | 1173.16 | 1.61E+01 | 9.18 | | | 1.61E+01 | 9.18E+00 | | | 1193.39 | 7.56E+00 | 6.95 | | | 7.56E+00 | 6.95E+00 | | | 1439.16 | 4.42E+00 | 6.02 | • | | 4.42E+00 | 6.02E+00 | | | 1764.96 | 7.00E+00 | 5.29 | ٠ | e P | 7.00E+00 | 5.29E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma #### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide Name | ld Confidence | Energy (keV) | • | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|---|----------|-------------------------|-------------------------| | I-133 | 0.996 | 529.87 | * | 86.30 | 1.92E-02 | 1.97E-02 | - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma #### **UNIDENTIFIED PEAKS** Peak Locate Performed on : 4/13/2016 2:15:43PM Peak Locate From Channel : 1 Peak Locate To Channel : 4096 1603102-02 **BLANK** | Peak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----------|--------------|-----------------|-----------------------------|--------------|----------------------|--| | 1· | 77.05 | 1.03584E-02 | 50.53 | | | | | 2 | 142.85 | 1.02778E-02 | 38.41 | Tol. | U-235 | | | 3 | 367.53 | 8.29196E-03 | 32.20 | | | | | 5 | 591.66 | 3.05556E-03 | 62.32 | | | | | 6 | 848.30 | 2.77778E-03 | 46.90 | | | | | 7 | 941.80 | 2.30769E-03 | 53.49 | |
| | | 8 | 968.83 | 2.91667E-03 | 47.74 | Tol. | AC-228 | | | 9 | 984.95 | 2.41453E-03 | 55.32 | | | | | 10 | 1069.94 | 1.88272E-03 | 51.38 | - | | | | 11 | 1173.16 | 4.48302E-03 | 28.44 | Tol. | CO-60 | | | 12 | 1193.39 | 2.09877E-03 | 45.97 | | | | | 13 | 1439.16 | 1.22685E-03 | 68.16 | | | | | 14 | 1764.96 | 1.94444E-03 | 37.80 | Tol. | BI-214 | | M = First peak in a multiplet region m = Other peak in a multiple! region F = Fitted singlet Errors quoted at 2.000sigma #### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Libra:y\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide
Name | ld
Confidence | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | | |-----------------|------------------|-----------------|---|----------|-------------------------|-------------------------|--| | I-133 | 0.99 | 529.87 | * | 86.30 | 1.92E-02 | 1.97E-02 | | - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. - @ = Energy line not used for Weighted Mean Activity Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma 1603102-62 **BLANK** # INTERFERENCE CORRECTED REPORT | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Activity | | | |-----------------|-----------------------------|------------------------------------|----------|--|--| |
I-133 | 0.996 | 1.92E-02 | 1.97E-02 | | | ^{? =} nuclide is part of an undetermined solution Errors quoted at 2.000sigma X = nuclide rejected by the interference analysis ^{@ =} nuclide contains energy lines not used in Weighted Mean Activity **BLANK** #### **UNIDENTIFIED PEAKS** Peak Locate Performed on : 4/13/2016 2:15:43PM Peak Locate From Channel : 4096 : 1 Peak Locate To Channel | Peak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | |----------|--------------|-----------------|-----------------------------|--------------|----------------------| | 1 | 77.05 | 1.03584E-02 | 50.53 | | | | 2 | 142.85 | 1.02778E-02 | 38.41 | Tol. | Ŭ−235 | | 3 | 367.53 | 8 29196E-03 | 32.20 | | | | 5 | 591.66 | 3.05556E-03 | 62.32 | | | | 6 | 848.30 | 2.77778E-03 | 46.90 | | | | 7 | 941.80 | 2.30769E-03 | 53.49 | | | | 8 | 968.83 | 2.91667E-03 | 47.74 | Tol. | AC-228 | | 9 | 984.95 | 2.41453E-03 | 55.32 | | | | 10 | 1069.94 | 1.88272E-03 | 51.38 | | | | 11 | 1173.16 | 4.48302E-03 | 28.44 | Tol. | CO-60 | | 12 | 1193.39 | 2.09877E-03 | 45.97 | | | | 13 | 1439.16 | 1.22685E-03 | 68.16 | | | | 14 | 1764.96 | 1.94444E-03 | 37.80 | Tol. | BI-214 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # NUCLIDE MDA REPORT : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Nuclide Library Used | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | |--------|-----------------|-------------------------------|-------------------------|-----------------------------------|----------------------------|----------------------------------| | + | BE-7 | 477.59 | 10.42 | -7.20E-02 | 2.55E-01 | 2,55E-01 | | +
+ | NA-22
NA-24 | 1274.54
1368.53
2754.09 | 99.94
99.99
99.86 | -3.49E-03
2.25E-02
3.97E-C3 | 3.69E-02
5.28E-02 | 3.69E-02
5.28E-02
3.53E-02 | Analysis Report for 1603102-02 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |--------|-----------------|-------------------|--|-------------------------|----------------------------|-------------------------|---| | | | | ······································ | | | | | | + | AL-26 | 1808.65 | 99.76 | -1.37E-02 | 3.18E-02 | 3.18E-02 | | | + | K-40 | 1460.81 | 10.67 | -3.82E-01 | 3.28E-01 | 3.28E-01 | | | + | AR-41 | 1293.64 | 99.16 | 1.23E-01 | 4.52E-01 | 4.52E-01 | | | + | TI-44 | 67.88 | 94.40 | -1.39E-02 | 1.90E-02 | 1.90E-02 | | | | | 78.34 | 96.00 | 5.16E-03 | | 1.93E-02 | | | + | SC-46 | 889.25 | 99.98 | 2.00E-02 | 2.83E-02 | 3.65E-02 | | | | | 1120.51 | 99.99 | 1.18E-03 | | 2.83E-02 | | | + | V-48 | 983.52 | 99.98 | 8.53E-03 | 3.33E-02 | 3.87E-02 | | | | | 1312.10 | 97,50 | -1.39E-03 | | 3.33E-02 | | | + | CR-51 | 320.08 | 9.183 | 5.08E-02 | 2.51E-01 | 2.51E-01 | | | + | MN-54 | 834.83 | 99.97 | -4.59E-03 | 3.19E-02 | 3.19E-02 | | | + | CO-56 | 846.75 | 99.96 | 1.58E-02 | 3.74E-02 | 3.74E-02 | | | | | 1037.75 | 14.03 | 4.30E-03 | | 2.86E-01 | | | | | 1238.25 | 67.00 | 9.55E-03 | • | 5.01E-02
1.60E-01 | | | | | 1771.40 | 15.51
16.90 | -1.38±-01
8.43E-03 | | 1.86E-01 | | | + | CO-57 | 2598.48
122.06 | 85.51 | 1.10E-02 | 2.08E-02 | 2.08E-02 | | | , | CO-37 | 136.48 | 10.60 | 1.51E-02 | 2.002 ,2 | 1.55E-01 | | | + | CO-58 | 810.76 | 99.40 | 3.22E-03 | 2.71E-02 | 2.71E-02 | | | + | FE-59 | 1099.22 | 56.50 | 8.23E-04 | 5.39E-02 | 5.39E-02 | * | | • | 111 33 | 1291.56 | 43.20 | 3.07E-03 | 0,002 00 | 7.37E-02 | | | + | CO-60 | 1173.22 | 100.00 | 4.06E-02 | 5.48E-02 | 5.48E-02 | | | • | 00 00 | 1332.49 | 100.00 | 2.84E-02 | | 5.61E-02 | | | + | ZN-65 | 1115.52 | 50.75 | -8.31E-03 | 6.06E-02 | 6.06E-02 | | | + | GA-67 | 93.31 | 35.70 | 1.14E-01 | 7.00E-02 | 7.00E-02 | | | | | 208.95 | .2.24 | -7.65E-01 | | 9.23E-01 | | | | | 300.22 | 16.00 | -3.06E-02 | | 1.61E-01 | | | + | SE-75 | 121.11 | 16.70 | 3.31E-02 | 2.81E-02 | 1.04E-01 | | | | • | 136.00 | 59.20 | 5.74E-03 | | 2.81E-02 | | | • | 100 miles | 264.65 | 59.80 | 1.03E-02 | | 3.84E-02 | | | | • | 279.53 | 25.20 | 2.70E-02 | | 8.81E-02
2.29E-01 | | | 1 | חמ ממ | 400.65
776.52 | 11.40
13.00 | 8.98E-03
-3.94E-02 | 2.42E-01 | 2.29E-01
2.42E-01 | | | + | RB-82 | | 46.00 | -1.72E-02 | 5.94E-02 | 5.94E-02 | | | + | RB-83 | 520.41 | 30.30 | 2.95E-03 | J.94E-02 | 9.16E-02 | | | | • | 529.64
552.65 | 16.40 | -5.09E-02 | | 1.52E-01 | | | + | KR-85 | 513.99 | 0.43 | 9.495+00 | 1.07E+01 | 1.07E+01 | | | + | SR-85 | 513.99 | 99.27 | 4.16E-02 | 4.71E-02 | 4.71E-02 | | | +
+ | Y-88 | 898.02 | 93.40 | 1.03E-02 | 3.64E-02 | 3.64E-02 | | | 1 | 1 00 | 1836.01 | 99.38 | 2.32E-04 | 0,012 02 | 4.56E-02 | | | + | NB-93M | 16.57 | 9.43 | 2.31E+01 | 3.61E+01 | 3-61E+01 | | | + | NB-94 | 702.63 | 100.00 | | 3.45E-02 | 3.46E-02 | | | | 117 74 | 871.10 | 100.00 | -1.90E-02 | | 3.45E-02 | | | + | NB-95 | 765.79 | 99.81 | 5.94E-03 | 3,65E-02 | 3.65E-02 | | | + | NB-95M | 235.69 | 25.00 | 4.05E-02 | 1.06E-01 | 1.06E-01 | | | + | ZR-95. | 724.18 | 43.70 | 1.01E-03 | 5.09E-02 | 6.75E-02 | | | • | | 756.72 | 55.30 | -1.56E-02 | | 5.09E-02 | | | | | 130.12 | 59.50 | 1.000 02 | | | | 1603102-02 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-----|-----------------|------------------|----------------|-------------------------|----------------------------|-------------------------|----| | + | MO-99 | 181.06 | 6.20 | -1.68E-02 | 1.95E-01 | 2.95E-01 | | | | | 739.58 | 12.80 | -6.91E-02 | | 1.95E-01 | | | | | 778.00 | 4.50 | 2.89E-01 | | 7.73E-01 | | | + | RU-103 | 497.08 | 89.00 | -3.30E-03 | 3.23E-02 | 3.23E-02 | • | | + | RU-106 | 621.84 | 9.80 | -1.59E-01 | 2.52E-01 | 2.52E-01 | | | + | AG-108M | 433.93 | 89.00 | -4.51E-03 | 2.53E-02 | 2.53E-02 | | | | | 614.37 | 90.40 | -1.06E - 02 | | 3.65E-02 | | | | | 722.95 | 90.50 | -8.64E-03 | 4 405 01 | 2.98E-02 | | | + | CD-109 | 88.03 | 3.72 | -1.77E-01 | 4.40E-01 | 4.40E-01 | | | + | AG-110M | 657.75 | 93.14 | -1.90E-02 | 2.67E-02 | 2.67E-02 | | | | | 677.61 | 10.53 | -1.32E-02 | • | 2.64E-01 | | | | | 706.67 | 16.46
21.98 | -4.92E-02
3.04E-02 | | 2.00E-01
1.55E-01 | | | | | 763.93
884.67 | 71.63 | -3.09E-03 | • | 4.69E-02 | | | | | 1384.27 | 23.94 | -8.75E-03 | | 1.08E-01 | | | + | CD-113M | 263.70 | 0.02 | 3.70E+01 | 9.95E+01 | 9.95E+01 | | | + | SN-113 | 255.12 | 1.93 | 6.23E-02 | 3.74E-02 | 1.19E+00 | | | | | 391.69 | 64.90 | -1.47E-03 | | 3.74E-02 | | | + | TE123M | 159.00 | 84.10 | -7.83E-03 | 1.79E-02 | 1.79E-02 | | | + | SB-124 | 602.71 | 97.87 | 8.78E-03 | 3.68E-02 | 3.68E-02 | | | | | 645.85 | 7.26 | -4.65E-02 | | 4.44E-01 | | | | | 722.78 | 11.10 | -7.07E-02 | | 2.44E-01 | | | | | 1691.02 | 49.00 | 1.33E-02 | 57 O.37 O.1 | 6.18E-02 | | | ÷ | I-125 | 35.49 | 6.49 | -2.70E-01 | 7.30E-01 | 7.30E-01 | .' | | + | SB-125 | 176.33 | 6.89 | -3.39E-02 | 8.40E-02 | 2.44E-01 | | | | | 427.89 | 29.33 | 1.42E-02 | | 8.40E-02
3.17E-01 | | | | | 463.38
600.56 | 10.35
17.80 | 1.43E-01
-1.89E-02 | | 1.97E-01 | | | | | 635.90 | 11.32 | -5.97E-02 | | 3.07E-01 | | | + | SB-126 | 414.70 | 83.30 | 1.67E-02 | 3.28E-02 | 3.32E-02 | | | | | 666.33 | 99.60 | -2.25E-02 | | 3.28E-02 | | | | | 695.00 | 99.60 | -1.01E-02 | | 3.49E-02 | | | | | 720.50 | 53.80 | -1.52E-03 | | 5.31E-02 | | | + | SN-126 | 87.57 | 37.00 | -1.78E-02 | 4.42E-02 | 4.42E-02 | | | + | SB-127 | 473.00 | 25.00 | 3.13E-03 | 9.14E-02 | | | | | | 685.20 | 35.70 | -1.72E-02 | | 9.14E-02 | | | | T 100 | 783.80 | 14.70 | 4.77E-03 | 1.77E-01 | 2.42E-01
1.77E-01 | | | + | I - 129 | 29.78 | 57.00 | ÷2.26E-02 | 1.776-01 | 4.31E-01 | | | | <i>i</i> , | 33.60
39.58 | 13.20
7.52 | 1,03E-02
-9.04E-02 | | 4.49E-01 | | | + | I-131 | 284.30 | 6.05 | -5.38E-02 | 3.27E-02 | | | | , | 1 +0+ | 364.48 | 81.20 | 1.24E-02 | | 3,27E-02 | | | | | 636.97 | 7.26 | 6.58E-02 | | 5.12E-01 | | | | | 722.29 | 1.80 | -4.45E-01 | | 1.53E+00 | | | + | TE-132 | 49.72 | 13.10 | -2.31E-01 | 2.79E-02 | * | | | | | 228.16 | 88.00 | 1.01E-02 | | 2.79E-02 | | | + . | - BA-133 | 81.00 | 33.00 | -8.54E-03 | 4.90E-02 | | | | | | 302.84 | 17.80 | 6.43E-03 | ٠ | 1.48E-01 | | | | | 356.01 | €0.00 | 1.99E-02 | | 4.90E-02 | | | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pC!/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | | |----------------|-----------------
--------------------|---|----------------|-------------------------|----------------------------|-------------------------|---|--| | + | I-133 | 529.87 | * | 86.30 | 1.92E-02 | 3.07E-02 | 3.07E-02 | | | | . + | XE-133 | 81.00 | | 38.00 | -7.69E-03 | 4.54E-02 | 4.54E-02 | | | | + | CS-134 | 563.23 | | 8.38 | -3.89E-02 | 3.55E-02 | 3.65E-01 | | | | | | 569.32 | | 15.43 | -8.27E-02 | | 1.60E-01 | | | | | | 604.70 | | 97.60 | -9.38E-03 | | 3.55E-02 | | | | | | 795.84 | | 85.40 | | | 3.88E-02 | | | | | ~~ *25 | 801.93 | | 8.73 | 6.85E-02 | 1 AED 01 | 3.22E-01 | | | | + . | CS-135 | 268.24 | | 16.00 | 1.59E-02 | 1.45E-01 | 1.45E-01
3.50E-01 | | | | + | I-135 | 1131.51 | | 22.50 | 5.94E-02 | 3.14E-01 | | | | | | | 1260.41
1678.93 | | 28.60
9.54 | 1.17E-01
-3.37E-02 | | 3.14E-01
6.27E-01 | | | | + | CS-136 | 153.22 | | 7.46 | 6.91E-02 | 2.20E-02 | 2.42E-01 | | | | | 05 100 | 163.89 | | 4.61 | -8.24E-03 | | 3.75E-01 | | | | | | 176.55 | | 13.56 | -6.65E-03 | * . | 1.26E-01 | | | | | | 273.65 | | 12.66 | -2.60E-02 | · · | 1.79E-01 | | | | | | 340.57 | | 48.50 | -1.32E-02 | | 5.53E-02 | | | | | | 818.50 | | 99.70 | -9.17E-04 | | 2.20E-02 | | | | | | 1048.07
1235.34 | | 79.60
19.70 | 2.55E-03
9.18E-03 | | 4.94E-02
1.72E-01 | | | | + | CS-137 | 661.65 | | 85.12 | 1.79E-02 | 4.05E-02 | 4.05E-02 | | | | | LA-138 | 788.74 | | 34.00 | 2.13E-02 | 6.14E-02 | 1.09E-01 | | ************************************** | | | 211 100 | 1435.81 | | 66.00 | 8.7CE-03 | ••• | 6.14E-02 | | , | | + . | CE-139 | 165.85 | | 90.35 | -6.56E-04 | 2.12E-02 | 2.12E-02 | | | | + | BA-140 | 162.64 | | 6.70 | 3.59E-02 | 1.08E-01 | 2.54E-01 | • | t/ | | | | 304.84 | | 4.50 | 2.76E-01 | | 6.05E-01 | | | | | | 423.70 | | 3.20 | -6.68E-02 | | 8.81E-01 | | | | | | 437.55 | | 2.00 | 3.00E-01 | | 1.38E+00 | | | | | T 7 1 4 0 | 537.32 | | 25.00 | 3.01E-02
7.94E-03 | 4.34E-02 | 1.08E-01
1.29E-01 | | | | + | LA-140 | 328.77 | | 20.50
45.50 | | 4.346-02 | 7,10E-02 | | | | | | 487.03
815.85 | | 23.50 | -2.91E-03
1.36E-02 | | 1.09E-01 | | | | | | 1596.49 | | 95.49 | 7.62E-03 | | 4.34E-02 | | | | + | CE-141 | 145.44 | | 48.40 | -5.76E-03 | 3.21E-02 | 3.21E-02 | | | | + | CE-143 | 57.36 | | 11.80 | -2.08E-02 | 6.45E-02 | 1.96E-01 | | | | | | 293.26 | | 42.00 | 1.55E-02 | | 6.45E-02 | | | | | | 664.55 | | 5.20 | 2.04E-01 | | 7.98E-01 | | | | + | CE-144 | 133.54 | | 10.80 | 4.22E-02 | 1.54E-01 | 1.54E-01 | | | | + | PM-144 | 476.78 | | 42.00 | -2.44E-02 | 3.14E-02 | 6.02E-02 | | | | | | 618.01 | | 98.60 | -4.42E-03 | | 3.14E-02 | | | | 1 | PM-145 | 696.49 | | 99.49 | -2.97E-03
7.61E-02 | 1.04E-01 | 3.45E-02
1.99E-01 | | | | + | FM-142 | 36.85 | | 21.70
39.70 | 5.85E-02 | 1.045.01 | 1.04E-01 | | | | | | 37.36
42.30 | | 39.70
15.10 | -4.64E-02 | | 1.90E-01 | | | | | | 72.40 | | 2.31 | -1.78E-01 | | 7.65E-01 | | | | + | PM-146 | 453.90 | | 39.94 | 1.21E-02 | 6.49E-02 | 6.49E-02 | | | | | | 735.90 | | 14.01 | 3.39E-02 | | 2.13E-01 | | | | | | 747.13 | | 13.10 | 2.54E-02 | | 2.31E-01 | | | | $-\frac{1}{4}$ | ND-147 | 91.11 | | 28.90 | 3.91E-02 | 7.67E-02 | 7.67E-02 | | | | | | 531.02 | | 13.10 | 7.49E-02 | | 2.26E-01 | | | 1603102-02 | + PM-149 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | | | |--|----|---------------------|-----------------|----------|--|---|-------------------------|-----|----|--| | ## BU-152 | + | PM-149 | 285.90 | 3.10 | -5.41E-02 | 8.13E-01 | 8.13E-01 | | | | | 244.69 | | | | | | 8.66E-02 | 8.66E-02 | | | | | 344.27 | • | 20 102 | | | | | 4.39E-01 | | | | | 778.89 9.20 1.78E-01 3.53E-01 1085.78 7.22 4.76E-02 3.81E-01 11085.78 7.22 4.76E-02 3.81E-01 1112.02 9.60 0.00E+00 3.65E-01 1407.95 14.94 2.84E-02 2.67E-01 1407.95 14.94 2.84E-02 2.67E-01 1407.95 14.94 2.84E-02 4.52E-02 4.52E-02 12.81E-01 12.02 9.60 0.00E+00 3.65E-01 14.07.95 14.94 2.84E-02 2.67E-01 14.07.95 14.94 2.84E-02 4.52E-02 4.52E-02 12.02E-02 12.02E-01 12.04.76 17.90 0.00E+00 2.17E-01 12.04.75 35.50 -9.81E-03 1.04E-01 12.04.75 35.50 -9.81E-03 1.04E-01 12.04E-01 12.02E-02 12 | | | | | | | 1.29E-01 | | | | | 1085.78 | | | | | 1.78E-01 | | | | | | | 1112.02 | | | 964.01 | 10.40 | | • | | | | | | 1407.95 | | | | | | | | | | | | + GD-153 97.43 31.30 -5.16E-02 4.52E-02 4.52E-02 103.18 22.20 8.77E-03 6.48E-02 4.20E-02 123.07 40.50 1.75E-02 4.20E-02 4.20E-02 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.37E-01 1.004.76 17.90 0.00E+00 2.17E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-01 1.055.30 20.70 -1.46E-02 6.79E-02 1.567E-02 6.79E-02 1.35SE-01 1.30E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.230.71 8.90 -3.37E-02 3.25E-02 3.25E-02 3.25E-02 1.230.71 8.90 -3.37E-02 4.07E-01 4.07E-01 1.05.30 4.07E-01 4.07E-01 4.07E-01 1.05.30 4.07E-01 4.07E-01 4.07E-01 1.53.47 7.20 5.08E-02 4.44E-01 1.25.49 11.10 4.01E-02 2.27E-01 4.07E-01 4.0 | | | | | | | | | | | | 103.18 22.20 8.77E-03 6.48E-02 4.20E-02 4.20E-01 4.2 | | | | | and the second s | 4 500 00 | | | | | | ## BU-154 123.07 # 40.50 | + | GD-153 | | | • | 4.52E-U2 | | | | | | 723.30 19.70 -3.97E-02 1.37E-01 873.19 11.50 7.45E-02 3.53E-01 996.32 10.30 -2.28E-01 2.48E-01 1004.76 17.90 0.00E+00 2.17E-01 1274.45 35.50 -9.81E-03 1.04E-01 + EU-155 86.50 30.90 2.35E-02 5.67E-02 5.67E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02
1.36E-01 912.12 15.25 1.30E-01 4.97E-02 7.98E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.99E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 - 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | | | | | | 4 200 02 | | | | | | 873.19 11.50 7.45E-02 3.53E-01 996.32 10.30 -2.28E-01 2.48E-01 1004.76 17.90 0.00E+00 2.17E-01 1274.45 35.50 -9.81E-03 1.04E-01 + EU-155 86.53 30.90 2.35E-02 5.67E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.07E-01 + H0-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 | + | EU-154 | | | | 4.20E-02 | | | | | | 996.32 10.30 -2.28E-01 2.48E-01 2.044-01 104.76 17.90 0.00E+00 2.17E-01 1.04E-01 1.274.45 35.50 -9.81E-03 1.04E-01 1.04E-02 1.05.30 20.70 -1.46E-02 6.79E-02 6.79E-02 1.05.30.71 8.90 -3.37E-02 4.07E-01 1.230.71 8.90 -3.37E-02 4.07E-01 1.230.71 8.90 -3.37E-02 3.25E-02 3.25E-02 2.27E-01 1.094 1.10 4.01E-02 2.27E-01 1.094 1.10 4.01E-02 2.27E-01 1.20E-01 1.37E+01 1.30E-01 1. | | | | | | | | | | | | 1004.76 | | | | | | | | | | | | 1274.43 35.50 -9.81E-03 1.04E-01 | | | | | | | | | | | | + EU-155 86.50 30.90 2.35E-02 5.67E-02 6.79E-02 105.30 20.70 -1.46E-02 6.79E-02 + EU-156 811.77 10.40 6.10E-02 2.62E-01 2.62E-01 1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.73E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02 4.36E-02 | | | | | | | | | | | | 105.30 | _ | ជារៈ155 | | | | 5.67E-02 | | | | | | + EU-156 811.77 | Ŧ | F0-133 | | | | 0.0. | | | ă. | | | 1153.47 7.20 5.08E-02 4.44E-01 1230.71 8.90 -3.37E-02 4.07E-01 + HO-166M 184.41 72.60 3.79E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.33 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 4.36E-02 4.36E-02 | ı | тп_156 | | | | 2 62E-01 | | | | | | 1230.71 | т | F0-130 | | | • | 2.4== | | | • | | | + HO-166M 184.41 72.60 3.79E-02 3.25E-02 3.25E-02 280.45 29.60 2.78E-03 7.51E-02 410.94 11.10 4.01E-02 2.27E-01 711.69 54.10 -4.43E-03 6.29E-02 + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.33 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 4.36E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02 | | | | | | | | | | | | 280.45 | т. | HO-166M | | | | 3.25E-02 | | | | | | ## TM-171 | T | 110-10014 | | | | • | | | | | | T11.69 | | | | | | | | | | | | + TM-171 66.72 0.14 -1.42E+01 1.37E+01 1.37E+01 + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 125.81 11.30 -5.19E-02 1.30E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.75 41.20 -3.19E-02 4.36E-02 4.36E-02 | | | | | | | | | | | | + HF-172 81.75 4.52 -1.49E-01 1.30E-01 3.53E-01 + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 2.73E-02 306.78 94.00 -1.05E-03 2.73E-02 4.36E-02 4.36E-02 4.36E-02 | + | TM-171 | | | | 1.37E+01 | 1.37E+01 | | | | | + LU-172 | | | | 4.52 | -1.49E-01 | 1.30E-01 | 3.53E-01 | | | | | + LU-172 181.53 20.60 -1.40E-01 4.97E-02 7.98E-02 810.06 16.63 -1.10E-02 1.56E-01 912.12 15.25 1.30E-01 2.99E-01 1093.66 62.50 -1.90E-03 4.97E-02 + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | · | | | | -5.19E-02 | • | 1.30E-01 | | | | | 810.06 | + | T.II-172 | | | | 4.97E-02 | 7.98E-02 | | | | | 912.12 15.25 1.30E-01 2.99E-01
1093.66 62.50 -1.90E-03 4.97E-02
+ LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01
272.11 21.20 3.94E-02 1.10E-01
+ HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02
+ LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01
201.83 86.00 6.84E-03 2.63E-02
306.78 94.00 -1.05E-03 2.73E-02
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | • | 10 1.12 | | | | | 1.56E-01 | | | | | 1093.66 62.50 -1.90E-03 4.97E-02
+ LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01
272.11 21.20 3.94E-02 1.10E-01
+ HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02
+ LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01
201.83 86.00 6.84E-03 2.63E-02
306.78 94.00 -1.05E-03 2.73E-02
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | | | | | | | 2.99E-01 | | | | | + LU-173 100.72 5.24 -1.06E-01 1.10E-01 2.61E-01 272.11 21.20 3.94E-02 1.10E-01 + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 2.73E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 | | | | | | | 4.97E-02 | | | | | + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02
+ LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01
201.33 86.00 6.84E-03 2.63E-02
306.78 94.00 -1.05E-03 2.73E-02
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | + | LU-173 | | | -1.06E-01 | 1.10E-01 | 2.61E-01 | | | | | + HF-175 343.40 84.00 3.40E-03 3.10E-02 3.10E-02 + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 | | 1: | 272.11 | 21.20 | 3.94E-02 | | 1.10E-01 | | | | | + LU-176 88.34 13.30 -2.61E-01 2.63E-02 1.22E-01 201.83 86.00 6.84E-03 2.63E-02 306.78 94.00 -1.05E-03 2.73E-02 + TA-182 67.73 41.20 -3.19E-02 4.36E-02 | + | н г −175 | | | 3.40E-03 | 3.10E-02 | 3.10E-02 | | | | | 201.83 86.00 6.84E-03 2.63E-02
306.78 94.00 -1.05E-03 2.73E-02
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 | + | | 88.34 | 13.30 | -2.61E-01 | 2.63E-02 | 1.22E-01 | + , | | | | 306.78 94.00 -1.05E-03 2.73E-02
+ TA-182 67.73 41.20 -3.19E-02 4.36E-02 | | | | 86.00 | 6.84E-03 | | 2.63E-02 | | | | | + TA-182 67.73 41.20 -3.19E-02 4.36E-02 4.36E-02 | ٠ | | | | | | 2.73E-02 | | | | | A 44 - 85 | + | TA-182 | | 41.20 | -3.19E-02 | 4.35E-02 | 4.36E-02 | | | | | | | | 1121.30 | 34.90 | -3.12E-02 | | 8.11E-02 | | | | | 1189.05 16.23 1.52E-02 2.15E-01 | | | | 16.23 | 1.52E-02 | | | | | | | 1221.41 26.98 -1.27E-02 1.41E-01 | | | 1221.41 | | | | | | | | | 1231.02 11.44 8.58E-02 3.34E-01 | | • | | | | | | | | | | + IR-192 308.46 29.68 8.56E-03 5.31E-02 8.51E-02 | + | IR-192 | | | | | | | | | | 468.07 48.10 -2.89E-02 5.31E-02 | | | | | | | | | | | | + HG-203 279.19 77.30 -9.30E-03 2.73E-02 2.73E-02 | + | HG-203 | 279.19 | 77.30 | | | | | | | | + BI-207 569.67 97.72 -7.07E-03 2.53E-02 2.53E-02 | + | BI-207 | 569.67 | 97.72 | -7.07E-03 | 2.53E-02 | | | | | | 1063.62 74.90 3.01E-03 4.77E-02 | | | 1063.62 | 74.90 | 3:01E-03 | | 4.77E-02 | | | | Analysis Report for 1603102-02 | ٠ | BLANK | | | | | | | | | |--------|------------------|-------------------|---------------|-------------------------|----------------------------|-------------------------|-----|--|--| | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | | | | + | TL-208 | 583.14 | 30.22 | 3.99E-02 | 1.07E-01 | 1.07E-01 | | | | | | 14 200 | 860.37 | 4.48 | -2.69E-01 | · | 5.92E-01 | | | | | | | 2614.66 | 35.85 | 1.72E-02 | 4 045 00 | 1.28E-01 | | | | | + | BI-210M | 262.00 | 45.00 | -1.34E-02 | 4.84E-02 | 4.84E-02
1.06E-01 | | | | | | PB-210 | 300.00
46.50 | 23.00
4.25 | -2.01E-02
4.51E-01 | 7.39E-01 | 7.39E-01 | | | | | + | PB-210
PB-211 | 404.84 | 2.90 | · | 8.91E-01 | 8.91E-01 | | | | | т | PD-211 | 831.96 |
2.90 | 3.42E-01 | 0.510 0. | 1.27E+00 | | | | | + | BI-212 | 727.17 | 11.80 | -1.55E-02 | 2.59E-01 | 2.59E-01 | | | | | | | 1620.62 | 2.75 | 2.72E-01 | | 1.38E+00 | | | | | + | PB-212 | 238.63 | 44.60 | 3.90E-02 | 6.07E-02 | 6.07E-02 | | | | | | | 300.09 | 3.41 | -1.36E-01 | | 7.14E-01 | | | | | + | BI-214 | 609.31 | 46.30 | -6.16E-04 | 7.39E-02 | 7.39E-02 | | | | | | | 1120.29 | 15.10 | 7.78E-03 | | 1.87E-01 | | | | | | | 1764.49. | 15.80 | 1.16E-01 | | 3.19E-01
8.41E-01 | | | | | _ | PB-214 | 2204.22
295.21 | 4.98
19.19 | -4.25E-01
-8.22E-02 | 7.74E-02 | 1.13E-01 | | | | | + | ED-714 | 351.92 | 37.19 | 1.31E-02 | ,.,10 02 | 7.74E-02 | | | | | + | RN-219 | 401.80 | 6.50 | 9.43E-02 | 4.02E-01 | 4.02E-01 | | | | | + | RA-223 | 323.87 | 3.88 | -1.32E-01 | 6.61E-01 | 6.61E-01 | | | | | + | RA-224 | 240.98 | 3.95 | 3.10E-01 | 6.91E-01 | 6.91E-01 | 19. | | | | ·
+ | RA-225 | 40.00 | 31.00 | -2.17E-02 | 1.08E-01 | 1.08E-01 | | | | | + | RA-226 | 186.21 | 3.28 | 7.28E-01 | 7.21E-01 | 7.21E-01 | 20 | | | | + | TH-227 | 50.10 | 8.40 | -3.36E-01 | 2.18E-01 | 2.74E-01 | | | | | • | 111 22, | 236.00 | 11.50 | 8.35E-02 | | 2.18E-01 | | | | | | | 256.20 | 6.30 | 2.76E-02 | | 3.59E-01 | | | | | + | AC-228 | 338.32 | 11.40 | 9.21E-02 | 1.64E-01 | 2.49E-01 | | | | | | | 911.07 | 27.70 | 8.69E-02 | | 1.64E-01 | | | | | | | 969.11 | 16.60 | 1.32E-01 | 1 717 01 | 2.52E-01 | | | | | + | TH-230 | 48.44 | 16.90 | 1.31E-01 | 1.71E-01 | 1.71E-01 | | | | | | | 62.85
67.67 | 4.60
0.37 | 4.10E-01
-3.55E+00 | | 5.04E-01
4.85E+00 | | | | | + | PA-231 | 283,67 | 1.60 | -1.98E-01 | 1.15E+00 | 1.38E+00 | | | | | | FR 251 | 302.67 | 2.30 | 4.98E-02 | | 1.15E+00 | | | | | + | TH-231 | 25.64 | 14,70 | 4.95E-02 | 2.60E-01 | 1.57E+00 | | | | | | | 84.21 | 6.40 | 5.00E-02 | , | 2.60E-01 | | | | | + | PA-233 | 311.98 | 38.60 | -1.21E-03 | 6.01E-02 | 6.01E-02 | | | | | + | PA-234 | 131.20 | 20.40 | -5.78E-03 | 7.62E-02 | 7.62E-02 | | | | | | | 733.99 | 8.80 | 6.38E-02 | | 3.63E-01 | | | | | | | 946.00 | 12.00 | -2.55E-02 | 4 00-00 | 2.70E-01 | | | | | + | | 1001.03 | 0.92 | 2.29E+00 | 4.82E+00 | 4.82E+00 | | | | | + | TH-234 | 63.29 | 3.80 | 1.32E-01 | 5.89E-01 | 5.89E-01 | | | | | + | Ü−235 | 143.76 | 10.50 | 7.99E-02 | 1.63E-01 | 1.63E-01 | | | | | | | 163.35 | 4.70 | -7.95E-03 | | 3.62E-01
4.74E-01 | | | | | | NTO_227 | 205.31
86.50 | 4.70
12.60 | 1.75E-01
5.77E-02 | 1.39E-01 | | | | | | + | NP-237 | | 22.70 | 3.71E-02 | 7.15E-02 | | | | | | + | NP-239 | 106.10 | 22.10 | 2.1TE'-A2 | 7,105-02 | 7.100 02 | | | | **BLANK** | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |--------------|-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|--| | , | ND 220 | 228.18 | 10.70 | 8-495-02 | 7.15E-02 | 2.35E-01 | | | | NP-239 | 277.60 | 14.10 | -5.93E-02 | 7,155 0% | 1.63E-01 | | | + | AM-241 | 59.54 | 35.90 | -3.50E-02 | 5.30E-02 | 5.30E-02 | | | + | AM-243 | 74.67 | 66.00 | -7.66E-03 | 2.74E-02 | 2.74E-02 | | | + | CM-243 | 209.75 | 3.29 | -3.11E-01 | 1.51E-01 | 6.06E-01 | | | | | 228.14 | 10.60 | 7.90E-02 | | 2.19E-01 | | | | | 277.60 | 14.00 | -5.51E-02 | | 1.51E-01 | | - = Nuclide identified during the nuclide identification - = Energy line found in the spectrum - = MDA value not calculated - = Half-life too short to be able to perform the decay correction - = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level # NUCLIDE MDA REPORT : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB **Nuclide Library Used** | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| | BE-:7 | 477.59 | 10.42 | 2.55E-01 | 2.55E-01 | -7.20E-02 | 1.13E-01 | | NA-22 | 1274.54 | 99.94 | 3.69E-02 | 3.69E-02 | -3.49E-03 | 1.49E-02 | | NA-24 | 1368.53 | 99.99 | 5.28E-02 | 5.28E-02 | 2.25E-02 | 2.14E-02 | | | 2754.09 | 99.86 | 5.53E-02 | | 3.97E-03 | 1.96E-02 | | AL-26 | 1808.65 | 99.76 | 3.18E-02 | 3.18E-02 | -1.37E-02 | 1.13E-02 | | K-40 | 1460.81 | 10.67 | 3.23E-01 | 3.28E-01 | -3.82E-01 | 1.27E-01 | | AR-41 | 1293.64 | 99.16 | 4.52E-01 | 4.52E-01 | 1.23E-01 | 1.83E-01 | | TI-44 | 67.88 | 94.40 | 1.90E-02 | 1.90E-02 | -1.39E-02 | 8.87E-03 | | | 78.34 | 96.00 | 1.93E-02 | | 5.16E-03 | 9.09E-03 | | SC-46 | 889.25 | 99.98 | 3.65E-02 | 2.83E-02 | 2.00E-02 | 1.56E-02 | | 34 | 1120.51 | 99.99 | 2.83E-02 | | 1.18E-03 | 1.10E-02 | | V-48 | 983.52 | 99.98 | 3.87E-02 | 3.33E-02 | 8.53E-03 | 1.65E-02 | | , | 1312.10 | 97.50 | 3.33E-02 | ا
مر | -1.39E-03 | 1.29E-02 | | CR-51 | 320.08 | 9.83 | 2.51E-01 | 2.51E-01 | 5.08E-02 | 1.14E-01 | | MN-54 | 834.83 | 99.97 | 3.19E-02 | 3.19E-02 | -4.59E - 03 | 1.35E-02 | | CO-56 | 846.75 | 99.96 | 3.74E-02 | 3.74E-02 | 1.58E-02 | 1.62E-02 | Analysis Report for 1603102-02 | Nuclide | Energy | Yield(%) | Line MDA | Nuclida MDA | Activity | Dec. Level | |----------------|---------|----------|----------------------|-------------|------------------------|----------------------| | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | CO-56 | 1037.75 | 14.03 | 2.86E-01 | 3.74E-02 | 4.30E-03 | 1.22E-01 | | | 1238.25 | 67.00 | 5.01E-02 | | 9.55E-03 | 1.99E-02 | | | 1771.40 | 15.51 | 1.60E-01 | | -1.38E-01 | 5.06E-02 | | | 2598.48 | 16.90 | 1.86E-01 | | 8.43E-03 | 5.89E-02 | | CO-57 | 122.06 | 85.51 | 2.08E-02 | 2.08E-02 | 1.10E-02 | 9.74E-03 | | | 136.48 | 10.60 | 1.55E-01 | | 1.51E-02 | 7.17E-02 | | CO-58 | 810.76 | 99.40 | 2.71E-02 | 2.71E-02 | 3.22E-03 | 1.11E-02 | | FE-59 | 1099.22 | 56.50 | 5.39E-02 | 5.39E-02 | 8.23E-04 | 2.14E-02 | | | 1291.56 | 43.20 | 7.37E-02 | | 3.07E-03 | 2.86E-02 | | CO-60 | 1173.22 | 100.00 | 5.48E-02 | 5.48E-02 | 4.06E-02 | 2.41E-02 | | | 1332.49 | 100.00 | 5.61E-02 | | 2.84E-02 | 2.44E-02 | | ZN-65 | 1115.52 | 50.75 | 6.06E-02 | 6.06E-02 | -8.31E-03 | 2.40E-02 | | GA-67 | 93.31 | 35.70° | 7.00E-02 | 7.00E-02 | 1.14E-01 | 3.34E-02 | | | 208.95 | 2.24 | 9.23E-01 | | -7.65E-01 | 4.25E-01 | | | 300.22 | 16.00 | 1.61E-01 | | -3.06E - 02 | 7.39E-02 | | SE-75 | 121.11 | 16.70 | 1.04E-01 | 2.81E-02 | 3.31E-02 | 4.84E-02 | | | 136.00 | 59.20 | 2.81E-02 | | 5.74E-03 | 1.31E-02 | | | 264.65 | 59.80 | 3.84E-02 | | 1.03E-02 | 1.77E-02 | | | 279.53 | 25.20 | 8.81E-02 | | 2.70E-02 | 4.02E-02 | | | 400.65 | 11.40 | 2.29E-01 | | 8.98E-03 | 1.03E-01 | | RB-82 | 776.52 | 13 ، 00 | 2.42E-01 | 2.422-01 | -3.94E-02 | 1.03E-01 | | RB-83 | 520.41 | 46.00 | 5.94E-02 | 5.94E-02 | -1.72E-02 | 2.61E-02 | | | 529.64 | 30.30 | 9.16E-02 | | 2.95E-03 | 4.03E-02 | | | 552.65 | 16.40 | 1.52E-01 | | -5.09E-02 | 6.57E-02 | | KR-85 | 513.99 | 0.43 | 1.07E+01 | 1.07E+01 | 9.49E+00 | 4.99E+00 | | SR-85 | 513.99 | 99.27 | 4.71E-02 | 4.71E-02 | 4.16E-02 | 2.19E-02 | | 88-Y | 898.02 | 93.40 | 3.64E-02 | 3.64E-02 | 1.03E-02 | 1.54E-02 | | | 1836.01 | 99.38 | 4.56E-92 | | 2.32E-04 | 1.81E-02 | | NB-93M | 16 57 | 9.43 | 3.61E+01 | 3.61E+01 | 2.31E+01 | 1.72E+01 | | NB-94 | 702.63 | 100.00 | 3.46E-02 | 3.45E-02 | -6.32E-03 | 1.51E-02 | | | 871.10 | 100.00 | 3.45E-02 | | -1.90E-02 | 1.47E-02 | | NB - 95 | 765.79 | 99.81 | 3.65E-02 | 3.65E-02 | 5.94E-03 | 1.59E-02 | | NB-95M | 235.69 | 25.00 | 1.06E-01 | 1.06E-01 | 4.05E-02 | 4.93E-02 | | ZR-95 | 724.18 | 43.70 | 6.75E-02 | 5.09E-02 | 1.01E-03 | 2.87E-02 | | | 756.72 | 55.30 | 5.09E-02 | 4 55- 64 | -1.56E-02 | 2.13E-02 | | мо-,99 | 181.06 | 6.20 | 2.95E-01 | 1.95E-01 | -1.68E-02 | 1.36E-01 | | ř. | 739.58 | 12.80 | 1.95E-01 | | -6.91E-02 | 7.87E-02 | | 1 | 778.00 | 4.50 | 7.73E-01 | 2 027 00 | 2.89E-01 | 3.31E-01 | | RU-103 | 497.08 | 89.00 | 3.23E-02 | 3.23E-02 | -3.30E-03 | 1.44E-02 | | RU-106 | 621.84 | 9.80 | 2.52E-01 | 2.52E-01 | -1.59E-01 | 1.07E-01
1.11E-02 | | AG-108M | 433.93 | 89.90 | 2.53E-02 | 2.53E-02 | -4.51E-03 | 1.62E-02 | | | 614.37 | 90.40 | 3.65E-02 | | -1.06E-02
-8.64E-03 | 1.25E-02 | | | 722.95 | 90.50 | 2.98E-02 | 4 4AR01 | -0.04E-03
-1.77E-01 | 2.06E-01 | | CD-109 | 88.03 | 3.72 | 4.40E-01 | 4.40E-01 | -1.77E-01
-1.90E-02 | 1.12E-02 | | AG-110M | 657.75 | 93.14 | 2.67E-02 | 2.67E-02 | -1.32E-02 | 1.12E-02
1.12E-01 | | | 677.61 | 10.53 | 2.64E-01 | | -4.92E-02 | 8.69E-02 | | | 706.67 | 16.46 | 2.00E-01 | | 3.04E-02 | 6.73E-02 | | | 763.93 | 21.98 | 1.55E-01 | | -3.09E-03 | 1.98E-02 | | | 884.67 | 71.63 | 4.69E-02 | | -8.75E-03 | 3.84E-02 | | an 112 | 1384.27 | 23.94 | 1.08E-01
9.95E+01 | 9.95E+01 | 3.70E+01 | 4.57E+01 | | CD-113M | 263.70 | 0.02 | 1.19E+00 | 3.74E-02 | 6.23E-02 | 5.49E-01 | | SN-113 | 255.12 | 64.90 | 3.74E-02 | J. 74B 02 | -1.47E-03 | 1.67E-02 | | | 391.69 | 04.50 | J. / HE-UZ | | 1.111 00 | 2.012 02 | Analysis Report for 1603102-02 | | | | | | • | | | |---|----------------|----------|----------|-------------|-------------|-------------|-------------| | | Nuclide | Energy | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | | | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | TE123M | 159.00 | 84.10 | 1.79E-02 | 1.79E-02 | -7.83E-03 | 8.20E-03 | | | SB-124 | 602.71 | 97.87 | 3.68E-02 | 3.68E-02 | 8.78E-03 | 1.65E-02 | | | DD 124 | 645.85 | 7.26 | 4.44E-01 | ; • | -4.65E-02 | 1.94E-01 | | | | 722.78 | 11.10 | 2.44E-01 | | -7.07E-02 | 1.02E-01 | | | | 1691.02 | 49.00 | 6.18E-02 | • | 1.33E-02 | 2.19E-02 | | | I - 125 | 35.49 | 6.49 | 7.30E-01 | 7.30E-01 | -2.70E-01 | 3.41E-01 | | | SB-125 | 176.33 | 6.89 | 2.44E-01 | 8.40E-02 | -3.39E-02 | 1.12E-01 | | | DD 123 | 427.89 | 29.33 | 8.40E-02 | | 1.42E-02 | 3.73E-02 | | | | 463.38 | 10.35 | 3.17E-01 | | 1.43E-01 | 1.44E-01 | | | | 600.56 | 17.80 | 1.97E-01 | | -1.89E-02 | 8.82E-02 | | | | 635.90 | 11.32 | 3.07E-01 | | -5.97E-02 | 1.36E-01 | | |
SB-126 | 414.70 | 83.30 | 3.32E-02 | 3.28E-02 | 1.67E-02 | 1.50E-02 | | | DD 120 | 666.33 | 99.60 | 3.28E-02 | | -2.25E-02 | 1.43E-02 | | | | 695.00 | 99.60 | 3.49E-02 | | -1.01E-02 | 1.53E-02 | | | | 720.50 | 53.80 | 5.31E-02 | | -1.52E-03 | 2.24E-02 | | | SN-126 | 87.57 | 37.00 | 4.42E-02 | 4.42E-02 | -1.78E-02 | 2.07E-02 | | | SB-127 | 473.00 | 25.00 | 1.13E-01 | 9.14E-02 | 3.13E-03 | 5.01E-02 | | | 5D, 127 | 685.20 | 35.70 | 9.14E-02 | | -1.72E-02 | 3.96E-02 | | | | 783.80 | 14.70 | 2.42E-01 | | 4.77E-03 | 1.04E-01 | | | I-129 | 29.78 | 57.00 | 1.77E-01 | 1.77E-01 | -2.26E-02 | 8.36E-02 | | | 1-123 | 33.60 | 13.20 | 4.31E-01 | | 1.03E-02 | 2.02E-01 | | | | 39.58 | 7.52 | 4.49E-01 | | -9.04E-02 | 2.09E-01 | | | I-131 | 284.30 | 6.05 | 3.75E-01 | 3.27E-02 | -5.38E-02 | 1.71E-01 | | | 1-131 | 364.48 | 81.20 | 3.27E-02 | | 1.24E-02 | 1.48E-02 | | | | 636.97 | 7.26 | 5.12E-01 | | 6.58E-02 | 2.28E-01 | | | | 722.85 | 1.80 | 1.53E+00 | • | -4.45E-01 | 6.42E-01 | | | TE-132 | 49.72 | 13.10 | 1.89E-01 | 2.79E-02 | -2.31E-01 | 8.80E-02 | | | 16 152 | 228.16 | 88.00 | 2.79E-02 | | 1.01E-02 | 1.30E-02 | | | BA-133 | 81.00 | 33.00 | 5.04E-02 | 4.90E-02 | -8.54E-03 | 2.36E-02 | | | DW 100 | 302.84 | 17.80 | 1.48E-01 | | 6.43E-03 | 6.84E-02 | | | | 356.01 | 60.00 | 4.90E-02 | | 1.99E-02 | 2.25E-02 | | + | I - 133 | 529.87 * | | 3.07E-02 | 3.07E-02 | 1.92E-02 | 1.29E-02 | | 7 | XE-133 | 81.00 | 38.00 | 4.54E-02 | 4.54E-02 | -7.69E-03 | 2.12E-02 | | | CS-134 | 563.23 | 8.38 | 3.65E-01 | 3.55E-02 | -3.89E-02 | 1.62E-01 | | | CD 154 | 569.32 | 15.43 | 1.60E-01 | | -8.27E-02 | 6.87E-02 | | | | 604.70 | 97.60 | 3.55E-02 | | -9.38E-03 | 1.58E-02 | | | ģ | 795.84 | 85.40 | 3.88E-02 | | -8.58E-05 | 1.66E-02 | | | :: | 801.93 | 8.73 | 3.22E-01 | • | 6.85E-02 | 1.33E-01 | | | CS-135 | 268.24 | 16.00 | 1.45E-01 | 1.45E-01 | 1.59E-02 | 6.66E-02 | | | I-135 | 1131.51 | 22.50 | 3.50E-01 | 3.14E-01 | 5.94%-02 | 1.46E-01 | | | 1-133 | 1260.41 | 28.60 | 3.14E-01 | | 1.17E-01 | 1.33E-01 | | | | 1678.03 | 9.54 | 6.27E-01 | | -3.37E-02 | 2.22E-01 | | | CS-136 | 153.22 | 7.46 | 2.42E-01 | 2.20E-02 | 6.91E-02 | 1.13E-01 | | | CD-130 | 163.89 | 4.61 | 3.75E-01 | | -8.24E-03 | 1.73E-01 | | | | 176.55 | 13.56 | 1.26E-01 | | -6.65E-03 | 5.78E-02 | | | • | 273.65 | 12.66 | 1.79E-01 | | -2.60E-02 | 8.18E-02 | | | | 340.57 | 48.50 | 5.53E-02 | | -1.32E-02 | 2.53E-02 | | | | 818.50 | 99.70 | 2.20E-02 | | -9.17E-04 | 8.53E-03 | | | | 1048.07 | 79.60 | 4.94E-02 | | 2.55E-03 | 2.08E-02 | | | | 1235.34 | 19.70 | | | 9.18E-03 | 6.82E-02 | | | CS-137 | 661.65 | 85.12 | 4.05E-02 | 4.05E-02 | 1.79E-02 | 1.79E-02 | | | LA-138 | 788.74 | 34.00 | 1.09E-01 | 6.14E-02 | 2.13E-02 | 4.78E-02 | | | TW-130 | 1435.80 | 66.00 | 6.14E-02 | | 8.70E-03 | 2.48E-02 | | | | 1422.00 | 50.00 | 0.410 02 | | | | 1603102-02 | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|------------------|---------------|-------------------------|----------------------------|-------------------------|---------------------------| | | | (3.0.7) | | ,, | - | | | | (| CE-139 | 165.85 | 80.35 | 2.12E-02 | 2.12E-02 | -6.56E-04 | 9.77E-03 | |] | BA-140 | 162.64 | 6.70 | 2.54E-01 | 1.08E-01 | 3.59E-02 | 1.17E-01 | | | | 304.84 | 4.50 | 6.05E-01 | | 2.76E-01 | 2.79E-01 | | | | 423.70 | 3.20 | 8.81E-01 | | -6.68E-02 | 3.97E-01 | | | | 437.55 | 2.00 | 1.38E+00 | | 3.00E-01 | 6.17E-01
4.72E-02 | | | | 537.32 | 25.00 | 1.08E-01 | 4 245 00 | 3.01E-02 | 5.88E-02 | | : | LA-140 | 328.77 | 20.50 | 1.29E-01 | 4.34E-02 | 7.94E-03 | 3.21E-02 | | | | 487.03 | 45.50 | 7.10E-02 | | -2.91E-03
1.36E-02 | 4.42E-02 | | | | 815.85 | 23.50 | 1.09E-01 | | 7.62E-03 | 1.72E-02 | | | | 1596.49 | 95.49 | 4.34E-02 | 3.21E-02 | -5.76E-03 | 1.48E-02 | | | CE-141 | 145.44 | 48.40 | 3.21E-02 | 6.45E-02 | -2.08E-02 | 9.16E-02 | | , | CE-143 | 57.36 | 11.80 | 1.96E-01
6.45E-02 | 0.436-02 | 1.55E-02 | 2.95E-02 | | | | 293.26 | 42.00
5.20 | 7.98E-01 | | 2.04E-01 | 3.54E-01 | | | OF 144 | 664.55 | 10.80 | 1.54E-01 | 1.54E-01 | 4.22E-02 | 7.15E-02 | | | CE-144 | 133.54
476.78 | 42.00 | 6.02E-02 | 3.14E-02 | -2.44E-02 | 2.65E-02 | | | PM-144 | 618.01 | 98.60 | 3.14E-02 | J.14D 02 | -4.42E-03 | 1.37E-02 | | | | 696.49 | 99.49 | 3.45E-02 | | -2.97E-03 | 1.51E-02 | | | PM-145 | 36.85 | 21.70 | 1.99E-01 | 1.04E-01 | 7.61E-02 | 9.32E-02 | | | FM-143 | 37.35 | 39.70 | 1.04E-01 | 1.011, 02 | 5.85E-02 | 4.88E-02 | | | | 42.30 | 15.10 | 1.90E-01 | • | -4.64E-02 | 8.84E-02 | | | | 72.40 | 2.31 | 7.65E-01 | | -1.78E-01 | 3.58E-01 | | | PM-146 | 453.90 | 39.94 | 6.49E-02 | 6.49E-02 | 1.21E-02 | 2.88E-02 | | | EM 140 | 735.90 | 14.01 | 2.13E-01 | ••• | 3.89E-02 | 9.05E-02 | | | | 747.13 | 13.10 | 2.31E-01 | | 2.54E-02 | 9.81E-02 | | | ND-147 | 91.11 | 28.90 | 7.67E-02 | 7.67E-02 | 3.91E-02 | 3.65E-02 | | | ND 11, | 531.02 | 13.10 | 2.26E-01 | | 7.49E-02 | 1.00E-01 | | | PM-149 | 285.90 | 3.10 | 8.13E-01 | 8.13E-01 | -5.41E-02 | 3.72E-01 | | | EU-152 | 121.78 | 20.50 | 8.66E-02 | 8.66E-02 | 4.56E-02 | 4.06E-02 | | | 20 | 244.69 | 5.40 | 4.39E-01 | | -7.10E-02 | 2.03E-01 | | | | 344.27 | 19.13 | 1.29E-01 | | -5.90E-02 | 5.85E-02 | | | | 778.89 | 9.20 | 3.53E-01 | | 1.78E-01 | 1.51E-01 | | | | 964.01 | 10.40 | 2.81E-01 | | 3.98E-02 | 1.14E-01 | | | | 1085.78 | 7.22 | 3.81E-01 | | 4.76E-02 | 1.48E-01 | | | . • | 1112.02 | 9.60 | 3.65E-01 | | 0.00E+00 | 1.50E-01 | | | | 1407.95 | 14.94 | 2.67E-01 | | 2.84E-02 | 1.08E-01 | | | GD-153 | 97.43 | 31.30 | 4.52E-02 | 4.52E-02 | -5.16E-02 | 2.09E-02 | | | | 103.18 | 22.20 | 6.48E-02 | • | 8.77E-03 | 3.00E-02 | | | EU-154 | 123.07 | 40.50 | 4.20E-02 | 4.20E-02 | 1.75E-02 | 1.96E-02 | | | | 723.30 | 19.70 | 1.37E-01 | | -3.97E-02 | 5.74E-02 | | | | 873,19 | 11.50 | 3.53E-01 | | 7.45E-02 | 1.54E-01 | | | • | 996.32 | 10.30 | 2.48E-01 | | -2.28E-01 | 9.63E-02 | | | 4 | 1004.76 | 17.90 | 2.17E-01 | | 0.00E+00 | 9.25E-02 | | | | 1274.45 | 35.50 | 1.04E-01 | 5 35 00 | -9.81E-03 | 4.19E-02 | | | EU-155 | 86.50 | 30.90 | 5.67E-02 | 5.67E-02 | 2.35E-02 | 2.66E-02
3.13E-02 | | | | 105.30 | 20.70 | 6.79E-02 | 0 600 01 | -1.46E-02 | 1.07E-01 | | | EU-156 | 811.77 | 10.40 | 2.62E-01 | 2.62E-01 | 6.10E-02 | 1.76E-01 | | | | 1153.47 | 7.20 | 4.44E-01 | | 5.08E-02 | 1.65E-01 | | | | 1230.71 | 8.90 | 4.07E-01 | 2 057 00 | -3.37E-02
3.79E-02 | 1.53E-01
1.53E-02 | | | HO-166M | 184.41 | 72.60 | 3.25E-02 | 3.25E-02 | 2.78E-02 | 3.43E-02 | | | | 280.45 | 29.60 | 7.51E-02 | | 4.01E-02 | 1.02E-01 | | | | 410.94 | 11.10 | 2.27E-01 | | -4.43E-03 | 2.75E-02 | | | | 711.69 | 54.10 | 6.29E-02 | * | -4.4012-00 | 2.758 02 | Analysis Report for 1603102-02 | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| |
TM-171 | 66.72 | 0.14 | 1.37E+01 | 1.37E+01 | -1.42E+01 | 6.41E+00 | | HF-172 | 81.75 | 4.52 | 3.53E-Q1 | 1.30E-01 | -1.49E-01 | 1.64E-01 | | HF-1/2 | 125.81 | 11.30 | 1.30E-01 | 1.500 | -5.19E-02 | 6.01E-02 | | LU-172 | 181.53 | 20.60 | 7.98E-02 | 4.97E-02 | -1.40E-01 | 3.64E-02 | | TO-112 | 810.06 | 16.63 | 1.56E-01 | 4.5711 02 | -1.10E-02 | 6.29E-02 | | | 912.12 | 15.25 | 2.99E-01 | | 1.30E-01 | 1.32E-01 | | ·. | 1093.66 | 62.50 | 4.97E-02 | • | -1.90E-03 | 1.97E-02 | | LU-173 | 100.72 | 5.24 | 2.61E-01 | 1.10E-01 | -1.06E-01 | 1,20E-01 | | TO-173 | 272.11 | 21.20 | 1.10E-01 | 11102 ,- | 3.94E-02 | 5.03E-02 | | HF-175 | 343.40 | 84.00 | 3.10E-02 | 3.10E-02 | 3.40E-03 | 1.41E-02 | | LU-176 | 88.34 | 13.30 | 1.22E-01 | 2.63E-02 | -2.61E-01 | 5.70E-02 | | 10 170 | 201.83 | 86.00 | 2.63E-02 | | 6.84E-03 | 1.23E-02 | | | 305.78 | 94.00 | 2.73E-02 | | -1.05E-03 | 1.25E-02 | | TA-182 | 67.75 | 41.20 | 4.36E-02 | 4.36E-02 | -3.19E-02 | 2.04E-02 | | 18 102 | 1121.30 | 34.90 | 8.11E-02 | | -3.12E-02 | 3.14E-02 | | | 1189.05 | 16.23 | 2.15E-01 | | 1.52E-02 | 8.68E-02 | | | 1221.41 | 26.98 | 1.41E-01 | | -1.27E-02 | 5.77E-02 | | | 1231.02 | 11.44 | 3.34E-01 | | 8.58E-02 | 1.37E-01 | | IR-192 | 308.46 | 29.68 | 8.51E-02 | 5.31E-02 | 8.56E-03 | 3.90E-02 | | 111 132 | 468.07 | 48.10 | 5.31E-02 | • • • • • • • | -2.89E-02 | 2.34E-02 | | HG-203 | 279.19 | 77.30 | 2.73E-02 | 2.73E-02 | -9.3CE-03 | 1.24E-02 | | BI-207 | 569.67 | 97.72 | 2.53E-02 | 2.53E-02 | -7,07E-03 | 1.08E-02 | | DI 207 | 1063.62 | 74.90 | 4.77E-02 | | 3.01E-03 | 1.98E-02 | | TL-208 | 583.14 | 30.22 | 1.07E-01 | 1.07E-01 | 3.99E-02 | 4.74E-02 | | 111 200 | 860.37 | 4.48 | 5.92E-01 | | -2.69E-01 | 2.39E-01 | | * | 2614.66 | 35.85 | 1.28E-01 | | 1.725-02 | 4.81E-02 | | BI-210M | 262.00 | 45.00 | 4.84E-02 | 4.84E-02 | -1.34E-02 | 2.22E-02 | | D1 210 | 300.00 | 23.00 | 1.06E-01 | • | -2.01E-02 | 4.85E-02 | | PB-210 | 46.50 | 4.25 | 7.39E-01 | 7.39E-01 | 4.51E-01 | 3.49E-01 | | PB-211 | 404.84 | 2.90 | 8.91E-01 | 8.912-01 | 5.44E-02 | 4.00E-01 | | | 831.96 | 2.90 | 1.27E+00 | | 3.42E-01 | 5.48E-01 | | BI-212 | 727.17 | 11.80 | 2.59E-01 | 2.59E-01 | -1.55E-02 | 1.11E-01 | | | 1620.62 | 2.75 | 1.38E+00 | | 2.72E-01 | 5.33E-01 | | PB-212 | 238.63 | 44.60 | 6.07E-02 | 6.07E-02 | 3.90E-02 | 2.84E-02 | | i de la companya | 300.09 | 3.41 | 7.14E-01 | | -1.36E-01 | 3.27E-01 | | BI-214 | 609.31 | 46.30 | 7.39E-02 | 7.39E-02 | -6.16E-04 | 3.29E-02 | | | 1120.29 | 15.10 | 1.87E-01 | | 7.78E-03 | 7.24E-02 | | | 1764.49 | 15.80 | 3.19E-01 | | 1.16E-01 | 1.31E-01 | |)
}- | 2204.23 | 4.98 | 8.41E-01 | | -4.25E-01 | 3.15E-01 | | PB-214 | 295.21 | 19.19 | 1.13E-01 | 7.74E-02 | -8.22E-02 | 5.13E-02 | | | 351.92 | 37.19 | 7.74E-02 | | 1.31E-02 | 3.55E-02 | | RN-219 | 401.80 | 6.50 | 4.02E-01 | 4.02E-01 | 9.43E-02 | 1.81E-01 | | RA-223 | 323.87 | 3.88 | 6.61E-01 | 6.61E-01 |
-1.32E-01 | 3.02E-01 | | RA-224 | 240.98 | 3.95 | 6.91E-01 | 6.91E-01 | 3.10E-01 | 3.24E-01 | | RA-225 | 40.00 | 31.00 | 1.08E-01 | 1.08E-01 | -2.17E-02 | 5.00E-02 | | RA-226 | 186.21 | 3.28 | 7.21E-01 | 7.21E-01 | 7.28E-01 | 3.39E-01 | | TH-227 | 50.10 | 8.40 | 2.74E-01 | 2.18E-01 | -3.36E-01 | 1.28E-01 | | | 236.00 | 11.50 | 2.18E-01 | | 8.35E-02 | 1.02E-01 | | | 256.20 | 6.30 | 3.59E-01 | ٠ | 2.76E-02 | 1.65E-01 | | AC-228 | 338.32 | 11.40 | 2.49E-01 | 1.64E-01 | 9.21E-02 | 1.15E-01 | | | 911.07 | 27.70 | 1.64E-01 | | 8.69E-02 | 7.23E-02 | | | 969.11 | 16.60 | 2.52E-01 | | 1.32E-01 | 1.09E-01 | | TH-230 | 48.44 | 16.90 | 1.71E-01 | 1.71E-01 | 1.31E-01 | 8.07E-02 | | | | | | 2 | | | 1603102-02 **BLANK** | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| |
TH-230 | 62.85 | 4.60 | 5.04E-01 | 1.71E-01 | 4.10E-01 | 2.39E-01 | | | 67.67 | 0.37 | 4.85E+00 | , y | -3.55E+00 | 2.27E+00 | | PA-231 | 283.67 | 1.60 | 1.38E+00 | 1.15E+00 | -1.98E-01 | 6.31E-01 | | | 302.67 | 2.30 | 1.15E+00 | | 4.98E-02 | 5.29E-01 | | TH-231 | 25.64 | 14.70 | 1.57E+00 | 2.60E-01 | 4.95E-02 | 7.48E-01 | | | 84.21 | 6.40 | 2.60E-01 | | 5.00E-02 | 1.22E-01 | | PA-233 | 311.98 | 38.60 | 6.01E-02 | 6.01E-02 | -1.21E-03 | 2.73E-02 | | PA-234 | 131.20 | 20.40 | 7.62E-02 | 7.62E-02 | -5.78E-03 | 3.52E-02 | | | 733.99 | 8.80 | 3.63E-01 | | 6.38E-02 | 1.56E-01 | | | 946.00 | 12.00 | 2.70E-01 | | -2.55E-02 | 1.12E-01 | | PA-234M | 1001.03 | 0.92 | 4.82E+00 | 4.82E+00 | 2.29E+00 | 2.10E+00 | | TH-234 | 63.29 | 3.80 | 5.89E-01 | 5.89E-01 | 1.32E-01 | 2.79E-01 | | U-235 | 143.76 | 10.50 | 1.63E-01 | 1.63E-01 | 7.99E-02 | 7.56E-02 | | | 163.35 | 4.70 | 3.62E-01 | | -7.95E-03 | 1.67E-01 | | | 205.31 | 4.70 | 4.74E-01 | | 1.75E-01 | 2.21E-01 | | NP-237 | 86.50 | 12.60 | 1.39E-01 | 1.39E-01 | 5.77E-02 | 6.53E-02 | | NP-239 | 106.10 | 22.70 | 7.15E-02 | 7.15E-02 | 3.71E-03 | 3.32E-02 | | | 228.18 | 10.70 | 2.35E-C1 | | 8.49E-02 | 1.09E-01 | | | 277.60 | 14.10 | 1.63E-01 | | -5.93E-02 | 7.41E-02 | | AM-241 | 59.54 | 35.90 | 5.30E-02 | 5.30E-02 | -3.50F-02 | 2.48E-02 | | AM-243 | 74.67 | 66.00 | 2.74E-02 | 2.74E-02 | -7.66E-03 | 1.29E-02 | | CM-243 | 209.75 | 3.29 | 6.06E-01 | 1.51E-01 | -3.11E-01 | 2.80E-01 | | | 228.14 | 10.60 | 2.19E-01 | | 7.90E-02 | 1.02E-01 | | | 277.60 | 14.00 | 1.51E-01 | | -5.51E-02 | 6.88E-02 | + = Nuclide identified during the nuclide identification * = Energy line found in the spectrum > = MDA value not calculated @ = Half-life too short to be able to perform the decay correction No Action Level results available for reporting purposes. ### DATA REVIEW COMMENTS REPORT **Creation Date** Comment User 1603102-02 **BLANK** No Data Review Comments Entered. ************ Sample Title: BLANK Elapsed Live time: 3600 Elapsed Real Time: 3612 | Channel | 01607927916285763311571749959079680637353496893 | $ \begin{array}{c} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 $ | 115319393935841350
12319393935841350
12319393935841350 | 0
16351408310303115188135279465667746244782157206 | 0731405745394236130768564595980663434555974753 | 055575714907445023321681798768007667706723345478 | 05554602046876915439884808305618945746584763437 | 045681276449203908211312516980404457455055774936 | |---------|---|--|--|--|--|--|---|--| | Channel | Data Rep | port | | 4/13/2016 | 2:15: | 56 PM | | Page 2 | 2 | |--|----------|---|--|---|--|-------|--|--------|---| | 369: | 3 | 3. | 4 | 7 | C | 4 | 3 | 2 | | | · | Sample | Title: | BLANK | | • | : | | | | | Channell 3833::::::::::::::::::::::::::::::::: | | 3132263522232342222353403020335526121121533411111012143 | 434202322521654345241413222305413312012253421320003231 | 2366346344663352122333:11531033102441033131211212242223 | 232526432373092463511111424345413353430322032403421111 | | 324325141341343471026332265406430311322225522200041033 | | | | Channel | Data R | eport | | 4/13/2016 | 6 2:1 | 5:56 PM | | Page : | |--|--------|------------------|---|--|---|--|--|--| | 801: | 0 | 2 | 0 | 1 | 1 | , 1 | 0 | 1 | | | Sampl | e Title: | BLANK | | | | | | | Channel 8077: 8253: 841: 8253: 849: 8573: 849: 8573: 88975: 88975: 88975: 89953 | | 1
0
1
0 | 221003302320120011102131212301122101901111031211200 | 301101303023110110000200311222202110111110100050102011 | 10111111410011121201100102002110201210101111261001010 | 101030041002300140010021225231222520002032100152111202 |
1
1
1
4
2
1
1
1
2
0
2
0
1
8
0
2
1
4
1
0
1
0
1
0
1
0
0
0
0
0
0
1
0
0
0
0 | 1
0
3
1
1
2
3
0
1
4
0
1
2
1
2
1
0
1
0
1
0
1
1
1
1
1
1
1
1
1 | | Channel | Data | Rep | ort | | | | 4/13/2016 | 2:15 | :56 PM | | | Page (| |---|-------------|--------------------------------------|------|----------------------------|------|------------------------------|---|--|---|---|-----------------------------------|---| | 1233: | | 0 | | 1 | | 0 | 0 | 0 | 1 | : | 1 | 0 | | | Sam | ple | Titl | .e: | BLAN | K | | | | | | | | Channel
1241:
1249:
1257:
1265:
1273:
1281: | | -
3
1
1
1
0 | | 0
1
1
0
2
2 | | - ·
0
1
2
1
0 | 0
1
3
1
0
1 | 2
1
1
0
0 | 0
0
2
1
1
0 | | -
2
0
0
0
0
0 |
1
1
0
2
2
0 | | | | 010010401010011100000000300001011000 | | 2 | | 0 | 012101141120200000000000000011200040000 | 0020012410000001003001020011001101000010 | 10001010200200010101302100003110000001000 | | Ö | 22020002200011000210020101210000011000000 | | 1609:
1617:
1625:
1633:
1641:
1649:
1657: | | 0
0
0
0
0
0 | | 0
0
0
1
0
0 | | 1
0
1
0
0
2 | 0
1
0
3
0
2
0
0
0 | 0
1
0
1
0
0
1
0 | 1
1
0
1
0
0
2
0 | | 0
0
0
1
1
0 | 1
0
0
1
0
1 | Page 4 | Channel | Data | Report | | A. | 4/13/2016 | 2:15: | 56 PM | | ·Page | 5 | |--|------|---|-----|-------|-----------|--------------------------------------|---|---|-------|---| | 1665: | | 0 | 3 | 1 | 0 | 1 | 1 | . 0 | . 0 | | | | Samp | ole Tit] | Le: | BLANK | • | | | | | | | Channel 1673: 1689: 1697: 1705: 1713: 1721: 1729: 1745: 1753: 1769: 17785: 1769: 17785: 1785: 1809: 18 | | 000001020100000000100000000000000000000 | | | | 000000100003000100001010000010000100 | 2000001120100000100010100000011000001100001 | 0000300101000000100000001100002020100000101000000 | | | | Channel | Data | Rej | port | | 4/13/201 | 16 2:15 | 5:56 ⊕M | | Page 6 | ŝ | |--|------|---|--------|---|---|---|---|---|-------------|---| | 2097: | | 0 | 0 | 0 | 0 | 0 | 0, | 0 | 1 | | | | Sam | ple | Title: | BLANK | | | | | | | | Channell 2105: 21131: 2129: 2129: 2137: 2145: 2153: 2169: 2153: 2169: 2153: 2169: 2153: 2169: 2153: 2169:
2169: 21 | | -0000000100001000000000000001000000100000 | | 001000020001110100100001000010000000000 | 010100000100001000010000000000000000000 | 100000010001000010001100000000000000000 | 001000010000000000000000000000000000000 | 000000100001110011000000011100001000000 | 0
0
0 | | | Channel | Data | Rep | port | | 4/13/2016 | 5 2:15 | 5:56 PM | | Page 7 | |--|------|---|---|---|---|---|---|---|---| | 2529: | | 0 | 0. | 3. | 0 | 0 | - 0 | 0 | 1 | | | Samp | ple | Title: | BLANK | | | ÷ | | | | Channel 2537: 25453: 255697: 255697: 255697: 25560097: 25560097: 25560097: 25560097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2566097: 2576097: | | -00000000000000010000000000000000000000 | 100010001010001100100000000000000000000 | 010100000000000000000000000000000000000 | 000000100010000100000100000000000000000 | 000000100000000000000000000000000000000 | 010111101200001001001101000100100000000 | 000000010000010000010000100000000000000 | 1 1 0 0 0 1 1 1 0 2 0 0 0 0 0 0 0 0 0 0 | | Channel | Data | Reg | oort | | 4/13/2016 | 2:15:5 | 56 PM | | Page | 1 | |--|------|---|---|-------|---|---|---|---|---|---| | 2961: | | 0 | 0 | . 0 | ð | O | 0 | 0 | 0 | | | • | Samp | ple | Title: | BLANK | | | | | | | | Channel 29677: 2985: 29977: 2985: 29973: 30017:
30017: 300 | | -00000000000000110000000100000000000000 | 000000000000000000000000000000000000000 | | 000000010010000000000000000000000000000 | 020000000000000000000000000000000000000 | 100000100000000000000000000000000000000 | 000000000000000000000000000000000000000 | 100000000100000000000001000010000000000 | | | Channel | Data Rep | port | | 4/13/2016 | 2:15: | :56 PM | | Page | 9 | |--|----------|---|---|-----------|--|---|---|--|---| | 3393: | 1 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | | | | Sample | Title: | BLANK | | | | | | | | Chanell 3401: 3425: 3427 | | 110001010100000000000000000000000000000 | 100000101000000000000000000000000000000 | | 00000000000000001100000001000001000000 | 000001000000010010000000000000000000000 | 000002000000001010000000000000000000000 | 0001010100000000000001100000010000010000 | | | Channel | Data Repor | t . | | 4/13/2016 | 2:15: | 56 PM | | Page 10 | |---|-----------------------|-----------------------|------------------|-----------|--|------------------|----------------------------|------------------| | 3825: | 0 | 0 | 0 | 0 | 0 | 1 | Ö | 0 | | | Sample Ti | tle: | BLANK | | | | | | | Channel 3841: 3849: 3857: 3865: 3873: 3897: 3995: 39953: 39953: 39953: 39953: 39953: 39953: 4009: 4017: 4023: 4033: 4041: | | | | | 0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0 | | | | | 4049:
4057:
4065:
4073:
4081: | 0
0
0
1
0 | 1
0
0
0
1 | 0
1
1
0 | 0 0 0 | 1
0
0
0
0 | 0
0
0
0 | 1
0
0
0
0
0 | 0
0
0
0 | | 4089: | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0000035733.CNF Live Time :3600.000 sec Real Time :3611.940 sec Start: 1: 0.7(keV) Stop : 4096:4097.0(keV) Acq. Start :Wed Apr 13 13:15:30 2016 105-104-Counts-log scale 102-2500 2000 Channel 4000 3500 500 3000 1500 1000 ROI Type: 2 ROI Type: 1 1603102-03 SEDIMENT 2016-03-16A # GAMMA SPECTRUM ANALYSIS Sample Identification : 1603102-03 Sample Description : SEDIMENT 2016-03-16A . Sample Type : SOIL Sample Size Facility ; 4.476E+02 grams : Countroom Sample Taken On : 3/16/2016 1:44:26PM Acquisition Started : 4/13/2016 7:02:38AM Procedure Operator : GAS-1402 pCi **Detector Name** : Administrator : GE3 Geometry : GAS-1402 Live Time : 3600.0 seconds : 3612.5 seconds Real Time Dead Time : 0.35 % Peak Locate Threshold : 2.50 Peak Locate Range (in channels) : 1 - 4096 : 9 - 4096 Peak Area Range (in channels) Identification Energy Tolerance 1.000 keV Energy Calibration Used Done On. Efficiency Calibration Used Done On : 10/25/2014 : 10/25/2014 Efficiency Calibration Description Sample Number : 35692 ### PEAK-TO-TOTAL CALIBRATION REPORT Peak-to-Total Efficiency Calibration Equation 1603102-03 SEDIMENT 2016-03-16A ### PEAK LOCATE REPORT Peak Locate Performed on : 4/13/2016 8:02:52AM Peak Locate From Channel : 1 : 4096 Peak Locate To Channel Peak Search Sensitivity : 2.50 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 1 | 46.79 | 47.02 | 0.0000 | 0.00 | | 2 | 62.93 | 63.15 | 0.0000 | 0.00 | | 3 | 75.10 | 75.32 | 0.0000 | 0.00 | | 4 | 77.58 | 77.79 | 0.0000 | 0.00 | | 5 | 87.94 | 88.15 | 0.0000 | 0.00 | | 6 | 92.92 | 93.13 | 0.0000 | 0.00 | | 7 | 129.32 | 129.50 | 0.0000 | 0.00 | | 8 | 186.62 | 186.78 | 0.0000 | 0.00 | | 9 | 209.13 | 209.27 | 0.000 | 0.00 | | 10 | 239.02 | 239.15 | . 0,000 | 0.00 | | 11 | 242.23 | 242.36 | 0.000 | 0.00 | | 12 | 295.59 | 295.69 | 0.000 | 0.00 | | 13 | 338.65 | 338.73 | 0.000 | 0.00 | | 14 | 352.33 | 352.40 | 0.0000 | 0.00 | | 15 | 384.73 | 384.78 | 0.000 | 0.00 | | 16 | 410.28 | 410.33 | 0.000 | 0.00 | | 17 | 463.64 | 463.65 | 0.000 | 0.00 | | 18 | 511.69 | 511.68 | 0.0000 | 0.00 | | 19 | 535.95 | 535.93 | 0.0000 | 0.00 | | 20 | 579.46 | 579.42 | 0.0000 | 0.00 | | 21 | 583.44 | 583.40 | 0.0000 | 0.00 | | 22 | 604.72 | 604.66 | 0.0000 | 0.00 | | 23 | 609.63 | 609.57 | 0.0000 | 0.00 | | 24 | 651.87 | 651.80 | 0.0000 | 0.00 | | 25 | 657.08 | 657.00 | 0.0000 | 0.00 | | 26 | 714.75 | 714.64 | 0.0000 | 0.00 | | 27 | 727.73 | 727.62 | 0.0000 | 0.00 | | 28 | 769.79 | 769.65 | 0.0000 | 0.00 | | 29 | 795.96 | 795.82 | 0.0000 | 0.00 | | 30 | 911.20 | 911.01 | 0.0000 | 0.00 | | 31 | 933.87 | 933.66 | 0.0000 | 0.00 | | 32 | 970.18 | 969.96 | 0.0000 | 0.00 | | 33 | 1011.24 | 1011.00 | 0.0000 | 0.00 | | 34 | 1115.57 | 1115.28 | 0.0000 | 0.00 | | 35 | 1120.65 | 1120.36 | 0.0000 | 0.00 | | 36 | 1238.10 | 1237.77 | 0.0000 | 0.00 | | 37 | 1248.34 | 1248.00 | 0.0000 | 0.00 | | 38 | 1255.45
 1255.11 | 0.0000 | 0.00 | | 39 | 1378.35 | 1377.96 | 0.0000 | 0.00 | | 40 | 1433.11 | 1432.70 | 0.0000 | 0.00 | | 41 | 1460.86 | 1460.44 | 0.0000 | 0.00 | | 42 | 1508.15 | 1507.71 | 0.0000 | 0.00 | 1603102-03 SEDIMENT 2016-03-16A | Peak No. | | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |-------------|----|--------------|------------------|----------------------|-------------------| | | 43 | 1589.28 | 1588,81 | 0,0000 | 0.00 | | | 44 | 1728.57 | 1728.05 | 0.0000 | 0.00 | | | 45 | 1764.55 | 1764.02 | 0.000 | 0.00 | | | 46 | 1846.61 | 1846.05 | 0.000 | 0.00 | | | 47 | 2119.62 | 2118.98 | 0.000 | 0.00 | | | 48 | 2204.93 | 2204.26 | 0.000 | 0.00 | | | 49 | 2447.24 | 2446.50 | 0.000 | 0.00 | | | 50 | 2614.27 | 2613.49 | 0.0000 | 0.00 | ^{? =} Adjacent peak noted Errors quoted at 2.000sigma SEDIMENT 2016-03-16A # PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 8:02:52AM Peak Analysis From Channel Peak Analysis To Channel : 1 : 4096 | | Peak
No. | Energy
(keV) | ROI
start | RO!
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |---|-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | | 1 | 46.79 | 44 - | 49 | 47.02 | 2.14E+02 | 64.89 | 6.75E+02 | 1.44 | | | 2 | 62.93 | 59 – | 66 | 63.15 | 1.60E+02 | 88.70 | 1.21E+03 | 1.65 | | M | 3- | 75.10 | 71 - | 81 | 75.32 | 3.21E+02 | 78.76 | 8.95E+02 | 1.83 | | m | 4 | 77.58 | 71 - | 81 | 77.79 | 5 93E+02 | 86.62 | 8.80E+02 | 1.83 | | M | 5 | 87.94 | 83 - | 97 | 88.15 | 1.72E+02 | 64.43 | 7.30E+02 | 1.68 | | m | 6 | 92.92 | 83 - | 97 | 93.13 | 2.15E+02 | 65.60 | 6.23E+02 | 1.69 | | | 7 | 129.32 | 127 - | 132 | 129.50 | 5.60E+01 | 55.44 | 5.70E+02 | 2.26 | | | 8 | 186.62 | 183 - | 191 | 186.78 | 1.75E+02 | 72.10 | 6.91E+02 | 1.80 | | | 9 | 209.13 | 205 - | 213 | 209.27 | 1.05E+02 | 66.23 | 6.07E+02 | 2.18 | | M | 10 | 239.02 | 235 - | 248 | 239.15 | 5.56E+02 | 60.60 | 3.15E+02 | 1.94 | | m | 11 | 242.23 | 235 - | 248 | 242.36 | 1.89E+02 | 63.81 | 2.79E+02 | 2.08 | | | 12 | 295.59 | 292 - | 300 | 295.69 | 2.15E+02 | 64.12 | 5.11E+02 | 1.45 | | | 13 | 338.65 | 334 - | 342 | 338.73 | 8.16E+01 | 48.68 | 3.13E+02 | 1.64 | | | 14 | 352.33 | 348 - | 356 | 352.40 | 4.78E+02 | 60.52 | 2.69E+02 | 1.95 | | | 15 | 384.73 | 379 - | 393 | 384.78 | 5.03E+01 | 61.32 | 3.73E+02 | 5.64 | | | 16 | 410.28 | 407 - | 413 | 410.33 | 3.24E+01 | 34.38 | 1.89E+02 | 1.66 | | | 17 | 463.64 | 460 - | 467 | 463.65 | 3.20E+01 | 35.04 | 1.82E+02 | 1.50 | | | 18 | 511.69 | 506 - | 517 | 511.68 | 1.18E+02 | 45.21 | 1.93E+02 | 3.08 | | | 19 | 535.95 | 532 - | 540 | 535.93 | 2.70E+01 | 30.45 | 1.26E+02 | 2.15 | | Μ | 20 | 579.46 | 578 - | 588 | 579.42 | 1.38E+01 | 12.30 | 3.79E+01 | 2.40 | | m | 21 | 583.44 | 578 - | 588 | 583.40 | 1.49E+02 | 30.28 | 5.98E+01 | 1.85 | | Μ | 22 | 604.72 | 603 - | 617 | 604.66 | 1.22E+01 | 16.12 | 4.86E+01 | 2.66 | | m | 23 | 609.63 | 603 - | 617 | 609.57 | 3.46E+02 | 41.32 | 8.22E+01 | 1.96 | | Μ | 24 | 651.87 | 648 - | 664 | 651.80 | 2.14E+01 | 23.54 | 8.13E+01 | 2.23 | | m | 25 | 657.08 | 648 - | 664 | 657.00 | 1.85E+01 | 21.10 | 7.55E+01 | 2.03 | | | 26 | 714.75 | 709 - | 722 | 714.64 | 6.04E+01 | 38.04 | 1.37E+02 | 10.17 | | | 27 | 727.73 | 725 - | 731 | 727.62 | 2.91E+01 | 24.30 | 8.37E+01 | 1.75 | | | 28 | 769.79 | 763 - | 782 | 769.65 | 4.13E+01 | 51.85 | 2.11E+02 | 7.33 | | | 29 | 795.96 | 792 - | 799 | 795.82 | 2.27E+01 | 21.63 | 6.06E+01 | 2.16 | | | 30 | 911.20 | 907 - | 916 | 911.01 | 7.92E+01 | 30.82 | 9.16E+01 | 1.98 | | | 31 | 933.87 | 928 - | 939 | 933.66 | 3.49E+01 | 22.89 | 4.83E+01 | 7.18 | | | 32 | 970.18 | 965 - | 976 | 969.96 | 5.19E+01 | 33.11 | 1.02E+02 | 2.53 | | m | 33 | 1011.24 | 998 - | 1013 | 1011.00 | 1.74E+01 | 12.57 | 1.61E+01 | 2.22 | | M | 34 | 1115.57 | 1114 - | 1125 | 1115.28 | 1.56E+01 | 8.49 | 1.77E+01 | 2.74 | | m | 35 | 1120.65 | 1114 - | | 1120.36 | 9.01E+01 | 26.68 | 6.37E+01 | 2.68 | | М | 36 | 1238.10 | 1223 - | | 1237.77 | 2.80E+01 | 22.88 | 6.46E+01 | 3.09 | | m | 37 | 1248.34 | 1223 - | 1259 | 1248.00 | 1.51E+01 | 17.76 | 4.11E+01 | 2.33 | | m | 38 | 1255.45 | 1223 - | 1259 | 1255.11 | 1.76E+01 | 20.58 | 4.87E+01 | 3.10 | | | 39 | 1378.35 | 1372 - | 1384 | 1377.96 | 2.31E+01 | 19.16 | 3.18E+01 | 2.70 | | | 40 | 1433.11 | 1429 - | 1435 | 1432.70 | 8.00E+00 | 10.44 | 1.40E+01 | 2.91 | 1603102-03 SEDIMENT 2016-03-16A | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | 41 | 1460.86 | 1.453 - | 1466 | 1460.44 | 3.55E+02 | 41.63 | 3.46E+01 | 2.33 | | 42 | 1508.15 | 1502 - | 1511 | 1507.71 | 2.17E+01 | 12.57 | 1.06E+01 | 2.86 | | 43 | 1589.28 | 1584 - | | 1588.81 | 1.70E+01 | 12.81 | 1.20E+01 | 3.29 | | 44 | 1728.57 | 1723 - | 1732 | 1728.05 | 1.80E+01 | 11.92 | 1.00E+01 | 3.46 | | 45 | 1764.55 | 1759 - | 1767 | 1764.02 | 4.01E+01 | 19.12 | 3.19E+01 | 2.94 | | 46 | 1846.61 | 1842 - | 1850 | 1846.05 | 1.10E+01 | 11.52 | 1.40E+01 | 4.59 | | 47 | 2119.62 | 2115 - | 2123 | 2118.98 | 8.17E+00 | 9.41 | 7.67E+00 | 2.76 | | 48 | 2204.93 | 2199 - | 2210 | 2204.26 | 1.75E+01 | 10.77 | 5.05E+00 | 3.92 | | 49 | 2447.24 | 2443 - | | 2446.50 | 8.00E+00 | 5.66 | 0.00E+00 | 1.33 | | 50 | 2614.27 | 2609 - | | 2613.49 | 4.70E+01 | 13.71 | 0.00E+00 | 2.45 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 8:02:52AM Peak Analysis From Channel Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |-----|-------------|-----------------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | | 1 | 46.79 | 44 - | 49 | 2.14E+02 | 64.89 | 6.75E+02 | 4.76E+01 | | | 2 | 62.93 | 59 - | 66 | 1.60E+02 | 88.70 | 1.21E+03 | 6.99E+01 | | М | 3 | 75.10 | 71 - | 81 | 3.21E+02 | 78.76 | 8.95E+02 | 4.92E+01 | | m | 4 | 77.58 | 71 - | 81 | 5.93E+02 | 86.62 | 8.80E+02 | 4.88E+01 | | M | 5 | 87.94 | 83 - | 97 | 1.72E+02 | 64.43 | 7.30E+02 | 4.44E+01 | | m | 6 | 92.92 | 83 - | 97 | 2.15E+02 | 65.60 | 6.23E+02 | 4.10E+01 | | | 7 | 129.32 | 127 - | 132 | 5.60E+01 | 55.44 | 5.70E+02 | 4.39E+01 | | | 8 | 186.62 | 183 - | 191 | 1.75E+02 | 72.10 | 6.91E+02 | 5.51E+01 | | | 9 | 209.13 | 205 - | 213 | 1.05E+02 | 66.23 | 6.07E+02 | 5.18E+01 | | М | 10 | 239.02 | 235 - | 248 | 5.56E+02 | 60.60 | 3.15E+02 | 2.92E+01 | | m | 11 | 242.23 | 235 - | 248 | 1.89E+02 | 63.81 | 2.79E+02 | 2.75E+01 | | 111 | 12 | 295.59 | 292 - | 300 | 2.15E+02 | 64.12 | 5.11E+02 | 4.69E+01 | | | 13 | 338.65 | 334 - | 342 | 8.16E+01 | 48.68 | 3.13E+02 | 3.72E+01 | | | 14 | 352.33 | 348 - | 356 | 4.78E+02 | 60.52 | 2.69E+02 | 3.44E+01 | | | 15 | 384.73 | 379 | 393 | 5.03E÷01 | 61.32 | 3.73E+02 | 4.90E+01 | | | 16 | 410.28 | 407 - | 413 | 3.24E+01 | 34.38 | 1.89E+02 | 2.67E+01 | | | 17 | 463.64 | 460 | 467 | 3.2CE+01 | 35.04 | 1.82E+02 | 2.73E+01 | 1603102-03 SEDIMENT 2016-03-16A | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |----|-------------|-----------------|------------------|------------|------------------|-------------------------|---------------------|-------------------| | | 18 | 511.69 | 506 - | 517 | 1.18E+02 | 45.21 | 1.93E+02 | 3.26E+01 | | | 19 | 535.95 | 532 - | 540 | 2.70E+01 | 30.45 | 1.26E+02 | 2.35E+01 | | М | 20 | 579.46 | 578 - | 588 | 1.38E+01 | 12.30 | 3.79E+01 | 1.01E+01 | | m | 21 | 583.44 | 578 - | 588 | 1.49E+02 | 30.28 | 5.98E+01 | 1.27E+01 | | М | 22 | 604.72 | 603 - | 617 | 1.22E+01 | 16.12 | 4.86E+01 | 1.15E+01 | | m | 23 | 609.63 | 603 - | 617 | 3.46E+02 | 41.32 | 8.22E+01 | 1.49E+01 | | M | 24 | 651.87 | 648 - | 664 | 2.14E+01 | 23.54 | 8.13E+01 | 1.48E+01 | | m | 25 | 657.08 | 648 - | 664 | 1.85E+01 | 21.10 | 7.55E+01 | 1.43E+01 | | | 26 | 714.75 | 709 - | 722 | 6.04E+01 | 38.04 | 1.37E+02 | 2.85E+01 | | | 27 | 727.73 | 725 - | 731 | 2.91E+01 | 24.30 | 8.37E+01 | 1.79E+01 | | | 28 | 769.79 | 763 - | 782 | 4.13E+01 | 51.85 | 2.11E+02 | 4.13E+01 | | | 29 | 795.96 | 792 - | 799 | 2.27E+01 | 21.63 | 6.06E+01 | 1.60E+01 | | | 30 | 911.20 | 907 - | 916 | 7.92E+01 | 30.82 | 9.16E+01 | 2.07E+01 | | | 31 | 933.87 | 928 - | 939 | 3.49E+01 | 22.89 | 4.83E+01 | 1.61E+01 | | | 32 | 970.18 | 965 - | 976 | 5,19E+01 | 33.11 | 1.02E+02 | 2.45E+01 | | ın | 33 | 1011.24 | 998 - | 1013 | 1.74E+01 | 12.57 | 1.61E+01 | 6.59E+00 | | М | 34 | 1115.57 | 1114 - | 1125 | 1.56E+01 | 8.49 | 1.77E+01 | 6.93E+00 | | m | 35 | 1120.65 | 1114 - | 1125 | 9.01E+01 | 26.68 | 6.37E+01 | 1.31E+01 | | M | 36 | 1238.10 | 1223 - | 1259 | 2.80E+01 | 22.88 | 6.46E+01 | 1.32E+01 | | m | 37 | 1248.34 | 1223 - | 1259 | 1.51E+01 | 17.76 | 4.11E+01 | 1.05E+01 | | m | 38 | 1255.45 | 1223 - | 1259 | 1.76E+01 | 20.58 | 4.87E+01 | 1.15E+01 | | | 39 | 1378.35 | 1372 - | 1384 | 2.31E+01 | 19.16 | 3.18E+01 | 1.36E+01 | | | 40 | 1433.11 | 1429 - | 1435 | 8.00E+00 | 10.44 | 1.40E+01 | 7.21E+00 | | | 41 | 1460.86 | 1453 - | 1466 | 3.55E+02 | 41.63 | 3.46E+01 | 1.46E+01 | | | 42 | 1508.15 | 1502 - | 1511 | 2.17E+01 | 12.57 | 1.06E+01 | 6.94E+00 | | | 43 | 1589.28 | 1584 - | 1595 | 1.70E+01 | 12.81 | 1.20E+01 | 8.05E+00 | | | 44 | 1728.57 | 1723 - | 1732 | 1.80E+01 | 11.92 | 1.00E+01 | 6.88E+00 | | | 45 | 1764.55 | 1759 - | 1767 | 4.01E+01 | 19.12 | 3.19E+01 | 1.18E+01 | | | 46 | 1846.61 | 1842 - | 1850 | 1.10E+01 | 11.52 | 1.40E+01 | 7.74E+00 | | | 47 | 2119.62 | 2115 - | 2123 | 8.17E+00 |
9.41 | 7.67E+00 | 6.14E+00 | | | 48 | 2204.93 | 2199 - | 2210 | 1.75E+01 | 10.77 | 5.05E+00 | 5.58E+00 | | | 49 | 2447.24 | 2443 - | 2449 | 8.00E+00 | 5.66 | 0.00E+00 | 0.00E+00 | | | 50 | 2614.27 | 2609 - | 2617 | 4.70E+01 | 13.71 | 0.00E+00 | 0.00E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma SEDIMENT 2016-03-16A ### PEAK WITH NID REPORT Peak Analysis Performed on : 4/13/2016 8:02:52AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB : 1.000 keV Peak Match Tolerance | | Peak
No. | Energy
(keV) | RC!
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |-----|-------------|-----------------|------------------|------------|------------------|------------------|-------------------------|----------------------|----------------------| | | 1 | 46.79 | 44 - | 49 | 47.02 | 2.14E+02 | 64.89 | 6.75E+02 | PB-210 | | | 2 | 62.93 | 59 - | - 66 | 63.15 | 1.60E+02 | 88.70 | 1.21E+03 | TH-230
TH-234 | | M | 3 | 75.10 | 71 - | 81 | 75.32 | 3.21E+02 | 78.76 | 8.95E+02 | AM-243 | | m | 4 | 77.58 | 71 - | 81 | 77.79 | 5.93E+02 | 86.62 | 8.80E+02 | TI - 44 | | М | 5 | 87.94 | 83 - | 97 | 88.15 | 1,72E+02 | 64.43 | 7.30E+02 | CD-109 | | • • | | | | | | | | | SN-126 | | | | | | | | | | | LU-176 | | m | 6 | 92.92 | 83 - | 97 | 93.13 | 2.15E+02 | 65.60 | 6.23E+02 | GA-67 | | | 7 | 129.32 | 127 - | 132 | 129.50 | 5.60E+01 | 55.44 | 5.70E+02 | | | | 8 | 186.62 | 183 - | 191 | 186.78 | 1.75E+02 | 72.10 | 6.91E+02 | RA-226 | | | 9 | 209.13 | 205 - | 213 | 209.27 | 1.05E+02 | 66.23 | 6.07E+02 | GA-67 | | | | | | | | | | | CM-243 | | М | 10 | 239.02 | 235 - | 248 | 239.15 | 5.56E+02 | 60.60 | 3.15E+02 | PB-212 | | m | 11 | 242.23 | 235 - | 248 | 242.36 | 1.89E+02 | 63.81 | 2.79E+02 | 011 | | | 12 | 295.59 | 292 - | 300 | 295.69 | 2.15E+02 | 64.12 | 5.11E+02 | PB-214 | | | 13 | 338.65 | 334 - | 342 | 338.73 | 8.16E+01 | 48.68 | 3.13E+02 | AC-228 | | | 14 | 352.33 | 348 - | 356 | 352.40 | 4.78E+02 | 60.52 | 2.69E+02 | PB-214 | | | 15 | 384.73 | 379 - | 393 | 384.78 | 5.03E+01 | 61.32 | 3.73E+02 | | | | 16 | 410.28 | 407 - | 413 | 410.33 | 3.24E+01 | 34.38 | 1.89E+02 | HO-166M | | | 17 | 463.64 | 460 - | 467 | 463.65 | 3.20E+01 | 35.04 | 1.82E+02 | SB-125 | | | 18 | 511.69 | 506 - | 517 | 511.68 | 1.18E+02 | 45.21 | 1.93E+02 | | | | 19 | 535.95 | 532 - | 540 | 535.93 | 2.70E+01 | 30.45 | 1.26E+02 | | | M | 20 | 579.46 | 578 - | 588 | 579.42 | 1.38E+01 | 12.30 | 3.79E+01 | | | m | 21 | 583.44 | 578 - | 588 | 583.40 | 1.49E+02 | 30.28 | 5.98E+01 | TL-208 | | Μ | 22 | 604.72 | 603 – | 617 | 604.66 | 1.22E+01 | 16.12 | 4.86E+01 | CS-134 | | m | 23 | 609.63 | 603 - | 617 | 609.57 | 3.46E+02 | 41.32 | 8.22E+01 | BI-214 | | M | 24 | 651.87 | 648 - | 664 | 651.80 | 2.14E+01 | 23.54 | 8.13E+01 | AG-110M | | m | 25 | 657.08 | 648 - | 664 | 657.00 | 1.85E+01 | 21.10 | 7.55E+01 | | | | 26 | 714.75 | 709 - | 722 | 714.64 | 6.04E+01 | 38.04 | 1.37E+02
8.37E+01 | BI-212 | | | 27 | 727.73 | 725 - | 731 | 727.62 | 2.91E+01 | 24.30 | 2.11E+02 | | | | 28 | 769.79 | 763 - | 782 | 769.65 | 4.13E+01 | 51.85 | 6.06E+01 | CS-134 | | | 29 | 795.96 | 792 - | 799 | 795.82 | 2.27E+01 | 21.63
30.82 | 9.16E+01 | AC-228 | | | 30 | 911.20 | 907 - | 916 | 911.01 | 7.92E+01 | 30.82 | 9.105401 | LU-172 | | | 31 | 933.87 | 928 - | 939 | 933.66 | 3.49E+01 | 22.89 | 4.83E+01 | | | | 32 | 970.18 | 965 - | 976 | 969.96 | 5.19E+01 | 33.11 | 1.02E+02 | | | m | 33 | 1011.24 | 998 - | 1013 | 1011.00 | 1.74E+01 | 12.57 | 1.61E+01 | | | М | 34 | 1115.57 | 1114 - | 1125 | 1115.28 | 1.56E+01 | 8.49 | 1.77E+01 | ZN-65 | | m | 35 | 1120.65 | 1114 - | 1125 | 1120.36 | 9.01E+01 | 26.68 | 6.37E+01 | SC-46
BI-214 | 1603102-03 SEDIMENT 2016-03-16A | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |-----|-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|----------------------| | _ | | : | | | | | | ··· | TA-182 | | М | 36 | 1238.10 | 1223 - | 1259 | 1237.77 | 2.80E+01 | 22.88 | 6.46E+01 | CO-56 | | m | 37 | 1248.34 | 1223 - | 1259 | 1248.00 | 1.51E+01 | 17.76 | 4.11E+01 | | | m | 38 | 1255.45 | 1223 - | 1259 | 1255.11 | 1.76E+01 | 20.58 | 4.87E+01 | | | 111 | 39 | 1378.35 | 1372 - | 1384 | 1377.96 | 2.31E+01 | 19.16 | 3.18E+01 | | | | 40 | 1433.11 | 1429 - | 1435 | 1432.70 | 8.00E+00 | 10.44 | 1.40E+01 | | | | 41 | 1460.86 | 1455 - | 1466 | 1460.44 | 3.55E+02 | 41.63 | 3.46E+01 | K-40 | | | 42 | 1508.15 | 1502 - | 1511 | 1507.71 | 2.17E+01 | 12.57 | 1.06E+01 | | | | 43 | 1589.28 | 1584 - | 1595 | 1588.81 | 1.70E+01 | 12.81 | 1.20E+01 | | | | 44 | 1728.57 | 1723 - | 1732 | 1728.05 | 1.80E+01 | 11.92 | 1.00E+01 | | | | 45 | 1764.55 | 1759 - | 1767 | 1764.02 | 4.01E+01 | 19.12 | 3.19E+01 | BI-214 | | | 46 | 1846.61 | 1842 - | 1850 | 1846.05 | 1.10E+01 | 11.52 | 1.40E+01 | | | | 47 | 2119.62 | 2115 - | 2123 | 2118.98 | 8.17E+00 | 9.41 | 7.67E+00 | | | | 48 | 2204.93 | 2199 - | 2210 | 2204.26 | 1.75E+01 | 10.77 | 5.05E+00 | BI-214 | | | 49 | 2447.24 | 2443 - | 2449 | 2446.50 | 8.00E+00 | 5,66 | 0.00E+00 | | | | 50 | 2614.27 | 2609 - | 2617 | 2613.49 | 4.70E+01 | 13.71 | 0.00E+00 | TL-208 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/13/2016 8:02:52AM | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |-----|-------------|-----------------|------------------|-------------------------|--------------------|---------------------------| | | 1 | 46.79 | 2.14E+02 | 64.89 | 1.52E-02 | 1.58E-03 | | | 2 | 62.93 | 1.60E+02 | 88.70 | 2.15E-02 | 1.70E-03
2.10E-03 | | M | 3 | 75.10 | 3.21E+02 | 78.76 | 2.37E-02 | 2.10E-03
2.18E-03 | | m | 4 | 77.58 | 5.93E+02 | 86.62 | 2.39E-02 | | | M | 5 | 87.94 | 1.72E+02 | 64.43 | 2.44至-02 | 2.52E-03 | | m | 6 | 92.92 | 2.15E+02 | 65.60 | 2.44E-02 | 2.41E-03 | | | 7 | 129.32 | 5.60E+01 | 55.44 | 2.25E-02 | 1.70E-03 | | | 8 | 186.62 | 1.75E+02 | 72.10 | 1.82E-02 | 1.42E-03 | | | 9 | 209.13 | 1.05E+02 | 66.23 | 1.68E-02 | 1.31E-03 | | М | 10 | 239.02 | 5.56E+02 | 60.60 | 1.52E-02 | 1.18E-03 | | m | 11 | 242.23 | 1.89E+02 | 63.81 | 1.50E-02 | 1.16E-03 | | 111 | 12 | 295.59 | 2.15E+02 | 64.12 | 1.28E-02 | 9.74E-04 | | | 13 | 338.65 | 8.16E+01 | 48.68 | 1.14E-02 | 9.12E-04 | | : | 14 | 352.33 | 4.78E+02 | 60.52 | 1.10E-02 | 8.93E-04 | 1603102-03 SEDIMENT 2016-03-16A | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |-----|-------------|--------------------|----------------------|-------------------------|--------------------|---------------------------| | | | | | | 1 007 00 | 0.475.04 | | | 15 | 384.73 | 5.03E+01 | 61.32 | 1.02E-02 | 8.47E-04 | | | 16 | 410.28 | 3.24E+01 | 34.38 | 9.69E-03 | 8.19E-04 | | | 17 | 463.64 | 3.20E+01 | 35.04 | 8.72E-03 | 7.65E-04 | | | 18 | 511.69 | 1.18E+02 | 45.21 | 8.00E-03 | 7.17E-04 | | | 19 | 535.95 | 2.70E+01 | 30.45 | 7.68E-03 | 6.93E-04 | | М | 20 | 579.46 | 1.38E+01 | 12.30 | 7.18E-03 | 6.50E-04 | | m | 21 | 583.44 | 1.49E+02 | 30.28 | 7.14E-03 | 6.46E-04 | | M | 22 | 604.72 | 1.22E+01 | 16.12 | 6.92E-03 | 6.25E-04 | | m | 23 | 609.63 | 3.46E+02 | 41.32 | 6.87E-03 | 6.20E-04 | | M | 24 | 651.87 | 2.14E+01 | 23.54 | 6.48E-03 | 5.78E-04 | | m | 25 | 657.08 | 1.85E+01 | 21.10 | 6.43E-03 | 5.72E-04 | | , | 26 | 714.75 | 6.04E+01 | 38.04 | 5.98E-03 | 5.24E-04 | | | 27 | 727.73 | 2.91E+01 | 24.30 | 5.89E-03 | 5.14E-04 | | | 28 | 769.79 | 4.13E+01 | 51.85 | 5.61E-03 | 4.79E-04 | | | 29 | 795.96 | 2.27E+01 | 21.63 | 5.45E-03 | 4.58E-04 | | | 30 | 911.20 | 7.92E+01 | 30.82 | 4.85E-03 | 3.72E-04 | | | 31 | 933.87 | 3.49E+01 | 22.89 | 4.75E-03 | 3.68E-04 | | | 32 | 970.18 | 5.19E+01 | 33.11 | 4.60E-03 | 3.61E-04 | | m | 33 | 1011.24 | 1.74E+01 | 12.57 | 4.44E-03 | 3.54E-04 | | M | 34 | 1115.57 | 1.56E+01 | 8.49 | 4.09E-03 | 3.34E-04 | | m | 35 | 1120.65 | 9.01E+01 | 26.68 | 4.08E-03 | 3.33E-04 | | M | 36 | 1238.10 | 2.80E+01 | 22.88 | 3.76E-03 | 3.09E-04 | | m | 37 | 1248.34 | 1.51E+01 | 17.76 | 3./3E-03 | 3.07E-04 | | m | 38 | 1255.45 | 1.76E+01 | 20.58 | 3.71E-03 | 3.05E-04 | | 10: | 39 | 1378.35 | 2.31E+01 | 19.16 | 3.45E-03 | 2.82E-04 | | | 40 | 1433.11 | 8.00E+00 | 10.44 | 3.34E-03 | 2.73E-04 | | | 41 | 1460.86 | 3.55E+02 | 41.63 | 3.29E-03 | 2.69E-04 | | | 42 | 1508.15 | 2.17E+01 | 12.57 | 3.21E-03 | 2.62E-04 | | | 43 | 1589.28 | 1.70E+01 | 12.81 | 3.09E-03 | 2.50E-04 | | | | 1728.57 | 1.80E+01 | 11.92 | 2.90E-03 | 2.29E-04 | | | 44
45 | | 4.01E+01 | 19.12 | 2.86E-03 | 2.24E-04 | | | 45 | 1764.55 | 1.10E+01 | 11.52 | 2.77E-03 | 2.13E-04 | | | 46 | 1846.61 | 8.17E+00 | 9.41 | 2.52E-03 | 2.13E-04 | | | 47 | 2119.62 | | 10.77 | 2.46E-03 | 2.13E-04 | | | 48 | 2204.93 | 1.75E+01 | 5.66 | 2.32E-03 | 2.13E-04 | | | 49
50 | 2447.24
2614.27 | 8.00E+00
4.70E+01 | 13.71 | 2.24E-03 | 2.13E-04 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma ## BACKGROUND SUBTRACT REPORT Peak Analysis Performed on : 4/13/2016 8:02:52AM Env. Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Analysis Report for 1603102-03 | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |----------------|-------------|------------------|----------------------|---------------------------|-----------------------|--------------------
----------------------|-----------------------| | | 1 | 46.79 | 2.14E+02 | 64.89 | 3.04E+01 | 2.01E+01 | 1.83E+02 | 6.79E+01 | | | 2 | 62.93 | 1.60E+02 | 88.70 | 5.41E+01 | 5.13E+00 | 1.06E+02 | 8.88E+01 | | M | 3 | 75.10 | 3.21E+02 | 78.76 | | | 3.21E+02 | 7.88E+01 | | m | 4 | 77.58 | 5.93E+02 | 86.62 | | • | 5.93E+02 | 8.66E+01 | | М | 5 | 87.94 | 1.72E+02 | 64.43 | 3.05E+00 | 2.15E+00 | 1.69E+02 | 6.45E+01 | | m [·] | 6 | 92.92 | 2.15E+02 | 65.60 | 7.72E+01 | 4.69E+00 | 1.38E+02 | 6.58E+01 | | , | 7 | 129.32 | 5.60E+01 | 55.44 | 5.56E+00 | 6.45E+00 | 5.04E+01 | 5.58E+01 | | | 8 | 186.62 | 1.75E+02 | 72.10 | 3.82E+01 | 5.87E+00 | 1.36E+02 | 7.23E+01 | | | 9 | 209.13 | 1.05E+02 | 66.23 | | | 1.05E+02 | 6.62E+01 | | М | 10 | 239.02 | 5.56E+02 | 60.60 | 1.06E+01 | 5.71E+00 | 5.45E+02 | 6.09E+01 | | m | 11 | 242.23 | 1.89E+02 | 63.81 | | | 1.89E+02 | 6.38E+01 | | | 12 | 295.59 | 2.15E+02 | 64.12 | | | 2.15E+02 | 6.41E+01
4.87E+01 | | | 13 | 338.65 | 8.16E+01 | 48.68 | | 0.000.00 | 8.16E+01 | 6.05E+01 | | | 1.4 | 352.33 | 4.78E+02 | 60.52 | 0.00E+00 | 0.00E+00 | 4.78E+02
5.03E+01 | 6.03E+01 | | | 15 | 384.73 | 5.03E+01 | 61.32 | | | 3.24E+01 | 3.44E+01 | | | 16 | 410.28 | 3.24E+01 | 34.38 | | | 3.20E+01 | 3.50E+01 | | | 17 | 463.64 | 3.20E+01 | 35.04 | r 050 01 | 4.92E+00 | 5.80E+01 | 4.55E+01 | | | 18 | 511.69 | 1.18E+02 | 45.21 | 5.95E+01 | 4.925+00 | 2.70E+01 | 3.04E+01 | | | 19 | 535.95 | 2.70E+01 | 30.45 | | | 1.38E+01 | 1.23E+01 | | M | 20 | 579.46 | 1.38E+01 | 12.30 | 5.06E+00 | 2.98E+00 | 1.44E+02 | 3.04E+01 | | m | 21 | 583.44 | 1.49E+02 | 30.28 | 3.005+00 | 2.901100 | 1.22E+01 | 1.61E+01 | | М | 22 | 604.72 | 1.22E+01 | 16.12
41.32 | 2.01E+00 | 3.84E+00 | 3.44E+02 | 4.15E+01 | | m | 23 | 609.63 | 3.46E+02 | 23.54 | 2.(111.00 | 5.011.00 | 2.14E+01 | 2.35E+01 | | M | 24 | 651.87 | 2.14E+01
1.35E+01 | 21.10 | | | 1.85E+01 | 2.11E+01 | | m | 25 | 657.08
714.75 | 6.043+01 | 38.04 | | | 6.04E+01 | 3.80E+01 | | | 26
27 | 727.73 | 2.91E+01 | 24.30 | | | 2.91E+01 | 2.43E+01 | | | 28 | 769.79 | 4.13E+01 | 51.85 | | | 4.13E+01 | 5.18E+01 | | | 29 | 795.96 | 2.27E+01 | 21.63 | | | 2,27E+01 | 2.16E+01 | | | 30 | 911.20 | 7.92E+01 | 30.82 | 2.99E+00 | 2.93E+00 | 7.62E+01 | 3.10E+01 | | | 31 | 933.87 | 3.49E+01 | 22.89 | | | 3.49E+01 | 2.29E+01 | | | 32 | 970.18 | 5.19E+01 | 33.11 | | | 5.19E+01 | 3.31E+01 | | m | 33 | 1011.24 | 1.74E+01 | 12.57 | | | 1.74E+01 | 1.26E+01 | | M | 34 | 1115.57 | 1.56E+01 | 8.49 | | | 1.56E+01 | 8.49E+00 | | m | 35 | 1120.65 | 9.01E+01 | 26.68 | | | 9.01E+01 | 2.67E+01 | | M | | 1238.10 | 2.80E+01 | 22.88 | | | 2.80E+01 | 2.29E+01 | | m | | 1248.34 | 1.51E+01 | 17.76 | | , | 1.51E+01 | 1.78E+01 | | m | | 1255.45 | 1.76E+01 | 20.58 | | | 1.76E+01 | 2.06E+01 | | 2 | 39 | 1378.35 | 2.31E+01 | 19.16 | | | 2.31E+01 | 1.92E+01 | | | 40 | 1433.11 | 8.00E+00 | 10.44 | | | 8.00E+00 | 1.04E+01 | | | 41 | 1460.86 | 3.55E+02 | 41.63 | | | 3.55E+02 | 4.16E+01 | | | 42 | 1508.15 | 2.17E+01 | 12.57 | | | 2.17E+01 | 1.26E+01 | | | 43 | 1589.28 | 1.70E+01 | 12.81 | | | 1.70E+01 | 1.28E+01 | | | 44 | 1728.57 | 1.80E+01 | 11.92 | | | 1.80E+01 | 1.19E+01 | | | 45 | 1764.55 | 4.01E+01 | 19.12 | | | 4.01E+01 | 1.91E+01
1.15E+01 | | | 46 | 1846.61 | 1.10E+01 | 11.52 | | | 1.10E+01 | 9.41E+00 | | | 47 | 2119.62 | 8.17E+00 | 9.41 | | | 8.17E+00 | 1.08E+01 | | | 48 | 2204.93 | 1.75E+91 | 10.77 | | | 1.75E+01
8.00E+00 | 5.66E+00 | | | 49 | 2447.24 | 8.00E+00 | 5.66 | | | 4.70E+01 | 1.37E+01 | | | 50 | 2614.27 | 4.70E+01 | 13.71 | | | 4.705401 | 1.0/101 | 1603102-03 SEDIMENT 2016-03-16A M = First peak in a multiplet regioe m = Other peak in a multiplet region: F = Fitted singlet Errors quoted at 2.000sigma ### AREA CORRECT!ON REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis Performed on : 4/13/2016 8:02:52AM Ref. Peak Energy : 0.00 Reference Date Uncertainty : 0.00 Peak Ratio Background File : 0.00 : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Corrected Area is: Original * Peak Ratio - Background | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-----|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | | 1. | 46.79 | 2.14C±02 | 64.89 | 3.04E+01 | 2.01E+01 | 1.83E+02 | 6.79E+01 | | | 2 | 62.93 | 1.60E÷02 | 88.70 | 3.41E+01 | 5.13E+00 | 1.06E+02 | 8.88E+01 | | М | 3 | 75.10 | 3.21E+02 | 78.76 | | | 3.21E+02 | 7.88E+01 | | m | 4 | 77.58 | 5.93E+02 | 86.62 | | | 5.93E+02 | 8.66E+01 | | М | 5 | 87.94 | 1.72E+02 | 64.43 | 3.05E+00 | 2.15E+00 | 1.69E+02 | 6.45E+01 | | m | 6 | 92.92 | 2.15E+02 | 65.60 | 7.72E+01 | 4.69E+00 | 1.38E+02 | 6.58E+01 | | 111 | 7 | 129.32 | 5.60E+01 | 55.44 | 5.56E+00 | 6.45E+00 | 5.04E+01 | 5.58E+01 | | | 8 | 186.62 | 1.75E+02 | 72.10 | 3.82E+01 | 5.87E+00 | 1.36E+02 | 7.23E+01 | | | 9 | 209.13 | 1.05E+02 | 66.23 | | | 1.05E+02 | 6.62E+01 | | М | 10 | 239.02 | 5.56E+02 | 60.60 | 1.06E+01 | 5.71E+00 | 5.45E+02 | 6.09E+01 | | m | 11 | 242.23 | 1.89E+02 | 63.81 | | | 1.89E+02 | 6.38E+01 | | | 12 | 295.59 | 2.15E+02 | 64.12 | • | | 2.15E+02 | 6.41E+01 | | | 13 | 338.65 | 8.16E+01 | 48.68 | | | 8.16E+01 | 4.87E+01 | | | 14 | 352.33 | 4.78E+02 | 60.52 | 0.00E+00 | 0.00E+00 | 4.78E+02 | 6.05E+01 | | | 15 | 384.73 | 5.03E+01 | 61.32 | | | 5.03E+01 | 6.13E+01 | | | 16 | 410.28 | 3.24E+01 | 34.38 | | | 3.24E+01 | 3.44E+01 | | | 17 | 463.64 | 3.20E+01 | 35.04 | | | 3.20E+01 | 3.50E+01 | | | 18 | 511.69 | 1.18E+02 | 45.21 | 5.95E+01 | 4.92E+00 | 5.80E+01 | 4.55E+01 | | | 19 | 535.95 | 2.70E+01 | 30.45 | | | 2.70E+01 | 3.04E+01 | | Μ | 20 | 579.46 | 1.38E+01 | 12.30 | | | 1.38E+01 | 1.23E+01 | | m | 21 | 583.44 | 1.49E+02 | 30.28 | 5.06E+00 | 2.98E+00 | 1.44E+02 | 3.04E+01 | | Μ | 22 | 604.72 | 1.22E+01 | 16.12 | | 1 | 1.22E+01 | 1.61E+01 | | m | 23 | 609.63 | 3.46E+02 | 41.32 | 2.01E+00 | 3.84E+00 | 3.44E+02 | 4.15E+01 | | М | 24 | 651,87 | 2.14E+01 | 23.54 | • | | 2.14E+01 | 2.35E+01 | | m | 25 | 657.08 | 1.857+01 | 21.10 | | | 1.85E+01 | 2.11E+01 | | | 26 | 714.75 | 6.04E+01 | 38.04 | | | 6.04E+01 | 3.80E+01 | | | 27 | 727.73 | 2.91E+01 | 24.30 | | | 2.91E+01 | 2.43E+01 | | | 28 | 769.79 | 4.13E+01 | 51.85 | | | 4.13E+01 | 5.18E+01 | | | 29 | 795.96 | 2.27E+01 | 21.63 | | | 2.27E+01 | 2.16E+01 | | | 30 | 911.20 | 7.92E+01 | 30.82 | 2.99E+00 | 2.93E+00 | 7.62E+01 | 3.10E+01 | | | 31 | 933.87 | 3.49E+01 | 22,89 | | | 3.49E+01 | 2.29E+01 | | | 32 | 970.18 | 5.19E+01 | 33.11 | | | 5.19E+01 | 3.31E+01 | 1603102-03 SEDIMENT 2016-03-16A | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-------|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| |
m | 33 | 1011.24 | 1.74E+01 | 12.57 | | | 1.74E+01 | 1.26E+01 | | M | | 1115.57 | 1.56E+01 | 8.49 | | | 1.56E+01 | 8.49E+00 | | m | | 1120.65 | 9.01E+01 | 26.68 | | | 9.01E+01 | 2.67E+01 | | M | | 1238.10 | 2.80E+01 | 22.88 | | | 2.80E+01 | 2.29E+01 | | m | | 1248.34 | 1.51E+01 | 17.76 | • | | 1.51E+01 | 1.78E+01 | | m | | 1255.45 | 1.76E+01 | 20.58 | | | 1.76E+01 | 2.06E+01 | | 111 | | 1378.35 | 2.31E+01 | 19.16 | | | 2.31E+01 | 1.92E+01 | | | | 1433.11 | 8.00E+00 | 10.44 | | | 8.00E+00 | 1.04E+01 | | | | 1460.86 | 3.55E+02 | 41.63 | | • | 3.55E+02 | 4.16E+01 | | | | 1508.15 | 2.17E+01 | 12.57 | | | 2.17E+01 | 1.26E+01 | | | | 1589.28 | 1.70E+01 | 12.81 | | | 1.70E+01 | 1.28E+01 | | | 44 | | 1.80E+01 | 11.92 | | | 1.80E+01 | 1.19E+01 | | | | 1764.55 | 4.01E+01 | 19.12 | | | 4.01E+01 | 1.91E+01 | | | 46 | | 1.10E+01 | 11.52 | | | 1.10E+01 | 1.15É+01 | | | 47 | | 8.17E+00 | 9.41 | | | 8.17E+00 | 9.41E+00 | | | 48 | | 1.75E+01 | 10.77 | | | 1.75E+01 | 1.08E+01 | | | 49 | | 8.00E+00 | 5.66 | | | 8.00E+00 | 5.66E+00 | | | 50 | | 4.70E+01 | 13.71 | | | 4.70E+01 | 1.37E+01 | M = First peak in a multiplet region rn = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB ### IDENTIFIED NUCLIDES | Nuclide Name | ld Confidence | Energy (keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|----------|----------|-------------------------|-------------------------| | K-40 | 1.000 | 1460.81 * | ŧ. | 10.67 | 1.69E+01 | 2.45E+00 | | ZN-65 | 1.000 | 1115.52 * | k | 50.75 | 1.36E-01 | 7.50E-02 | | GA-67 | 0.424 | 93.31 * | k | 35.70 | 9.65E+01 | 3.68E+02 | | GA-07 | 0 1 1 1 1 | 208.95 * | ĸ | 2.24 | 1.69E+03 | 6.22E+03 | | | | 300.22 | | 16.00 | | | | CD-109 | 0.999 | 88.03 * | * | 3.72 | 3.25E+00 | 1.30E+00 | | SN-126 | 0.978 | | * | 37.00 | 3.14E-01 | 1.24E-01 | | CS-134 | 0.748 | 563.23 | | 8.38 | | | | C2-134 | 01110 | 569,32 | | 15.43 | | | | | | 604.70 | * | 97.60 | 3.11E-02 | 4.12E-02 | | | | 795.84 | * | 85.40 | 8.39E-02 | 8.03E-02 | | | | 801.93 | | 8.73 | | | | TL-208 | 0.869 | | * | 30.22 | 1.12E+00 | 2.57E-01 | 1603102-03 SEDIMENT 2016-03-16A | Nuclide Name | Id Confidence | Energy (keV) | • . | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|-----|----------|-------------------------|-------------------------| | TL-208 | 0.869 | 860.37 | | 4.48 | | | | 111 200 | 0.000 | 2614.66 | * | 35.85 | 9.82E-01 | 3.01E-01 | | PB-210 | 0.986 | 46.50 | × | 4.25 | 4.78E+00 | 1.84E+00 | | BI-212 | 0.731 | 727.17 | * | 11.80 | 7.03E-01 | 5.90E-01 | | D1 212 | | 1620.62 | | 2.75 | | | | PB-212 | 0.873 | 238.63 | * | 44.60 | 1.35E+00 | 1.83E-01 | | ID ZIC | | 300.09 | | 3.41 | | | | BI-214 | 0.983 | 609.31 | * | 46.30 | 1.82E+00 | 2.73E-01 | | D1 21. | | 1120.29 | * | 15.10 | 2.46E+00 | 7.54E-01 | | | | 1764.49 | * | 15.80 |
1.49E+00 | 7.20E-01 | | • | | 2204,22 | .★ | 4.98 | 2.39E+00 | 1.49E+00 | | PB-214 | 0.974 | 295.21 | * | 19.19 | 1.47E+00 | 4.52E-01 | | ED ST4 | | 351.92 | * | 37.19 | 1.95E+00 | 2.93E-01 | | RA-226 | 0.973 | 186.21 | * | 3.28 | 3.82E+00 | 7.29E+00 | | AC-228 | 0.574 | 338.32 | * | 11.40 | 1.05E+00 | 6.32E-01 | | AC 220 | 0,01,1 | 911.07 | * | 27.70 | 9.51E-01 | 3.93E-01 | | | | 969.11 | | 16.60 | | | | TH-234 | 0.979 | 63.29 | * | 3.80 | 2.28E+00 | 1.83E+00 | | AM-243 | 0.971 | 74.67 | * | 66.00 | 3.45E-01 | 9.00E-02 | ^{* =} Energy line found in the spectrum. Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 8:02:52AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | |-----|--------|--------------|-----------------|-----------------------------|--------------|----------------------| | m | 4 | 77.58 | 1.64734E-01 | 7.30 | Tol. | TI-44 | | | 7 | 129.32 | 1.40108E-02 | 55.33 | | | | m | 11 | 242.23 | 5.24466E-02 | 16.90 | | | | 111 | 15 | 384.73 | 1,39850E-02 | 60.90 | Sum | | | | 16 | 410.28 | 8.99716E-03 | 53.07 | Tol. | HO-166M | | | 17 | 463.64 | 8.88211E-03 | 54.80 | | | | | 18 | 511.69 | 1.61234E-02 | 39.18 | | | | | 19 | 535.95 | 7.50000E-03 | 56.38 | | | | М | 20 | 579.46 | 3.83071E-03 | 44.59 | | | | M | 24 | 651.87 | 5.93315E-03 | 55.11 | Sum | | ^{- =} Manually added nuclide. ^{? =} Manually edited nuclide. Energy Tolerance: 1.000 keV 1603102-03 SEDIMENT 2016-03-16A | Pe | ak No. | Energy (keV) Peak Size (CPS) | | Peak CPS (%)
Uncertainty | ₽eak
Type | Tolerance
Nuclide | | |----|--------|------------------------------|-------------|-----------------------------|--------------|----------------------|--| | m | 25 | 657.08 | 5.15008E-03 | 56.89 | Sum | | | | | 26 | 714.75 | 1.67905E-02 | 31.47 | | | | | | 28 | 769.79 | 1.14701E-02 | 62.78 | Sum | | | | | 31 | 933.87 | 9.68456E-03 | 32.83 | | | | | | 32 | 970.18 | 1.44283E-02 | 31.87 | | | | | m | 33 | 1011.24 | 4.84625E-03 | 36.02 | | | | | М | 36 | 1238.10 | 7.78546E-03 | 40.82 | | | | | m | 37 | 1248.34 | 4.18343E-03 | 58.97 | | | | | m | 38 | 1255.45 | 4.88650E-03 | 58.49 | | | | | | 39 | 1378.35 | 6.41382E-03 | 41.50 | | | | | | 40 | 1433.11 | 2.2222E-03 | 65.25 | | | | | | 42 | 1508.15 | 6.02881E-03 | 28.96 | Sum | | | | | 43 | 1589.28 | 4.72222E-03 | 37.67 | | | | | | 44 | 1728.57 | 5.00000E-03 | 33.10 | | | | | | 46 | 1846.61 | 3.05556E-03 | 52.37 | | | | | | 47 | 2119.62 | 2.26852E-03 | 57.60 | | | | | | 49 | 2447.24 | 2.2222E-03 | 35.36 | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA*\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide
Name | ld
Confidence | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | | |-----------------|------------------|-----------------|---|----------|-------------------------|-------------------------|--| | K-40 | 1.00 | 1460.81 | * | 10.67 | 1.69E+01 | 2.45E+00 | | | ZN-65 | 1.00 | 1115.52 | * | 50.75 | 1.36E-01 | 7.50E-02 | | | GA-67 | 0.42 | 93.31 | * | 35.70 | 9.65E+01 | 3.68E+02 | | | UA UI | V.12 | 208.95 | * | 2,24 | 1.69E+03 | 6.22E+03 | | | | | 300.22 | | 16.00 | | | | | CD-109 | 0.99 | 88.03 | * | 3.72 | 3.25E+00 | 1.30E+00 | | | SN-126 | 0.97 | 87.57 | * | 37.00 | 3.14E-01 | 1.24E-01 | | | CS-134 | 0.74 | 563.23 | | 8.38 | | | | | CD 134 | 0.71 | 569.32 | | 15.43 | | | | | | | 604.70 | * | 97.60 | 3.11E-02 | 4.12E-02 | | | | | 795.84 | * | 85.40 | 8.39E-02 | 8.03E-02 | | 1603102-03 SEDIMENT 2016-03-16A | Nuclide
Name | ld
Confidence | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | | |-----------------|------------------|-------------------|---|---------------|-------------------------|-------------------------|---| | CS-134 | 0.74 | 801.93 | | 8.73 | ·. | | • | | TL-208 | 0.86 | 583.14 | * | 30.22
4.48 | 1.12E+00 | 2.57E-01 | | | | | 860.37
2614.66 | * | 35.85 | 9.82E-01 | 3.01E-01 | | | PB-210 | 0.98 | 46.50 | * | 4.25 | 4.78E+00 | 1.84E+00 | | | BI-212 | 0.73 | 727.17 | * | 11.80 | 7.03E-01 | 5.90E-01 | | | | | 1620.62 | | 2.75 | | 4 005 01 | | | PB-212 | 0.87 | 238.63
300.09 | * | 44.60
3.41 | 1.35E+00 | 1.83E-01 | | | BI-214 | 0.98 | 609.31 | * | 46.30 | 1.82E+00 | 2.73E-01 | | | D1 21. | | 1120.29 | * | 15.10 | 2.46E+00 | 7.54E-01 | | | | | 1764.49 | * | 15.80 | 1.49E+00 | 7.20E-01 | | | | | 2204.22 | * | 4.98 | 2.39E+00 | 1.49E+00 | | | PB-214 | 0.97 | 295.21 | * | 19.19 | 1.47E+00 | 4.52E-01 | | | | | 351.92 | * | 37.19 | 1.95E+00 | 2.93E-01 | | | RA-226 | 0.97 | 186.21 | * | 3.28 | 3.82E+00 | 7.29E+00 | | | AC-228 | 0.57 | 338.32 | * | 11.40 | 1.05E+00 | 6.32E-01 | | | 110 220 | | 911.07 | * | 27.70 | 9.51E-01 | 3.93E-01 | | | | | 969.11 | | 16.60 | | | | | TH-234 | 0.97 | 63.29 | * | 3.80 | 2.18E+00 | 1.83E+00 | | | AM-243 | 0.97 | 74.67 | * | 66.00 | 3.45E-01 | 9.00E-02 | | ^{* =} Energy line found in the spectrum. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma # INTERFERENCE CORRECTED REPORT | | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |---|--|---|--|--|----------| | ? | K-40
ZN-65
GA-67
CD-109
SN-126 | 1.000
1.000
0.424
0.999
0.978 | 1.69E+01
1.36E-01
1.15E+02
3.25E+00
3.14E-01 | 2.45E+00
7.50E-02
4.33E+02
1.30E+00
1.24E-01 | | | • | CS-134 | 0.748 | 4.21E-02 | 3.67E-02 | | ^{- =} Manually added nuclide. ^{? =} Manually edited nuclide. ^{@ =} Energy line not used for Weighted Mean Activity 1603102-03 SEDIMENT 2016-03-16A | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |-----------------|-----------------------------|------------------------------------|------------------------------------|----------| | TL-208 | 0.869 | 1.06E+00 | 1.96E-01 | | | PB-210 | 0.986 | 4.78E+00 | 1.84E+00 | | | BI-212 | 0.731 | 7.03E-01 | 5.90E-01 | | | PB-212 | 0.873 | 1.35E+00 | 1.83E-01 | | | BI-214 | 0.983 | 1.86E+00 | 2.39E-01 | | | PB-214 | 0.974 | 1.81E+00 | 2.46E-01 | • | | RA-226 | 0.973 | 3.82E+00 | 7.29E+00 | | | AC-228 | . 0.574 | 9.79E-01 | 3.34E-01 | | | TH-234 | 0.979 | 2.18E+00 | 1.83E+00 | | | AM-243 | 0.971 | 3.45E-01 | 9.00E-02 | | ^{? =} nuclide is part of an undetermined solution Errors quoted at 2.000sigma X = nuclide rejected by the interference analysis ^{@ =} nuclide contains energy lines not used in Weighted Mean Activity Analysis Report for 1603102-03 SEDIMENT 2016-03-16A #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 8:02:52AM Peak Locate From Channel : 1 : 4096 Peak Locate To Channel | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | | |----|--------|--------------|-----------------|-----------------------------|--------------|----------------------|--|--| | m | 4 | 77.58 | 1.64734E-01 | 7.30 | Tol. | TI-44 | | | | | 7 | 129.32 | 1.40108E-02 | 55.33 | | | | | | m | 11 | 242.23 | 5.24466E-02 | 16.90 | | | | | | | 15 | 384.73 | 1.39850E-02 | 60.90 (| Sum | | | | | | 16 | 410.28 | 8.99716E-03 | 53.07 | Tol. | HO-166M | | | | | 17 | 463.64 | 8.88211E-03 | 54.80 | | | | | | | 18 | 511.69 | 1.61234E-02 | 39.18 | | | | | | | 19 | 535.95 | 7.50000E-03 | 56.38 | | | | | | М | 20 | 579.46 | 3.83071E-03 | 44.59 | | | | | | M | 24 | 651.37 | 5.93315E-03 | 55.11 | Sam | | | | | rn | 25 | 657.08 | 5.15008E-03 | 56.89 | Sum | | | | | | 26 | 714.75 | 1.67905E-02 | 31.47 | | : | | | | | 28 | 769.79 | 1.14701E-02 | 62.78 | Sum | ., | | | | | 31 | 933.87 | 9.63456E-03 | 32.83 | | | | | | | 32 | 970.18 | 1.44283E-02 | 31.87 | | | | | | m | 33 | 1011.24 | 4.84625E-03 | 36.02 | | | | | | M | 36 | 1238.10 | 7.78546E-03 | 40.82 | | | | | | m | 37 | 1248.34 | 4.18343E-03 | 58 .9 7 | | | | | | m | 38 | 1255.45 | 4.88650E-03 | 58.49 | | | | | | | 39 | 1378.35 | 6.41382E-03 | 41.50 | | | | | | | 40 | 1433.11 | 2.2222E-03 | 65.25 | | | | | | | 42 | 1508.15 | 6.02881E-03 | 28.96 | Sum | | | | | | 43 | 1589.28 | 4.72222E-03 | 37.67 | | | | | | | 44 | 1728.57 | 5.00000E-03 | 33.10 | | | | | | | 46 | 1846.61 | 3.05556E-03 | 52.37 | | | | | | | 47 | 2119.62 | 2.26852E-03 | 57.60 | | | | | | | 49 | 2447.24 | 2.2222E-03 | 35.36 | | | | | M = First peak in a multiplet region m = Other peak in a multiplet reမွှင့်ရ F = Fitted singlet Errors quoted at 2.000sigma 1603102-03 SEDIMENT 2016-03-16A ## NUCLIDE MDA REPORT | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | |---|-----------------|--------------------|---|----------------|-------------------------|----------------------------|-------------------------| | | BE-7 | 477.59 | | 10.42 | 5.18E-02 | 1.29E+00 | 1.29E+00 | | | NA-22 | 1274.54 | | 99.94 | -8.24E-02 | 1.32E-01 | 1.32E-01 | | | NA-24 | 1368.53 | | 99.99 | 8.91E+11 | 1.64E+12 | 2.50E+12 | | | 1111 20 3 | 2754.09 | | 99.86 | 8.84E+10 | | 1.64E+12 | | | AL-26 | 1808.65 | | 99.76 | 4.99E-04 | 7.19E-02 | 7.19E-02 | | | K-40 | 1460.81 | * | 10.67 | 1.69E+01 | 1.52E+00 | 1.52E+00 | | | @ AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | TI-44 | 67,88 | | 94.40 | 1.09E-02 | 8.04E-02 | 8.04E-02 | | | 11 11 | 78.34 | | 96.00 | 2.57E-01 | | 1.09E-01 | | | SC-46 | 889.25 | | 99.98 | -3.62E-02 | 1.43E-01 | 1.43E-01 | | | | 1120.51 | | 99.99 | 3.61E-01 | | 2.65E-01 | | | V-48 | 983.52 | | 99.98 | -8.48E-02
| 3.81E-01 | 3.81E-01 | | | | 1312.10 | | 97.50 | 2.38E-01 | | 4.84E-01 | | | CR-51 | 320.08 | | 9.83 | 7.71E-01 | 1.74E+00 | 1.74E+00 | | | MN-54 | 834.83 | | 99.97 | -7.22E-03 | 1.23E-01 | 1.23E-01 | | | CO-56 | 846.75 | | 99.96 | 1.72E-03 | 1.15E-01 | 1.15E-01 | | | | 1037.75 | | 14.03 | -2.90E-01 | | 9.90E-01 | | | | 1238.25 | | 67.00 | 2.95E-01
-8.80E-01 | , | 3.22E-01
6.83E-01 | | | | 1771.40
2598.48 | | 15.51
16.90 | 2.29E-01 | | 7.39E-01 | | | CO-57 | 122.06 | | 85.51 | -9.29E-03 | 6.66E-02 | 6.66E-02 | | | 00 07 | 136.48 | | 10.60 | 3.86E-01 | | 6.06E-01 | | | CO-58 | 810.76 | | 99.40 | 5.69E-04 | 1.15E-01 | 1.15E-01 | | | FE-59 | 1099.22 | | 56.50 | -2.85E-03 | 3.06E-01 | 3.06E-01 | | | - | 1291.56 | | 43.20 | -1.45E-01 | | 4.35E-01 | | | CO-60 | 1173.22 | | 100.00 | 9.13E-03 | 1.31E-01 | 1.31E-01 | | | | 1332.49 | | 100.00 | 7.85E-02 | | 1.54E-01 | | | ZN-65 | 1115.52 | * | 50.75 | 1.36E-01 | 3.79E-01 | 3.79E-01 | | | GA-67 | 93.31 | * | 35.70 | 9.65E+01 | 1.53E+02 | 1.53E+02 | | | | 208.95 | * | 2.24 | 1.69E+03 | | 1.72E+03
2.14E+02 | | | 65 7F | 300.22 | | 16.00
16.70 | 1.05E+02
-1.92E-01 | 1.18E-01 | 3.63E-01 | | | SE-75 | 121.11 | | 59.20 | 4.54E-02 | | 1.18E-01 | | | | 136.00
264.65 | | 59.80 | -1.33E-01 | | 1.46E-01 | | | | 279.53 | | 25.20 | -5.80E-02 | | 3.54E-01 | | | | 400.65 | | 11.40 | -6.68E-01 | | 7.92E-01 | | | RB-82 | 776.52 | | 13.00 | 3.00E-01 | | | | - | RB-83 | 520.41 | | 46.00 | 1.21E-02 | | | | | | 529.64 | | 30.30 | -5.89E-02 | | 3.29E-01
6.67E-01 | | | | 552.65 | | 16.40 | 2.46E-02 | | 0.0/E-UI | 1603102-03 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|------------------|----|----------------|-------------------------|----------------------------|-------------------------|---| | + | KR-85 | 513.99 | | 0.43 | 2.71E+01 | 2.81E+01 | 2.81E+01 | | | + | SR-85 | 513.99 | | 99.27 | 1.59E-01 | 1.65E-01 | 1.65E-01 | | | + | Y-88 | 898.02 | | 93.40 | -2.90E-02 | 1.09E-01 | 1.44E-01 | | | | | 1836.01 | | 99.38 | 3.29E-02 | | 1.09E-01 | | | + | NB-93M | 16.57 | | 9.43 | -1.25E+01 | 9.75E+01 | 9.75E+01 | | | + | NB-94 | 702.63 | | 100.00 | 6.56E-02 | 8.48E-02 | 1.07E-01 | | | | | 871.10 | | 100.00 | -7.07E-02 | | 8.48E-02 | | | + | NB-95 | 765.79 | | 99.81 | 1.30E-01 | 2.12E-01 | 2.12E-01 | | | + | NB-95M | 235.69 | | 25.00 | 3.32E+00 | 1.01E+02 | 1.01E+02 | | | + | ZR-95 | 724.18 | | 43.70 | 8.85E-02 | 2.39E-01 | 3.34E-01 | | | | | 756.72 | | 55.30 | -6.48E-02 | | 2.39E-01 | | | + | MO-99 | 181.06 | | 6.20 | 4.45E+02 | 7.69E+02 | 1.13E+03 | | | | | 739.58 | | 12.80 | -1.82E+02 | | 7.69E+02 | | | | • | 778.06 | | 4.50 | -1.47E+03 | | 2.29E+03 | | | + | RU-103 | 497.08 | | 89.00 | -5.82E-02 | 1.47E-01 | 1.47E-01 | | | + | RU-106 | 621.84 | | .9.80 | -3.93E-01 | 9.24E-01 | 9.24E-01 | | | + | AG-108M | 433.93 | | 89.90 | -3.94E-02 | 9.42E-02 | 9.42E-02 | | | | | 614.37 | | 90.40 | -6.06E-01 | | 1.16E-01 | | | | am 100 | 722.95 | J. | 90.50 | 3.16E-02 | 4.20E+00 | 1.11E-01
4.20E+00 | | | + | CD-109 | 88.03 | * | 3.72 | 3.25E+00 | 1.20E-01 | 1.20E-01 | | | + | AG-110M | 657.75 | | 93.14 | -1.33E-01
2.10E-01 | 1.206-01 | 9.12E-01 | • | | | | 677.61
706.67 | | 10.53
16.46 | -7.89E-02 | | 6.49E-01 | | | | | 763.93 | | 21.98 | 4.74E-02 | | 5.25E-01 | | | | | 884.67 | | 71.63 | 6.51E-02 | | 1.69E-01 | | | | | 1384.27 | | 23.94 | -4.72E-02 | | 5.07E-01 | | | + | CD-113M | 263.70 | | 0.02 | -3.07E+01 | 3.30E+02 | 3.30E+02 | | | + | SN-113 | 255.12 | | 1.93 | -3.48E-01 | 1.48E-01 | 4.86E+00 | | | | | 391.69 | | 64.90 | -1.58E-02 | | 1.48E-01 | | | + | TE123M | 159.00 | | 84.10 | -1.38E-02 | 8.85E-02 | 8.85E-02 | | | + | SB-124 | 602.71 | | 97.87 | -1.98E-02 | 1.34E-01 | 1.34E-01 | | | | | 645.85 | | 7.26 | 7.30E-02 | | 1.68E+00 | | | | | 722.78 | | 11.10 | 3.55E-01
1.60E-02 | | 1.25E+00
1.92E-01 | | | | т 105 | 1691.02
35.49 | | 49.00
6.49 | 2.70E+00 | 3.54E+00 | 3.54E+00 | | | + | I-125
SB-125 | 176.33 | | 6.89 | -4.43E-01 | 2.97E-01 | | | | + | 2B-122 | 427.89 | | 29.33 | 7.16E-02 | 2.576 01 | 2.97E-01 | | | | | 427.09 | | 10.35 | 5.19E-01 | | 9.84E-01 | | | | | 600.56 | | 17.80 | 1.15E-01 | | 5.63E-01 | | | | | 635.90 | | 11.32 | -9.92E-02 | | 7.82E-01 | | | + | SB-126 | 414.70 | | 83.30 | 4.36E-02 | 4.66E-01 | | • | | | | 666.33 | | 99.60 | 1.52E-01 | | 5.27E-01 | | | | | 695.00 | | 99.60 | 3.62E-01 | | 4.66E-01 | | | | av 106 | 720.50 | 4 | 53.80 | -1.18E-01 | 4.05E-01 | 9.29E-01
4.05E-01 | | | + | SN-126 | 87.57 | * | 37.00 | 3.14E-01 | 4.05E-01
3.79E+01 | | | | + | SB-127 | 473.00 | | 25.00 | -2.95E+01 | 3./9E+U1 | 3.79E+01 | | | | | 685.20 | | 35.70 | 5.16E+00
3.87E+01 | | 1,06E+02 | | | | | 783.80 | | 14.70 | 3.0/ETVI | | 1,000102 | | Analysis Report for 1603102-03 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | _ | |---|-----------------|-------------------|-------------|----------------|-------------------------|----------------------------|-------------------------|-----|---| | + | 1-129 | 29.78 | | 57.00 | -1.61E-01 | 4.92E-01 | 4,92E-01 | | | | ' | 1 125 | 33.60 | | 13.20 | 2.70E 01 | | 1.45E+00 | | | | | | 39.58 | | 7.52 | 7-19E-01 | | 1.67E+00 | | | | + | I-131 | 284.30 | | 6.05 | 4.38E-01 | 1.10E+00 | 1.39E+01 | | | | | | 364.48 | | 81.20 | -1.40E-01 | | 1.10E+00 | | | | | | 636.97 | | 7.26 | 4.58E+00 | | 1.36E+01 | | | | | | 722.89 | | 1.80 | 1.74E+01 | 0.000.01 | 6.13E+01 | | | | + | TE-132 | 49.72 | | 13.10 | 2.79E+01 | 3.20E+01 | 2.58E+02 | | | | • | | 228.16 | | 88.00 | 2.73E+00 | 0 015 01 | 3.20E+01 | | | | + | BA-133 | 81.00 | | 33.00 | -9.57E-01 | 2.21E-01 | 2.21E-01
4.86E-01 | | | | | | 302.84 | | 17.80 | 1.24E-01 | | 4.86E-01
2.21E-01 | | | | | - 100 | 356.01 | | 60.00 | 1.56E-J2
-7.16E+07 | 4.00E+08 | 4.00E+08 | | | | + | I-133 | 529.87 | | 86.30 | | 7.49E+00 | 7.49E+00 | | | | ÷ | XE-133 | 81.00 | | 38.00 | -3.24E+01 | | 1.07E+00 | | | | + | CS-134 | 563.23 | | 8.38 | -2.51E-01 | 1.28E-01 | | | | | | | 569.32 | _ | 15.43 | -1.89E-01 | | 5.74E-01
1.75E-01 | | | | | | 604.70 | * | 97.60
85.40 | 3.11E-02
8.39E-02 | | 1.75E-01 | | | | | | 795.84
801.93 | ^ | 8.73 | 7.74E-02 | | 1.09E+00 | | | | + | CS-135 | 268.24 | | 16.00 | 9.46E-02 | 5.15E-01 | 5.15E-01 | | | | + | @ I-135 | 1131.51 | | 22.50 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | T | 6 1 122 | 1260.41 | | 28.60 | 1.00E+26 | | 1.00E+26 | | | | | 0 | 1678.03 | | 9.54 | 1.00E+26 | | 1.00E+26 | | | | + | CS-136 | 153.22 | | 7.46 | -2.04E-01 | 4.18E-01 | 3.66E+00 | *** | | | • | 00 100 | 163.89 | | 4.61 | 2.87E-01 | | 5.76E+00 | | | | | | 176.55 | | 13.56 | -8.87E-02 | | 2.02E+00 | | | | | | 273.65 | | 12.66 | 4.51E-01 | | 2.84E+00 | | | | | | 340.57 | | 48.50 | -4.40E-02 | | 8.98E-01 | | | | | | 818.50 | | 99.70 | 5.61E-02 | | 4.18E-01 | | | | | | 1048.07 | | 79.60 | -2.95E-01
-2.59E+00 | | 5.94E-01
3.24E+00 | | | | | ag 137 | 1235.34 | | 19.70
85.12 | 4.11E-03 | 1.34E-01 | 1.34E-01 | | | | + | CS-137 | 661.65 | | | 1.47E-01 | 1.75E-01 | 3.14E-01 | | | | + | LA-138 | 788.74 | | 34.00 | -3.12E-01 | 1.755 01 | 1.75E-01 | | | | | OF 130 | 1435.80
165.85 | | 66.00
80.35 | -1.64E-02 | 8.81E-02 | 8.81E-02 | | | | + | CE-139 | | | 6.70 | -1.89E+00 | 1.67E+00 | 4.05E+00 | | | | + | BA-140 | 162.64 | | 4.50 | -2.54E+00 | 1.071.00 | 7.83E+00 | | | | | | 304.84
423.70 | | 3.20 | -2.00E+00 | | 1.14E+01 | | | | | | 437.55 | | 2.00 | 6.85E+00 | | 1.96E+01 | | | | | | 537.32 | | 25.00 | 7,03E-01 | | 1.67E+00 | | | | + | LA-140 | 328.77 | | 20.50 | 8.33E-01 | 4.66E-01 | 1.97E+00 | | | | | | 487.03 | | 45,50 | -2.33E-01 | | 8.69E-01 | | | | | | 815.85 | | 23.50 | -8.09E-02 | | 1.75E+00 | | | | | | 1596.49 | | 95.49 | | | 4.66E-01 | | | | + | CE-141 | 145.44 | | 48.40 | 5.44E-02 | | | | | | + | CE-143 | 57.36 | | 11.80 | | | | | | | | | 293.26 | | 42.00 | -3.96E+04 | | 3.44E+05 | | | | | | 664.55 | | 5,20 | | | 2.79E+06
5.76E-01 | | | | + | CE-144 | 133.54 | | 10.80 | -6.03E-02 | J. / OE-UI | 5,,00 01 | | | 1603102-03 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---------------|-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|----| | <u> </u> | | | · | | | | | | + | PM-144 | 476.78 | 42.00 | -7.30E-02 | 8.49E-02 | 2.28E-01 | | | | | 618.01 | 98.60 | -1.72E-02 | | 8.49E-02 | | | | | 696.49 | 99.49 | 6.82E-03 | | 9.96E-02 | | | ,+ | PM-145 | 36.85 | 21.70 | -1.23E-01 | 3.62E-01 | 6.82E-01 | | | | | 37.36 | 39.70 | 1.34E-02 | | 3.62E-01 | | | | | 42.30 | 15.10 | -3.21E-02 | | 7.13E-01 | | | | | 72.40 | 2.31 | -6.14E+00 | ~ · | 3.86E+00 | | | + | PM-146 | 453.90 | 39.94 | 1.28E-02 | 2.21E-01 | 2.21E-01 | | | | | 735.90 | 14.01 | 2.07E-02 | * : | 6.35E-01 | | | | | 747.13 | 13.10 | -2.41E - 01 | • | 7.54E-01 | | | + | ND-147 | 91.11 | 28.90 | -1.07E+00 | 1.60E+00 | 1.60E+00 | | | | | 531.02 | 13.10 | 1.07E-01 | | 3.63E+00 | | | + | PM-149 | 285.90 | 3.10 | 5.10E+03 | 1.48E+04 | 1.48E+04 | | | + | EU-152 | 121.78 | 20.50 | -3.62E-02 | 2,59E-01 | 2.59E-01 | | | • | 10 102 | 244.69 | 5.40 | 3.23E-01 | | 1.86E+00 | | | | | 344.27 | 19.13 | -4.40E-02 | | 3.95E-01 | | | | | 778.89 | 9.20 | -2.44E-01 | | 1.02E+00 | | | | | 964.01 | 10.40 | -9.50E-02 | | 1.11E+00 | | | | | 1085.78 | 7.22 | 7.45E-01 | | 1.64E+00 | | | | | 1112.02 | 9.60 | -3.79E-01 | ٠ | 1,29E+00 | | | | | 1407.95 | 14.94 | 2.53E-01 | | 8.64E-01 | | | + | GD-153 | 97.43 | 31.30 | -4.66E - 03 | 2.05E-01 | 2.05E-01 | 5. | | | | 103.18 | 22.20 | -1.39E-01 | | 2.70E-01 | | | + | EU-154 | 123.07 | 40.50 | 9.00E-03 | 1.34E-01 | 1.34E-01 | | | | | 723.30 | 19.70 | 1.46E-01 | | 5.15E-01 | | | | | 873.19 | 11.50 | 4.62E-01 | | 8.82E-01 | | | | | 996.32 | 10.30 | -6.37E-02 | | 8.75E-01 |
 | | | 1004.76 | 17.90 | -1.02E-01 | | 6.30E-01 | | | | | 1274.45 | 35.50 | -2.29E-01 | | 3.65E-01 | | | + | EU-155 | 86.50 | 30.90 | 1.96E-01 | 2.63E-01 | 2.63E-01 | | | | | 105.30 | 20.70 | 3.55E-02 | | 2.80E-01 | | | + | EU-156 | 811.77 | 10.40 | -5.63E-01 | 2.82E+00 | 2.82E+00 | | | | | 1153.47 | 7.20 | 2.39E+00 | | 6.67E+00 | | | | | 1230.71 | 8.90 | 1.49E+00 | | 5.88E+00 | | | + | HO-166M | 184.41 | 72.60 | 1.82E-01 | 1.13E-01 | 1.13E-01 | | | | | 280.45 | 29.60 | 1.06E-01 | | 2.65E-01 | | | | | 410.94 | 11.10 | 2.58E-01 | | 8.54E-01 | | | | | 711.69 | 54.10 | 1.46E-01 | | 2.18E-01 | | | + | TM-171 | 66.72 | 0.14 | 3.55E+01 | 5.72E+01 | 5.72E+01 | | | + | HF-172 | 81.75 | 4.52 | -6.86E+00 | 5.22E-01 | | | | | | 125.81 | 11.30 | 1.44E-01 | | 5.22E-01 | | | + | LU-172 | 181.53 | 20.60 | 1.42E+00 | 3.06E+00 | | | | | | 810.06 | 16.63 | -2.97E+00 | | 9.34E+00 | | | | | 912.12 | 15.25 | 3.17E+01 | : | | | | | | 1093.66 | 62.50 | -7.08E-01 | | 3.06E+00 | | | + | LU-173 | 100.72 | 5.24 | -1.78E-02 | 4.27E-01 | | | | | • | 272.11 | 21.20 | 4.03E-01 | | 4.27E-01 | | | + | HF-175 | 343.40 | 84.00 | -6.67E-03 | 1.20E-01 | | | | + | LU-176 | 88, 34 | 13.30 | 3.00E-02 | 7.68E-02 | 6.15E-01 | | | | | | | | | | | or 1603102-03 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-------------|-----------------|-------------------|---|----------------|-------------------------|----------------------------|-------------------------|----| | | LU-176 | 201.83 | | 85.00 | -1.94E-03 | 7.68E-02 | 8.99E-02 | | | | TO-1/0 | 306.78 | | 94.00 | -4.30E-02 | ,,,,,, | 7.68E-02 | | | + | TA-182 | 67.75 | | 41.20 | 2.96E-02 | 2.18E-01 | 2.18E-01 | | | | | 1121.30 | | 34.90 | 1.14E+J0 | | 7.19E-01 | | | | | 1189.05 | | 16.23 | 1.71E-01 | | 8.47E-01 | | | | | 1221.41 | | 26.98 | 7.96E-02 | | 5.86E-01
1.53E+00 | | | | TD 100 | 1231.02 | | 11.44
29.68 | 7.95E-01
-1.22E-02 | 2.26E-01 | 3.13E-01 | | | + | IR-192 | 308.46
468.07 | | 48.10 | -2.61E-02 | 2.202 02 | 2.26E-01 | | | + | HG-203 | 279.19 | | 77.30 | -3.16E-02 | 1.51E-01 | 1.51E-01 | | | + | BI-207 | 569.67 | | 97.72 | 3.88E-02 | 9.42E-02 | 9.42E-02 | | | 1 | DI 201 | 1063.62 | | 74.90 | 4.30E-02 | | 1.53E-01 | | | + | TL-208 | 583.14 | * | 30,22 | 1.12E+00 | 5.65E-02 | 3.79E-01 | | | | <u>-</u> | 860.37 | | 4.48 | 1.05E+00 | | 2.49E+00 | | | | | 2614.66 | * | 35.85 | 9.82E-01 | | 5.65E-02 | | | + | BI-210M | 262.00 | | 45.00 | 4.45E-02 | 1.76E-01 | 1.76E-01 | | | | | 300.00 | | 23.00 | 2.00E-01 | 0.745100 | 4.10E-01
2.74E+00 | | | + | PB-210 | 46.50 | * | 4.25 | 4.78E+00 | 2.74E+00 | 2.74E+00
2.97E+00 | | | + | PB-211 | 404.84 | | 2.90 | 1.18E+00 | 2.97E+00 | 4.07E+00 | | | | 040 | 831.96 | * | 2.90 | -3.64E-01
7.03E-01 | 9.30E-01 | 9.30E-01 | | | + | BI-212 | 727,17 | ^ | 11.80
2.75 | 1.00E+00 | 9.500 01 | 4.03E+00 | | | | PB-212 | 1620.62
238.33 | * | 44.60 | 1.35E+00 | 3.11E-01 | | | | ٦٠ | PD-212 | 300.09 | | 3.41 | 1,35E+00 | | 2,76E+00 | \$ | | + | BI-214 | 609.31 | * | 46.30 | 1.82E+00 | 3.73E-01 | 3.73E-01 | | | , | | 1120.29 | * | 15.10 | 2,46E+00 | | 1.26E+00 | | | | | 1764.49 | * | 15.80 | 1.49E+00 | | 9.77E-01 | | | | | 2204.22 | * | 4.98 | 2.39E+00 | 0 00# 01 | 1.90E+00
6.58E-01 | | | + | PB-214 | 295.21 | * | 19.19 | 1.47E+00 | 2.92E-01 | 2.92E-01 | | | | 010 | 351.92 | * | 37.19
6.50 | 1.95E+00
-1.15E-01 | 1.23E+00 | 1.23E+00 | | | + | RN-219 | 401.80 | | 3.88 | -4.10E-01 | 2.21E+00 | 2.21E+00 | | | + | RA-223 | 323.87 | | | 1.88E+01 | 3.94E+00 | 3.94E+00 | | | + | RA-224 | 240.98 | | 3.95
31.00 | 6.24E-01 | 1.45E+00 | 1.45E+00 | | | + | RA-225 | 40.00 | * | 3.28 | 3.82E+00 | 3.23E+00 | 3.23E+00 | | | + | RA-226 | 186.21 | | 8.40 | 1.18E-01 | | 1,09E+00 | | | + | TH-227 | 50.10
236.00 | | 11.50 | 3.51E-02 | 1.002.00 | 1.06E+00 | | | | | 256.20 | | 6.30 | -8.88E-02 | | 26E+00 | | | + | AC-228 | 338.32 | * | 11.40 | 1.05E+00 | | 9.92E-01 | | | | | 911.07 | * | 27.70 | 9.51E-01 | | 5.59E-01 | | | | | 969.11 | | 16.60 | 7.67E-01 | | 9.61E-01 | | | + | TH-230 | 48.44 | | 16.90 | 9.84E-02 | | | | | | | 62.85 | | 4.60 | 2.31E+00 | | 1.86E+00
2.05E+01 | | | | Dn 001 | 67.67 | | 0.37
1.60 | | | | | | ÷ | PA-231 | 283.67 | | 2.30 | | | 3.74E+00 | | | + | TH-231 | 302.6,
25.64 | | 14.70 | | | | | | ľ | 111 201 | 84.21 | | 6.40 | | | 1.12E+00 | | | | | ~ | | - • • • | | | | | 1603102-03 SEDIMENT 2016-03-16A | | Nuclide
Name | Energy
(ke\) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | |---|-----------------|----------------------------|---|-------------------------|----------------------------------|----------------------------|----------------------------------| | + | PA-233 | 311.98 | | 38.60 | -8.05E-02 | 3.79E-01 | 3.79E-01 | | + | PA-234 | 131.20 | | 20.40 | 8.89E-02 | 3.00E-01 | 3.00E-01 | | • | IN-234 | 733.99
946.00 | | 8.80
12.00 | 1.96E-01
-2.97E-02 | | 1.01E+00
8.87E-01 | | + | PA-234M | 1001.03 | | 0.92 | 4.56E+00 | 1.13E+01 | 1.13E+01 | | + | TH-234 | 63.29 | * | 3.80 | 2.18E+00 | 2.98E+00 | 2.98E+00 | | + | U-235 | 143.76 | | 10.50 | 3.66E-01 | 5.89E-01 | 5.89E-01 | | | | 163.35
205.31 | | 4.70
4.70 | 6.51E-02
1.59E-01 | | 1.31E+00
1.71E+00 | | + | NP-237 | 86.50 | | 12.60 | 4.75E-01 | 6.38E-01 | 6.38E-01 | | + | NP-239 | 106.10
228.18
277.60 | | 22.70
10.70
14.10 | 1.58E+02
2.16E+02
2.73E+02 | 9.00E+02 | 9.00E+02
2.53E+03
1.94E+03 | | + | AM-241 | 59.54 | | 35.90 | -4.20E-02 | 2.22E-01 | 2.22E-01 | | + | AM-243 | 74.67 | * | 66.00 | 3.45E-01 | 2.01E-01 | 2.01E-01 | | + | CM-243 | 209.75
228 14
277.50 | | 3.29
10.60
14.00 | 1.96E+00
6.22E-02
7.83E-02 | 5.56E-01 | 2.64E+00
7.28E-01
5.56E-01 | - + = Nuclide identified during the nuclide identification - * = Energy line found in the spectrum - > = MDA value not calculated - @ = Half-life too short to be able to perform the decay correction - ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level ## NUCLIDE MDA REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB | Nuclide
Name | Energ (keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----------------------------|---|----------------------------------|--|----------------------------------|---|--| |
BE-7
NA-22
NA-24 | 477.59
1274.54
1368.53
2754.09 | 10.42
99.94
99.99
99.86 | 1.29E+00
1.32E-01
2.50E+12
1.64E+12 | 1.29E+00
1.32E-01
1.64E+12 | 5.18E-02
-8.24E-02
8.91E+11
8.84E+10 | 6.06E-01
5.95E-02
1.10E+12
5.82E+11 | Analysis Report for 1603102-03 | | • | | * | | | <u> </u> | | |---|---------|-----------|----------|--|-------------|--------------------|----------------------| | | Nuclide | Energy | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | | | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | AL-26 | 1808.65 | 99.76 | 7.19E-02 | 7.19E-02 | 4.99E-04 | 2.79E-02 | | + | K-40 | 1460.81 * | | 1.52E+00 | 1.52E+00 | 1.69E+01 | 6.96E-01 | | | AR-41 | 1293.64 | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | Ç | TI-44 | 67.88 | 94.40 | 8.04E-02 | 8.04E-02 | 1.09E-02 | 3.92E-02 | | | 11 44 | 78.34 | 96.00 | 1.09E-01 | | 2.57E-01 | 5.34E-02 | | | SC-46 | 889.25 | 99.98 | 1.43E-01 | 1.43E-01 | -3.62E-02 | 6.57E-02 | | | 20-40 | 1120.51 | 99.99 | 2.65E-01 | | 3.61E-01 | 1.26E-01 | | | V-48 | 983.52 | 99.98 | 3.81E-01 | 3.81E-01 | -8.48E-02 | 1.74E-01 | | | V-40 | 1312.10 | 97.50 | | • | 2.38E-01 | 2.20E-01 | | | CD E1 | 320.08 | 9.83 | | 1.74E+00 | 7.71E-01 | 8.31E-01 | | | CR-51 | 834.83 |
99.97 | | 1.23E-01 | -7.22E-03 | 5.67E-02 | | | MN-54 | | 99.96 | | 1.15E-01 | 1.72E-03 | 5.19E-02 | | | CO-56 | 846.75 | 14.03 | | 1.101.01 | -2.90E-01 | 4.47E-01 | | | | 1037.75 | 67.00 | | | 2.95E-01 | 1.49E-01 | | | | 1238,25 | | | | -8.80E-01 | 2.76E-01 | | | | 1771.40 | 15.51 | | | 2.29E-01 | 2.93E-01 | | | | 2598.48 | 16.90 | | 6,66E-02 | -9.29E-03 | 3.20E-02 | | | CO-57 | 122.06 | 85.51 | | 0,00E~02 | 3.86E-01 | 2.92E-01 | | | | 136.48 | 10.60 | | 1.15E-01 | 5.69E-04 | 5.17E-02 | | | CO-58 | 810.76 | 99.40 | | 3.06E-01 | -2.85E-03 | 1.38E-01 | | | FE-59 | 1099.22 | 56-50 | | 3.00E-0T | -1.45E-01 | 1.95E-01 | | | | 1291.56 | 43.20 | | 1 210 01 | 9.13E-03 | 5.94E-02 | | | CO-60 | 1173.22 | 100.00 | | 1.31E-01 | 7.85E-02 | 7.04E-02 | | | | 1332.49 | 100.00 | | 0 505 01 | | 1.78E-01 | | + | ZN-65 | 1115.52 | = | | 3.79E-01 | 1.36E-01 | 7.57E+01 | | + | GA-67 | 93.31 | | | 1.53E+02 | 9.65E+01 | 8.39E+02 | | | | 208.95 | 2.24 | | | 1.69E+03 | | | | | 300.22 | 16.00 | | | 1.05E+02 | 1.03E+02 | | | SE-75 | 121.11 | 16.70 | | 1.18E-01 | -1.92E-01 | 1.75E-01 | | | | 136.00 | 59.20 | | | 4.54E-02 | 5.71E-02 | | | | 264.65 | 59.80 | | | -1.33E-01 | 7.00E-02 | | | | 279.53 | 25.20 | | | -5.80E-02 | 1.69E-01 | | | | 400.65 | 11.40 | 7.92E-01 | | -6.68E-01 | 3.72E-01 | | | RB-82 | 776.52 | 13.00 | 1.72E+00 | 1.72E+00 | 3.00E-01 | 7.93E-01 | | | RB-83 | 520.41 | 46.00 | 2.20E-01 | 2.20E-01 | 1.21E-02 | 1.02E-01 | | | 110 00 | 529.64 | 30.30 | | | -5.89E - 02 | 1.52E-01 | | | | 552.65 | 16.40 | | | 2.46E-02 | 3.10E-01 | | | KR-85 | 513.99 | 0.43 | | 2.81E+01 | 2.71E+01 | 1.34E+01 | | | SR-85 | 513.99 | 99.2 | | 1.65E-01 | 1.59E-01 | 7.85E-02 | | | Y-88 | 898.02 | 93.40 | | 1.09E-01 | -2.90E-02 | 6.60E-02 | | | 1-00 | 1836.01 | 99.3 | | | 3.29E-02 | 4.48E-02 | | | NB-93M | 16.57 | 9.4 | | 9.75E+01 | -1.25E+01 | 4.73E+01 | | | NB-94 | 702.63 | 100.0 | and the second s | 8.48E-02 | 6.56E-02 | 4.98E-02 | | | ND-34 | 871.10 | 100.0 | | | -7.07E-02 | 3.79E-02 | | | ND OF | 765.79 | 99.8 | | 2.12E-01 | 1.30E-01 | 9.90E-02 | | | NB-95 | 235.69 | 25.0 | | 1.01E+02 | 3.32E+00 | 4.90E+01 | | | NB-95M | 724.18 | 43.7 | | 2.39E-01 | 8.85E-02 | 1.55E-01 | | | ZR-95 | | 55.3 | | 2.052 01 | -6.48E-02 | 1.10E-01 | | | ¥0.00 | 756.72 | 6.2 | | 7.69E+02 | 4.45E+02 | 5.42E+02 | | | MO-99 | 181.06 | | | 7.000,02 | -1.82E+02 | 3.52E+02 | | | | 739.58 | 12.8 | | | -1.47E+03 | 1.04E+03 | | | | 778.00 | 4.5 | | 1.47E-01 | -5.62E-02 | 6.86E-02 | | | RU-103 | 497.08 | 89.0 | | | -3.93E-01 | 4.26E-01 | | | RU-106 | 621.84 | 9.8 | | 9.24E-01 | -3.94E-02 | 4.26E-01
4.44E-02 | | | AG-108M | 433.93 | 89.9 | 0 9.42E-02 | 9.42E-02 | -3.945-02 | 4.345-02 | 1603102-03 | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grans) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|--------------------|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | | AG-108M | 614.37 | 90.40 | 1.16E-01 | 9.42E-02 | -6.06E-01 | 5.41E-02 | | | | 722.95 | 90.50 | 1.11E-01 | | 3.16E-02 | 5.15E-02 | | + | CD-109 | 88.03 * | 3.72 | 4.20E+00 | 4.20E+00 | 3.25E+00 | 2.08E+00 | | | AG-110M | 657.75 | 93.14 | 1.20E-01 | 1.20E-01 | -1.33E-01 | 5.59E-02 | | | | 67,7.61 | 10.53 | 9.12E-01 | | 2.10E-01 | 4.19E-01 | | | | 706.67 | 16.46 | 6.49E-01 | · | -7.89E-02 | 3.00E-01
2.43E-01 | | | | 763.93 | 21.98 | 5.25E-01 | | 4.74E-02 | 7.75E-02 | | | | 884.67 | 71.63 | 1.69E-01 | 4 # | 6.51E-02
-4.72E-02 | 2.23E-01 | | | | 1384.27 | 23.94 | 5.07E-01 | 3.30E+02 | -3.07E+01 | 1.58E+02 | | | CD-113M | 263.70 | 0.02 | 3.30E+02 | 1.48E-01 | -3.48E-01 | 2.33E+00 | | | SN-113 | 255.12 | 1.93
64.90 | 4.86E+00
1.48E-01 | 1.40501 | -1.58E-02 | 7.01E-02 | | | mm100M | 391.69 | 84.10 | 8.85E-02 | 8.85E-02 | -1.38E-02 | 4.27E-02 | | | TE123M | 159.00
602.71 | 97.87 | 1.34E-01 | 1.34E-01 | -1.98E-02 | 6.23E-02 | | | SB-124 | 645.85 | 7.26 | 1.68E+00 | 1.515 01 | 7.30E-02 | 7.77E-01 | | | | 722.78 | 11.10 | 1.25E+00 | | 3.55E-01 | 5.78E-01 | | | | 1691.02 | 49.00 | 1.92E-01 | | 1.60E-02 | 7.44E-02 | | | I-125 | 35.49 | 6.49 | 3.54E+00 | 3.54E+00 | 2.70E+00 | 1.71E+00 | | | SB-125 | 176.33 | 6.89 | 9.22E-01 | 2.97E-01 | -4.43E-01 | 4.43E-01 | | | 05 120 | 427.89 | 29.33 | 2.97E-01 | | 7.16E-02 | 1.40E-01 | | | | 463.38 | 10.35 | 9.84E-01 | | 5.19E-01 | 4.66E-01 | | | | 600.56 | 17.80 | 5.63E-01 | | 1.15E-01 | 2.63E-01 | | | | 635.90 | 11.32 | 7.82E-01 | | -9.92E-02 | 3.60E-01 | | | SB-126 | 414.70 | 83.30 | 5.09E-01 | 4.66E-01 | 4.36E-02 | 2.41E-01 | | | | 666.33 | 99.60 | 5.27E-01 | | 1.52E-01 | 2.47E-01 | | | | 695.00 | 99.60 | 4.66E-01 | | 3.62E-01 | 2.15E-01 | | | | 720.50 | 53.80 | 9.29E-01 | 4 055 01 | -1.18E-01 | 4.31E-01
2.00E-01 | | + | SN-126 | 87.57 * | | 4.05E-01 | 4.05E-01 | 3.14E-01
-2.95E+01 | 2.30E+01 | | | SB-127 | 473.00 | 25.00 | 4.91E+01 | 3.79E+01 | 5.16E+00 | 1.74E+01 | | | | 685.20 | 35.70 | 3.79E+01 | | 3.87E+01 | 4.87E+01 | | | 100 | 783.80 | 14.70 | 1.06E+02
4.92E-01 | 4.92E-01 | -1.61E-01 | 2.38E-01 | | | I-129 | 29.7t | 57.00
13.20 | 1.45E+00 | 4.92b OI | 2.70E-01 | 7.01E-01 | | | | 33.60
39.58 | 7.52 | 1.43E+00
1.67E+00 | | 7.19E-01 | 8.06E-01 | | | T 123 | 284.30 | 6.05 | 1.39E+01 | 1.10E+00 | 4.38E-01 | 6.64E+00 | | | I - 131 | 364.48 | 81.20 | 1.10E+00 | 1.105 | -1.40E-01 | 5.20E-01 | | | | 636.97 | 7.26 | 1.36E+01 | | 4.58E+00 | 6.29E+00 | | | | 722.89 | 1.80 | 6.13E+01 | | 1.74E+01 | 2.83E+01 | | | TE-132 | 49.72 | 13.10 | 2.58E+02 | 3.20E+01 | 2.79E+01 | 1.25E+02 | | | 12 202 | 228.16 | 88.00 | 3.2CE+01 | | 2.73E+00 | 1.54E+01 | | | BA-133 | 81.00 | 33.00 | 2.21E-01 | 2.21E-01 | -9.57E-01 | 1.08E-01 | | | | 302.84 | 17.80 | 4.86E-01 | | 1.24E-01 | 2.33E-01 | | | | 356.01 | 60.00 | 2.21E-01 | | 1.56E-02 | 1.07E-01 | | | I-133 | 529.87 | 86.30 | 4.00E+08 | 4.00E+08 | -7.16E+07 | 1.85E+08 | | | XE-133 | 81.00 | 38.00 | 7.49E+00 | 7.49E+00 | -3.24E+01 | 3.65E+00 | | + | CS-134 | 563.23 | 8.38 | 1.07E+00 | 1.28E-01 | -2.51E-01 | 4.99E-01
2.66E-01 | | | | 569.32 | 15.43 | 5.74E-01 | | -1.89E-01 | 8.43E-02 | | | | 604.70 | • | 1.75E-01 | | 3.11E-02
8.39E-02 | 5.91E-02 | | | | 795.84 | 00.10 | 1.28E-01 | | 7.74E-02 | 4.94E-01 | | | | 801.93 | 8.73 | 1.09E+00
5.15E-01 | 5.15E-01 | 9.46E-02 | 2.47E-01 | | | CS-135 | 268.24 | 16.00
22.50 | | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ I-135 | 1131.51
1260.41 | 28.60 | | T.00H120 | 1.00E+26 | 1.00E+20 | | | @ | 1700.41 | 20.00 | 1.000.20 | | | | rt for 1603102-03 | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |------------------|-------------------|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | @ I-135 | 1678.03 | 9.54 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | CS-136 | 153.22 | 7.46 | 3.66E+00 | 4.18E-01 | -2.04E-01 | 1.77E+00 | | | 163.89 | 4.61 | 5.76E+00 | | 2.87E-01 | 2.78E+00 | | | 176.55 | 13.56 | 2.02E+00 | | -8.87E-02 | 9.72E-01 | | | 273.65 | . 12.56 | 2.84E+00 | | 4.51E-01 | 1.36E+00 | | | 340.57 | 48.50 | 8.98E-01 | | -4.40E-02 | 4.31E-01 | | | 818.50 | 99.70 | 4.18E-01 | | 5.61E-02 | 1.90E-01 | | | 1048.07 | 79.60 | 5.94E-01 | | -2.95E-01 | 2.69E-01 | | | 1235.34 | 19.70 | 3.24E+00 | | -2.59E+00 | 1.49E+00 | | CS-137 | 661.65 | 85.12 | 1.34E-01 | 1.34E-01 | 4.11E-03 | 6.30E-02 | | LA-138 | 788.74 | 34.00 | 3.14E-01 | 1.75E-01 | 1.47E-01 | 1.45E-01 | | | 1435.80 | 66.00 | 1.75E-01 | 0 015 00 | -3.12E-02 | 7.72E-02
4.24E-02 | | CE-139 | 165.85 | 80.35 | 8.81E-02 | 8.81E-02 | -1.64E-02
-1.89E+00 | 1.95E+00 | | BA-140 | 162.64 | 6.70 | 4.05E+00 | 1.67E+00 | -1.89E+00
-2.54E+00 | 3.74E+00 | | | 304.84 | 4.50 | 7.83E+00 | * | -2.54E+00
-2.00E+00 | 5.36E+00 | | | 423.70 | 3.20 | 1.14E+01 | | 6.85E+00 | 9.23E+00 | | | 437.55 | 2.00 | 1.96E+01 | | 7.03E-01 | 7.82E-01 | | T. 7. 1.40 | 537.32 | 25.00 | 1.67E+00
1.97E+00 | 4.66E-01 | 8.33E-01 | 9.41E-01 | | LA-140 | 328.77 | 20.50 | 8.69E-01 | 4.005-01 | -2.33E-01 | 4.08E-01 | | | 487.03 | 45.50
23.50 | 1.75E+00 | è | -8.09E-02 | 7.92E-01 | | • | 815.85 | 95.49 | 4.66E-01 | | -1.71E-02 | 1.98E-01 | | OF 141 | 1596.49
145.44 | 48.40 | 2.36E-01 | 2.36E-01 | 5.44E-02 | 1.14E-01 | | CE-141
CE-143 | 57.36 | 11.80 | 7.75E+05 | 3.44E+05 | -1.77E+05 | 3.76E+05 | | CE-143 | 293.26 | 42.00 | 3.44E+95 | 3.115.00 | -3.96E+04 | 1.67E+05 | | | 664.55 | 5.20 | 2.79E+06 | | 4.18E+05 | 1.32E+06 | | CE-144 | 133.54 | 10.80 | 5.76E-01 | 5.76E-01 | -6.03E-02 | 2.78E-01 | | PM-144 | 476.78 | 42.00 | 2.28E-01 | 8.49E-02 | -7.30E-02 | 1.07E-01 | | 111 111 | 618.01 | 98.60 | 8.49E-02 | | -1.72E-02 | 3.89E-02 | | | 696.49 | 99.49 | 9.96E-02 | | 6.82E-03 | 4.59E-02 | | PM-145 | 36.85 | 21.70 | 6.82E-01 | 3.62E-01 | -1.23E-01 | 3.29E-01 | | | 37.36 | 39.70 | 3.62E-01 | | 1.34E-02 | 1.75E-01 | | | 42.30 | 15.10 | 7.13E-01 | | -3.21E-02 | 3.45E-01 | | | 72.40 | 2.31 | 3.86E+00 | | -6.14E+00 | 1.89E+00 | | PM-146 | 453.90 | 39.94 | 2.21E-01 | 2.21E-01 | 1.28E-02 | 1.04E-01 | | | 735.90 | 14.01 | 6.35E-01 | | 2.07E-02 | 2.89E-01 | | | 747.13 | 13.10 | 7.54E-01 | | -2.41E-01 | 3.47E-01 | | ND-147 | 91.11 | 28.90 | 1.60E+00 | 1.60E+00 | -1.07E+00 | 7.81E-01 | | | 531.02 | 13.10 | 3.63E+00 | | 1.07E-01 | 1.69E+00 | | PM-149 | 285.90 | 3.10 | 1.48E+04 | 1.48E+04 | 5.10E+03 | 7.08E+03 | | EU-152 | 121.78 | 20.50 | 2.59E-01 | 2.59E-01 | -3.62E-02 | 1.25E-01 | | | 244.69 | 5.40 | 1.86E+00 | | 3.23E-01 | 9.01E-01 | | | 344.27 | 19.13 | 3.95E-01 | | -4.40E-02 | 1.87E-01 | | | 778.89 | 9.20 | 1.02E+00 | | -2.44E-01
-9.50E-02 | 4.67E-01
5.09E-01 | | | 964.01 | 10.40 | 1.11E+00 | | | 7.45E-01 | | | 1085.78 | 7.22 | 1.64E+00 | | 7.45E-01
-3.79E-01 | 7.45E-01
5.88E-01 | | | 1112.02 | 9.60 | 1.29E+00 | | 2.53E-01 | 3.87E-01 | | | 1407.95 | 14.94 | 8.64E-01 | 2.05E-01 | -4.66E-03 | 9.92E-02 |
| GD-153 | 97.43 | 31.30 | 2.05E-01 | %.00E-01 | -1.39E-01 | 1.30E-01 | | | 103,18 | 22.20 | 2.70E-01 | 1.34E-01 | 9.00E-03 | 6.47E-02 | | EU-154 | 123.07 | 40.50
19.70 | 1.34E-01
5.15E-01 | T.24D-0T | 1.46E-01 | 2.38E-01 | | · · | 723.30 | 19.70 | 8.82E-01 | | 4.62E-01 | 4.01E-01 | | | 873.19 | 51.00 | 0.025 01 | | | | 1603102-03 | | Nuclide | Energy | | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | |---|------------|-----------------|----|----------------|----------------------|-------------|-----------------------|----------------------| | | Name | (keV) | | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | EU-154 | 996.32 | | 10.30 | 8.75E-01 | 1.34E-01 | -6.37E-02 | 3.88E-01 | | | 20 201 | 1004.76 | | 17.90 | 6.30E-01 | | -1.02E-01 | 2.86E-01 | | | | 1274.45 | | 35.50 | 3.65E-01 | • | -2.29E-01 | 1.65E-01 | | | EU-155 | 86.50 | | 30.90 | 2.63E-01 | 2.63E-01 | 1.96E-01 | 1.28E-01 | | | | 105.30 | | 20.70 | 2.80E-01 | | 3.55E-02 | 1.35E-01 | | | EU-156 | 811.77 | | 10.40 | 2.82E+00 | 2.82E+00 | -5.63E-01 | 1.27E+00 | | | | 1153.47 | | 7.20 | 6.67E+00 | | 2.39E+00 | 3.05E+00 | | | | 1230.71 | | 8.90 | 5.88E+00 | | 1.49E+00 | 2.70E+00 | | | HO-166M | 184.4 | | 72,60 | 1.13E-01 | 1.13E-01 | 1.82E-01 | 5.46E-02 | | | | 280.45 | | 29.60 | 2.65E-01 | | 1.06E-01 | 1.27E-01 | | | | 410.94 | | 11.10 | 8.54E-01 | | 2.58E-01 | 4.06E-01 | | | | 711.69 | | 54.10 | 2.18E-01 | F 505.01 | 1.46E-01 | 1.02E-01 | | | TM-171 | 66.72 | | 0.14 | 5.72E+01 | 5.72E+01 | 3.55E+01 | 2.79E+01
7.67E-01 | | | HF-172 | 81.75 | | 4.52 | 1.58E+00 | 5.22E-01 | -6.86E+00
1.44E-01 | 2.52E-01 | | | | 125.81 | | 11.30 | 5.22E-01 | 2 065100 | 1.44E-01
1.42E+00 | 2.60E+00 | | | LU-172 | 181.53 | | 20.60 | 5.41E+00 | 3.06E+00 | -2.97E+00 | 4.22E+00 | | | | 810.06 | | 16.63 | 9.34E+00 | | 3.17E+01 | 9.90E+00 | | | | 912.12 | | 15.25 | 2.09E+01 | | -7.08E-01 | 1.38E+00 | | | | 1093.66 | | 62.50 | 3.06E+00
1.11E+00 | 4.27E-01 | -1.78E-01 | 5.38E-01 | | | LU-173 | 100.72 | | 5.24
21.20 | 4.27E-01 | 4.276-01 | 4.03E-01 | 2.06E-01 | | | 19E | 272.11 | | | 1.20E-01 | 1.20E-01 | -6.67E-03 | 5.70E-02 | | | HF-175 | 343.40 | | 84.00 | 6.15E-01 | 7.68E-02 | 3.00E-02 | 3.01E-01 | | | LU-176 | 88.34 | | 13.30
86.00 | 8.99E-02 | 7.003 02 | -1.94E-03 | 4.34E-02 | | | * | 201.83 | | 94.00 | 7.68E-02 | | -4.30E-02 | 3.65E-02 | | | m > 100 | 306.78
67.75 | | 41.20 | 2.18E-01 | 2.18E-01 | 2.96E-02 | 1.06E-01 | | | TA-182 | 1121.30 | | 34.90 | 7.19E-01 | 2,102 01 | 1.14E+00 | 3.41E-01 | | | | 1189.05 | | 16.23 | 8.47E-01 | | 1.71E-01 | 3.81E-01 | | | | 1221.41 | | 26.98 | 5.86E-01 | | 7.96E-02 | 2.67E-01 | | | | 1231.02 | | 11.44 | 1.53E+00 | | 7.95E-01 | 7.01E-01 | | | IR-192 | 308.46 | | 29.68 | 3.13E-01 | 2.26E-01 | -1.22E-02 | 1.49E-01 | | | 11/-132 | 468.07 | | 48.10 | 2.26E-01 | | -2.61E-02 | 1.06E-01 | | | HG-203 | 279.15 | | 77.30 | 1.51E-01 | 1.51E-01 | -3.16E-02 | 7.21E-02 | | | BI-207 | 569.67 | | 97.72 | 9.42E-02 | 9.42E-02 | 3.88E-02 | 4.39E-02 | | | DI 20. | 1063.62 | | 74.90 | 1.53E-01 | | 4.30E-02 | 6.93E-02 | | + | TL-208 | 583.14 | * | 30.22 | 3.79E-01 | 5.65E-02 | 1.12E+00 | 1.79E-01 | | • | 12 - 4 - 4 | 860.37 | | 4.48 | 2.49E+00 | | 1.05E+00 | 1.15E+00 | | | | 2614.66 | * | 35.85 | 5.65E-02 | | 9.82E-01 | 0.00E+00 | | | BI-210M | 262.00 | | 45.00 | 1.76E-01 | 1.76E-01 | 4.45E-02 | 8.43E-02 | | | | 300.00 | | 23.00 | 4.10E-01 | · | 2.00E-01 | 1.97E-01 | | + | PB-210 | 46.50 | * | 4.25 | 2.74E+00 | 2.74E+00 | 4.78E+00 | 1.34E+00 | | | PB-211 | 404.84 | | 2.90 | 2.97E+00 | 2.97E+00 | 1.18E+00 | 1.41E+00 | | | | 831.96 | | 2.90 | 4.07E+00 | | -3.64E-01 | 1.89E+00 | | + | BI-212 | 727.17 | .ж | 11.80 | 9.30E-01 | 9.30E-01 | 7.03E-01 | 4.32E-01 | | | | 1620.62 | | 2.75 | 4.03E+00 | | 1.00E+00 | 1.75E+00 | | + | PB-212 | 238.63 | * | 44.60 | 3.11E-01 | 3.11E-01 | 1.35E+00 | 1.52E-01 | | | | 300.09 | | 3.41 | 2.76E+00 | | 1.35E+00 | 1.33E+00 | | + | BI-214 | 609.31 | * | 46.30 | 3.73E-01 | 3.73E-01 | 1.82E+00 | 1.79E-01 | | | | 1120.29 | * | 15.10 | 1.26E+00 | | 2.46E+00 | 5.95E-01 | | | | 1764.49 | * | 15.80 | 9.77E-01 | | 1.49E+00 | 4.38E-01 | | | | 2204.22 | * | 4.98 | 1.90E+00 | 0 00- 01 | 2.39E+00 | 7.64E-01
3.20E-01 | | + | PB-214 | 295.21 | * | 19.19 | 6.58E-01 | 2.92E-01 | 1,47E+00 | 3.20E-01
1.41E-01 | | | | 351.92 | * | 37.19 | 2.92E-01 | | 1.95E+00 | 1.415-01 | Report for 1603102-03 SEDIMENT 2016-03-16A | | Nuclide
Name | Energy
(keV) | | Yield(%) | Line MDA
(pCi/grams) | Nuclide เกีDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----|-----------------|-----------------|---|----------|-------------------------|------------------------------|-------------------------|---------------------------| | | RN-219 | 401.80 | | 6.50 | 1.23E+00 | 1.23E+00 | -1.15E-01 | 5.80E-01 | | | RA-223 | 323.87 | | 3.88 | 2.21E+00 | 2.21E+00 | -4.10E-01 | 1.06E+00 | | | RA-224 | 240.98 | | 3.95 | 3.94E+00 | 3.94E+00 | 1.88E+01 | 1.93E+00 | | | RA-225 | 40.00 | | 31.00 | 1.45E+00 | 1.45E+00 | 6.24E-01 | 7.00E-01 | | + | RA-226 | 186.21 | * | 3.28 | 3.23E+00 | 3.23E+00 | 3.82E+00 | 1.58E+00 | | | TH-227 | 50.10 | | 8.40 | 1.09E+00 | 1.06E+00 | 1.18E-01 | 5.28E-01 | | | | 236.00 | | 11,50 | 1.06E+00 | | 3.51E-02 | 5.19E-01 | | | • | 256.20 | | 6.30 | 1.26E+00 | | -8.88E-02 | 6.03E-01 | | ÷ | AC-228 | 338.32 | * | 11.40 | 9.92E-01 | 5.59E-01 | 1.05E+00 | 4.79E-01 | | | | 911.07 | * | 27.70 | 5.59E-01 | | 9.51E-01 | 2.62E-01 | | | | 969.11 | | 16.60 | 9.61E-01 | | 7.67E-01 | 4.51E-01 | | | TH-230 | 48.44 | | 16.90 | 6.58E-01 | 6.58E-01 | 9.84E-02 | 3.21E-01 | | | 111 200 | 62.85 | | 4.60 | 1.86E+00 | | 2.31E+00 | 9.08E-01 | | | | 67.67 | | 0.37 | 2.05E+01 | | 2.79E+00 | 1.00E+01 | | | PA-231 | 283.67 | | 1.60 | 4.80E+00 | 3.74E+00 | 1.51E-01 | 2.29E+00 | | | 111 231 | 302.67 | | 2.30 | 3.74E+00 | | 9.51E-01 | 1.79E+00 | | | TH-231 | 25.64 | | 14.70 | 3.82E+00 | 1.12E+00 | -6.23E-01 | 1.85E+00 | | | 202 | 84.21 | | 6.40 | 1.12E+00 | | -1.47E+00 | 5.46E-01 | | | PA-233 | 311.98 | | 38.60 | 3.79E-01 | 3.79E-01 | -8.05E-02 | 1.80E-01 | | | PA-234 | 131.20 | | 20.40 | 3.00E-01 | 3.00E-01 | 8.89E-02 | 1.45E-01 | | | 111 20 1 | 733.99 | | 8.80 | 1.01E+00 | • | 1.96E-01 | 4.62E-01 | | | | 946.00 | | 12.00 | 8.87E-01 | | -2.97E-02 | 4.03E-01 | | | PA-234M | 1001.03 | | 0.92 | 1.13E+01 | 1.13E-01 | 4.56E+00 | 5.10E+00 | | + | TH-234 | 63.29 | * | 3,80 | 2.98E+00 | 2.98E+00 | 2.18E+00 | 1.46E+00 | | .* | U-235 | 143.76 | | 10.50 | 5.89E-01 | 5.89E-01 | 3.66E-01 | 2.84E-01 | | | 0 200 | 163.35 | | 4.70 | 1.31E+00 | | 6.51E-02 | 6.30E-01 | | | | 205.31 | | 4.70 | 1.71E+00 | | 1.59E-01 | 8.25E-01 | | | NP-237 | 86.50 | | 12.60 | 6.38E-01 | 6.38E-01 | 4.75E-01 | 3.12E-01 | | | NP-239 | 106.30 | | 22.70 | 9.00E+02 | 9.00E+02 | 1,58E+02 | 4.35E+02 | | | 111 200 | 228.16 | | 10.70 | 2.53E+03 | | 2.16E+02 | 1.22E+03 | | | | 277.60 | | 14.10 | 1.94E+03 | | 2.73E+02 | 9.27E+02 | | | AM-241 | 59.54 | | 35.90 | 2.22E-01 | 2.22E-01 | -4.20E-02 | 1.08E-01 | | + | AM-241 | 74.67 | * | 66.00 | 2.01E-01 | 2.01E-01 | 3.45E-01 | 9.89E-02 | | | CM-243 | 209.75 | | 3.29 | 2.64E+00 | 5.56E-01 | 1.96E+00 | 1.28E+00 | | | Of1 240 | 228.14 | | 10.60 | 7.28E-01 | | 6.22E-02 | 3.50E-01 | | | | 277.60 | | 14.00 | 5.56E-01 | · | 7.83E-02 | 2.66E-01 | ^{+ =} Nuclide identified during the nuclide identification No Action Level results available for reporting purposes. ^{* =} Energy line found in the spectrum > = MDA value not calculated ^{@ =} Half-life too short to be able to perform the decay correction 1603102-03 SEDIMENT 2016-03-16A ## DATA REVIEW COMMENTS REPORT Creation Date Comment User No Data Review Comments Entered. **************** Sample Title: SEDIMENT 2016-03-16A Elapsed Live time: 3600 Elapsed Real Time: 3612 | a 1 . 1 . | | | 1 | | | | | | |------------------|-----------|----------|----------|------------|-----------|----------|-----|-----| | Channel - | | 0 | 0 | 0 | 0 ' | o' | o ' | 0 ` | | 1: | 0
3 | 162 | 176 | 118 | 108 | 94 | 62 | 104 | | 9: | | | 59 | 68 | 68 | 68 | 75 | 60 | | 17: | 86 | 66 | | 48 | 59 | 47 | 53 | 59 | | 25: | 65 | 73 | 66 | | 53 | 72 | 41 | 62 | | 33: | 53 | 54 | 58 | 56 | 53
67 | 75
75 | 193 | 116 | | 41: | 55 | 58 | 49 | 52 | 72 | 76 | 69 | 68 | | 49: | 48 | 74 | 64 | 65 | 86 | 99 | 105 | 141 | | 57: | 63 | 71 | 77 | 83 | | 81 | 102 | 96 | | 65: | 97 | 75 | 78 | 125 | 98
262 | 414 | 144 | 91 | | 73: | 101 | 132 | 246 | 255 | | 91 | 122 | 176 | | 81: | 77 | 95 | 73 | 101 | 114 | 170 | 81 | 83 | | 89: | 99 | 114 | 115 | 93 | 181
52 | 56 | 50 | 61 | | 97: | 59 | 52 | 64 | 62 | | 60
60 | 55 | 48 | | 105: | 55 | 60 | 66 | 57 | 59 | 34 | 46 | 42 | | 113: | 60 | 41 | 47 | 48 | 59
50 | 54
56 | 39 | 59 | | 121: | 41 | 44 | 43 | 57 | 50
4.6 | 58 | 51 | 50 | | 129: | 73 | 62 | 57 | 51 | 44
41 | 45 | 45 | 56 | | 137: | 50 | 54 | 59 | 33 | 45 | 66 | 42 | 48 | | 145: | 65 | 57 | 46 | 52 | 45
47 | 54 | 62 | 40 | | 153: | 49 | 58 | 65 | 56
40 | 37 | 56 | 45 | 46 | | 161: | 48 | 34 | 61 | 40 | 48 | 43 | 34 | 47 | | 169: | 44 | 51 | 35 | 36 | 31 | 47 | 32 | 42 | | 177: | 53 | 35 | 51 | 57
49 | 37 | 46 | 39 | 36 | | 185: | 46 | 99 | 130 | | 39 | 36 | 47 | 36 | | 193: | 44 | 36 | 31 | 48
34 | 39 | 42 | 43 | 41 | | 201: | 29 | 48 | 40 | 34
37 | 32 | 31 | 40 | 45 | | 209: | 58 | 69 | 47 | 31 | 46 | 32 | 28 | 36 | | 217: | 38 | 36 | 36
40 | 36 | 29 | . 30 | 27 | 28 | | 225: | 33 | 29 | 27 | 35 | 33 | 80 | 312 | 184 | | 233: | 33 | 31 | 100 | 40 | 30 | 23 | 23 | 20 | | 241: | 49 | 108 | 20 | 34 | 26 | 23 | 33 | 32 | | 249: | 22 | 26
26 | 31 | 36 | 24 | 25 | 27 | 23 | | 257: | 25 | 26
25 | 23 | 18 | 20 | 45 | 44 | 32 | | 265: | 23 | 23 | 23
24 | 24 | 20 | 29 | 17 | 25 | | 273: | 24 | | 19 | 29 | 18 | 19 | 24 | 21 | | 281: | 26 | 20
15 | 17 | 22 | 20 | 19 | 100 | 190 | | 289: | 24 | 26 | 23 | 31 | 40 | 34 | 22 | 22 | | 297: | 40 | 13 | 22 | 16 | 16 | 16 | 13 | 20 | | 305: | 14 | 17 | 17 | 15 | 19 | 32 | 22 | 19 | | 313: | 15
14 |
22 | 29 | 23 | 18 | 18 | 31 | 20 | | 321: | 14
33 | 22
20 | 19 | 25 | 24 | 15 | 18 | 17 | | 329: | 33
16 | 49 | 72 | 2.2 | 14 | 15 | 16 | 12 | | 337: | 14 | 18 | 17 | 16 | 20 | 20 | 46 | 243 | | 345:
353: | 206 | 31 | 19 | 11 | 16 | 19 | 19 | 18 | | 353:
361: | 206
15 | 17 | 16 | 17 | 17 | 17 | 19 | 10 | | 20T: | TO | Τ. / | 10 | <u>.</u> , | | <u> </u> | | | 369: 13 22 17 14 24 19 15 18 Sample Title: SEDIMENT 2016-03-16A | | Channel 3775: 383: 409: 4175: 3897: 4175: 3897: 4175: 3897: 4175 | | | 15
19
18
15
10
13
14
15
11
13
13
12
15
10
16
16
16
16
17
18
17
18
18
19
19
19
19
19
19
19
19
19
19
19
19
19 | 13
122
17
10
13
10
10
10
11
10
10
11
10
10
11
10
10
11
10
10 | 157
157
157
153
104
104
109
1138
1148
125
164
157
163
108
108
108
108
108
108
108
108
108
108 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 14
152434321109305728978676048689882050206764825737665353
121093057289786760482050206764825737665353 | |---|--|-------------------|-------------------|--|---|---|--|------------------|--| | : | 769:
777:
785:
793: | 15
5
9
2 | 5
5
10
7 | 5
6
8
14 | 7 | 6 | 3
8
6 | 4
8
6
2 | | Channel Data Report 4/13/2016 8:03:07 AM Page 3 801: 2 6 7 7 7 10 2 8 Sample Title: SEDIMENT 2016-03-16A | Channel | |--| | 865: 6 7 5 1 2 3 4 873: 4 5 6 8 4 4 5 889: 4 2 8 8 7 4 9 897: 7 6 7 5 7 4 9 9905: 6 3 5 4 7 23 41 913: 9 6 5 3 7 4 6 921: 4 1 6 4 4 4 9 921: 4 1 6 3 2 5 5 7 945: 2 4 7 6 2 6 4 9 945: 2 4 7 6 2 5 5 7 8 8 7 7 7 | Channel Data Report 4/13/2016 8:03:07 AM Page 4 1233: 1 2 4 2 15 12 17 4 Sample Title: SEDIMENT 2016-03-16A | | Sample | Title: | SEDIMENT | 2016-03 | 3-16A | | | | |-------------------------|---|---|---|--|---|------------------|--------------------------------------|----------------------------| | ~1 7.1 | , | • | . , | 1 | 1 | | | | | Channel | | | | | 5 | 6 | 7 | 9 ່ | | 1241: | 3 | 5 | 4 | 3 | 1. | 2 | 10 | 4 | | 1249: | 2 | 3
5 | 4 | 2
2 | J. | 2.
4 | 4 | | | 1257: | 4 | 5 | 3 | 2 | | | 4 | 4
3
8 | | 1265: | 2 | 11 | 3 | 4 | 6 | 4 | | ے
0 | | 1273: | 4 | 1 | 6 | 3 | 3 | 2 | 3 | | | 1281: | 7 | 3
2 | 1 | 8 | 3 | 5 | 5 | 0 | | 1289: | 4 | 2 | 3 | 2 | 3 | 4 | 3 | 2
2 | | 1297: | 8 | 7 | 2 | 1 | 2 | 6 | 4 | 2 | | 1305: | 2 | 1 | 3 | 0 | 6 | 6 | 2 | 1 | | 1313: | 4 | 5 | 2 | 9 | 3 | 2 | 2
2
6 | . 1 | | 1321: | 3 | 5 | 2 | 1 | 1 | 1 | 2 | 7 | | 1329: | 1 | 7 | 4 | 3 | 5 | 2 | | 5 | | 1337: | 4 | 1
5
7
3
3
5 | 1 | 2 | 5 | 3 | 1 | 2 | | 1345: | 1 | 3 | 1 | 3 | 0 | 1
2 | 1 | 1 | | 1353: | 4 | | 1 | 3 | 2 | 2 | 3 | 4 | | 1361: | 2 | 0 | 2 | 2 | 2 | 3 | 2 | 2 | | 1369: | 2 | 2 | 1 | 2 | 0 | 3 | 1 | 6 | | 1377: | 7 | 7 | 1 | 4 | 4 | 2 | 2 | 0 | | 1385: | 2 | 2. | 1 | 2 | 1 | 5 | 2 | 2 | | 1393: | 2 | 2 | 2 | 1 | 2 | 3 | 3
5 | 2 | | 1401: | 1 | 5 | C | 1 | 4 | 3 | 5 | 4 | | 1409: | 0 | 2
5
3
2 | 2 | 3 | 2 | 1 | 2 | 4 | | 1417: | 4 | 2 | 1 | 4 | 1 | 1 | 3 | 3
5 | | 1425: | 2 | 3 | 0 | 2
2 | 0 | 1 | 2 | 2 | | 1433: | 2
3
3 | 4 | 0 | 2 | 0 | 0 | 2 3 3 | 0 | | 1441: | | 0 | 4 | 3 | 1 | 1 | | | | 1449: | 1 | 3 | 0 | 1 | 3. | 2 | 4
6 | 3 · ;
3 · ; | | 1457: | 3
2 | 6 | 45 | 118 | 134 | 42 | 1 | 1 | | 1465: | | 3 | 0 | 1 | 2 | 0 | 4 | 1 | | 1473: | 0 | 0 | 0 | 2 | 1 | 2 3 | 2 | 1 | | 1481: | 3 | 0 | 3
2 | 2 | 3 | 0 | 0 | 2 | | 1489: | 0 | 0 | 2 | 1 | 3
2
2
5 | 0 | 2 | 1 | | 1497: | 1 | 0 | 1 | 1 | Z | 3 | 0 | Ô | | 1505: | . 2 | 3 | 4 | 7
0 | 0 | 0 | 2 | 2 | | 1513: | 2 | 0 | 0 | • | | | | | | 1513:
1521:
1529: | 2 | 1 | 4 | 0 | 0
1 | 1
0
1 | 1 | 2 | | 1529: | 1 | 3 | 2 | <u>ئ</u>
1 | 1 | 1 | ب | 1 | | 1537: | 3 | Ţ | 3 | 7
T | 1 | .l.
1 | n | 1 | | 1545: | 0 | 3 | ⊥ | 2 | U d | 1
0 | 2
1
3
0
3
2
1
1 | 2
1
1
2
0 | | 1553: | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 2
| | 1561: | 0 | 0 | 1 | 3 | ے
0 | 0 | 1 | 0 | | 1569: | Ţ | 2 | ⊥ | | 2 | n | 1 | Õ | | 1577: | 2 | 0 | 5 | 2 | 1 | 2 | ์ า | 2 | | 1585: | 0 | 3 | 0 | ۷.
٦ | 2 | 2 | 0 | 1 | | 1593: | <u>+</u> | 1
3
1
0
2
0
3
2
2
1
0 | 4
2
3
1
3
0
1
3
6
0
2
2
0 | 1 | 0 | 0
2
2
4 | 1 | 0
2
1
2
2
0 | | 1601: | 1 | Z
1 | <i>د.</i>
2 | . <u>.</u>
1 | 0 | 1 | 1 | 2 | | 1609: | 1 | i, | ے
م | <u>1</u>
A | 2 | 1
2
0 | 2 | 0 | | 1617: | Ţ | 7 | 0 | ·4 | 1 | 0 | 1 | 1 | | 1625: | 2
1
3
0
2
0
1
2
0
1
1
1
1
2
0 | 0 | O
C | 0
2
1
2
0
0
3
0
2
1
1
4
1
0 | 1 | 1 | 1
2
1
2
2 | 1
1 | | 1633: | U | 0 | 0 | 0 | 1 | - 0 | 2 | ō | | 1641: | 0 | 0 | 0
0
1 | 1 | 1
4
0
2
0
2
4
2
0
0
2
1
1
1
1 | 1 | | 0
1 | | 1649: | 0 | 1 | 1 | $\frac{1}{2}$ | ク | 2 | 1 | Ō | | 1657: | 0 | Ţ | ۵. | ۷. | ۷ | 2 | - | • | | | | • | | | 1 /1 0 /00 | 3.6 0 0. | D. 07 70 104 | | Dago | 5 | |--|------|---------|---|---|------------|-------------|--|---|-----------|---| | Channel | Data | | | 0 | 4/13/20 | 3 | 3:07 AM
0 | 0 | Page
1 | 5 | | 1665: | | 2 | 1 | 2 | 2 | | O | O | 1. | | | | Sam | ple Tit | le: | SEDIME | NT 2016- | U3-16A | 1 | 1 | | ł | | Channal 1673: 1689: 1705: 1713: 1729: 17745: 17745: 17761: 17785: 17769: 17785: 17809: 1809: 1809: 1809: 1809: 1809: 1809: 1809: 190 | | | 12111163012020100220000011100110001212102100022 | 001211012006021101130020002122011300001201211210000 | | 1
0
1 | 0
0
0
1
1
1
2
1
0
1
2
3
0
0
2
0
0
2
0
0
0
0
0
0
0
0
0
0
0
0 | 1
2
1
0
0
0
0
0
2
1
3
0
0
0
0
1
0
0
0 | | | | Channel | Data Rep | port | | 4/13/2016 | 8:03:0 | 07 AM | | Page | |--|---|---|---|---|---|---|---|---| | 2529: | . 1 | 0 | 0 | 0 | O | 0 | 0 | 0 | | | Sample | Title: | SEDIMENT | г 2016-03- | -16A | | | · | | Channel::::::::::::::::::::::::::::::::::: | 000000000000000000000000000000000000000 | 100000010000010110000000000000000000000 | 000000102010010000010000000000000000000 | 000001000710000010000010000010000000000 | 001101100700001000000000000000000000000 | 001000001000111100000000001000010000000 | 000000111701000100010000001100000000000 | 001000003001020000100100100100000000000 | | Channel | Data | Rep | oort | | 4/13/20 | 16 8:0 | 3:07 AM | | Page 9 | |--|------|---|---|---|---|---|----------------------------|-----------------------|----------------------------| | 2961: | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | | Samp | ple | Title: | SEDIME | NT 2016- | 03-16A | | | | | Channel 2969: 2977: 2985: 2993: 3009: 3017: 2985: 2993: 3009: 3017: 3009: 3017:
3017: 30 | | -10010000000100000001000000010000000000 | 010000000000000000000000000000000000000 | 000000100000000000000000000000000000000 | 0
0
0
0
0
0
1
0
0 | 000000000000001100000000000000000000000 | 0
0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0
0 | | Channel | Data | Reg | oort | | 4/13/201 | 6 8:03 | :07 AM | | Page S | |---|------|---|---|--------|--------------------------------------|---|---|---|---| | 3393: | | 1 | 0 | 0 | 0 | С | 0 | 0 | 0 | | | Sam | ple | Title: | SEDIME | NT 2016-0 | 3-16A | | | | | Channel 3409: 3417: 3425: 3431: 34497: 34497: 34497: 34497: 34573: 34573: 34573: 35569: 35569: 355691: 355691: 356673: 357693 3577297 377853 377893 | | -01001001000100000000000000000000000000 | 000000000000000000000000000000000000000 | | 000000000000000000000000000000000000 | 000001000010010000000000000000000000000 | 001000000000000000000000000000000000000 | 000200000100000010000010010000000000000 | 000100000000000000000000000000000000000 | | Channel | Data Report | | | 4/13/2016 | 8:03: | 07 AM | | Page 10 | |---|---------------------------------|------------------|----------------------------|----------------------------|-----------------------|----------------------------|----------------------------|---------------------------------| | 3825: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | | Sample Titl | _e: | SEDIMEN | Т 2016-03- | 16A | | | | | Channel
3833:
3841:
3849: | 0 0 | -
0
0
0 | |
0
0
0 |
0
0
0 |
0
0 |
0
0
0 | I
0
0
0 | | 3857:
3865:
3873:
3881: | 0
1
0
0 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 1
0
0
0 | 0
0
0
0 | | 3889:
3897:
3905:
3913:
3921: | 0
0
0
0
0 | 0
1
0
0 | 0
0
.0
0 | 0
0
0
0 | 0
0
1
0 | 0
1
0
0 | 0
0
0 | 0
0
0 | | 3929:
3937:
3945:
3953:
3961: | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 1
0
1
0
0 | 0
0
0
0
1 | 0
0
0
0 | 0
0
0
0 | | 3969:
3977:
3985:
3993:
4001: | 0
0
1
0 | 0 0 0 | 0
0
0
0 | 0
0
0
0 | 0
1
0
0 | 0
0
0
0 | 0
0
0
0 | 0
0
1
0
0 | | 4009:
4017:
4025:
4033:
4041:
4049:
4057: | 1
0
0
0
0
0
1 | 0 0 1 0 0 | 0
0
0
0
0
0 | 0
1
0
0
0
0 | 0 0 0 0 0 0 0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
1
0
0
0 | | 4065:
4073:
4081:
4089: | 0
0
0
0 | 0
0
0
2 | 0
0
0 | 1
0
0
0 | 0
0
0 | 0
0
0 | 0
0
0 | 0 | 0000035692.CNF 1603102-04 SEDIMENT 2016-03-16A #### GAMMA SPECTRUM ANALYSIS Sample Identification Sample Description Sample Type : 1603102-04 : SEDIMENT 20 : SEDIMENT 2016-03-16A : SOIL Sample Size Facility : 4.476E+02 grams : Countroom Sample Taken On Acquisition Started : 3/16/2016 1:44:57PM : 4/13/2016 8:07:36AM Procedure Operator Detector Name : GAS-1402 pCi : Administrator : GE3 Geometry Live Time Real Time : GAS-1402 : 3600.0 seconds : 3613.2 seconds **Dead Time** : 0.37 % Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance : 2.50 : 1 - 4096 : 9 - 4096 : 1.000 keV Energy Calibration Used Done On Efficiency Calibration Used Done On : 10/25/2014 : 10/25/2014 Efficiency Calibration Description . 1012312 Sample Number : 35696 ### PEAK-TO-TOTAL CALIBRATION REPORT Peak-to-Total Efficiency Calibration Equation AG 4/13/14 SEDIMENT 2016-03-16A ### PEAK LOCATE REPORT Peak Locate Performed on : 4/13/2016 9:07:51AM Peak Locate From Channel : 1 : 4096 Peak Locate To Channel : 2.50 Peak Search Sensitivity | Pea | ak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |-----|--------|--------------|------------------|----------------------|-------------------| | | 1 | 47.02 | 47.25 | 0.0000 | 0.00 | | | 2 | 75.10 | 75.32 | 0.0000 | 0.00 | | | 3 | 77.47 | 77.68 | 0.0000 | 0.00 | | | 4 | 87.66 | 87.87 | 0.0000 | 0.00 | | | 5 | 93.30 | 93.50 | 0.0000 | 0.00 | | | 6 | 186.07 | 186.23 | 0.0000 | 0.00 | | | 7 | 238.98 | 239.11 | 0.0000 | 0.00 | | | 8 | 242.05 | 242.17 | 0.0000 | 0.00 | | | 9 | 270.01 | 270.12 | 0.0000 | 0.00 | | | 10 | 295.63 | 295.73 | 0,000 | 0.00 | | | 11 |
300.54 | 300.63 | 0.0000 | 0.00 | | - | 12 | 328.05 | 328.13 | 0.000 | 0.00 | | | 13 | 338.79 | 338.86 | 0.0000 | 0.00 | | | 14 | 352.19 | 352.26 | 0.0000 | 0.00 | | | 15 | 431.61 | 431.64 | 0.0000 | 0.00 | | | 16 | 463.75 | 463.76 | 0.0000 | 0.00 | | • | 17 | 477.89 | 477.89 | 0.0000 | 0.00 | | | 18 | 510.45 | 510.44 | 0.000 | 0.00 | | | 19 | 527.51 | 527.49 | 0.0000 | 0.00 | | | 20 | 569.83 | 569.79 | 0.0000 | 0.00 | | | 21 | 583.52 | 583.47 | 0.0000 | 0.00 | | | 22 | 609.68 | 609.62 | 0.0000 | 0.00 | | | 23 | 624.70 | 624.63 | 0.0000 | 0.00 | | | 24 | 694.73 | 694.63 | 0.0000 | 0.00 | | | 25 | 767.97 | 767.84 | 0.0000 | 0.00 | | | 26 | 794.68 | 794.54 | 0.0000 | 0.00 | | | 27 | 893.26 | 893.07 | 0.000.0 | 0.00 | | | 28 | 911.76 | 911.57 | 0.0000 | 0.00 | | | 29 | 933.29 | 933.09 | 0.0000 | 0.00 | | | 30 | 969.54 | 969.32 | 0.0000 | 0.00 | | | 31 | 1106.48 | 1106.20 | 0.000 | 0.00 | | | 32 | 1120.54 | 1120.26 | 0.0000 | 0.00 | | | 33 | 1154.56 | 1154.26 | 0.0000 | 0.00 | | | 34 | 1162.69 | 1162.39 | 0.0000 | 0.00 | | | 35 | 1238.89 | 1238.55 | 0.0000 | 0.00 | | | 36 | 1460.80 | 1460.38 | 0.0000 | 0.00 | | | 37 | 1482.77 | 1482.34 | 0.0000 | 0.00 | | | 38 | 1629.78 | 1629.30 | 0.0000 | 0.00 | | | 39 | 1658.56 | 1658.06 | 0.0000 | 0.00 | | | 40 | 1728,59 | 1728.07 | 0.0000 | 0.00 | | | 41 | 1764.33 | 1763.80 | 0.0000 | 0.00 | | | 42 | 1841.07 | 1840.51 | 0.0000 | 0.00 | 1603102-04 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 43 | 1847.27 | 1846.71 | 0.0000 | 0.00 | | 44 | 1959.35 | 1958.76 | 0.0000 | 0.00 | | 45 | 2039.87 | 2039.25 | 0.0000 | 0.00 | | 46 | 2293.63 | 2292.93 | 0.0000 | 0.00 | | 47 | 2614.12 | 2613.34 | 0.0000 | 0.00 | ^{? =} Adjacent peak noted Errors quoted at 2.000sigrna Analysis Report for 1603102-04 SEDIMENT 2016-03-16A ## PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 9:07:51AM Peak Analysis From Channel Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |-----|-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | - | 1 | 47.02 | 43 - | 50 | 47.25 | 1.59E+02 | 81.02 | 9.89E+02 | 1.71 | | Μ | 2 | 75.10 | 72 - | 81 | 75.32 | 3.83E+02 | 79.57 | 9.00E+02 | 1.83 | | m | 3 | 77.47 | 72 - | 81 | 77.68 | 6.13E+02 | 87.66 | 8.57E+02 | 1.83 | | 111 | 4 | 87.66 | 86 - | 90 | 87.87 | 6.22E+01 | 70.86 | 1.07E+03 | 1.10 | | | 5 | 93.30 | 91 - | 99 | 93.50 | 1.75E+02 | 101.45 | 1.37E+03 | 1.86 | | | 6 | 186.07 | 183 - | 190 | 186.23 | 1.52E+02 | 68.53 | 6.84E+02 | 1.98 | | М | 7 | 238.98 | 234 - | 248 | 239.11 | 5.03E+02 | δ1.64 | 3.24E+02 | 1.89 | | m | 8 | 242.05 | 234 - | 248 | 242.17 | 1.75E+02 | 64.65 | 3.24E+02 | 1.89 | | 211 | 9 | 270.01 | 266 - | 274 | 270.12 | 6.40E+01 | 55.90 | 4.42E+02 | 5.57 | | | 10 | 295.63 | 292 - | 299 | 295.73 | 2.76E+02 | 59.03 | 3.98E+02 | 1.86 | | | 11 | 300.54 | 299 - | 304 | 300.63 | 3.88E+01 | 36.28 | 2.38E+02 | 1.84 | | | 12 | 328.05 | 325 - | 332 | 328.13 | 4.71E+01 | 40.20 | 2.42E+02 | 3.97 | | | 13 | 338.79 | 336 - | 342 | 338.86 | 8.56E+01 | 40.76 | 2,43E+02 | 1.57 | | | 14 | 352.19 | 347 - | 357 | 352.26 | 4.52E+02 | 64.50 | 3.13E+02 | 1.97 | | | 15 | 431.61 | 428 - | 435 | 431.64 | 3.27E+01 | 30.33 | 1.31E+02 | 2.24 | | | 16 | 463.75 | 4.58 - | 469 | 463.76 | 4.42E+01 | 45.61 | 2.32E+02 | 2.00 | | | 17 | 477.89 | 475 - | 483 | 477.89 | 3.53E+01 | 35.29 | 1.67E+02 | 3.07 | | | 18 | 510.45 | 505 - | 514 | 510.44 | 1.14E+02 | 38.33 | 1.45E+02 | 2.11 | | | 19 | 527.51 | 521 - | 531 | 527.49 | 3.06E+01 | 37.79 | 1.69E+02 | 5.63 | | | 20 | 569.83 | 567 - | 574 | 569.79 | 4.15E+01 | 25.53 | 8.30E+01 | 2.58 | | | 21 | 583.52 | 580 - | 588 | 583.47 | 1.19E+02 | 39.51 | 1.67E+02 | 1.89 | | | 22 | 609.68 | 606 - | 612 | 609.62 | 3.14E+02 | 43.50 | 1.16E+02 | 2.14 | | | 23 | 624.70 | 622 - | 628 | 624.63 | 2.06E+01 | 19.90 | 5.89E+01 | 4.18 | | | 24 | 694.73 | 691 - | 698 | 694.63 | 2,17E+01 | 27.13 | 1.09E+02 | 1.68 | | | 25 | 767.97 | 763 - | 771 | 767.84 | 2.46E+01 | 29.30 | 1.17E+02 | 1.72 | | | 26 | 794.68 | 791 - | 799 | 794.54 | 2.34E+01 | 26.63 | 9.51E+01 | 1.83 | | | 27 | 893.26 | 887 - | 901 | 893.07 | 3.08E+01 | 27.61 | 6.63E+01 | 9.93 | | | 28 | 911.76 | 907 - | 918 | 911.57 | 1.23E+02 | 33.94 | 7.82E+01 | 2.20 | | | 29 | 933.29 | 929 - | 937 | 933.09 | 2.36E+01 | 23.75 | 7.29E+01 | 2.47 | | | 30 | 969.54 | 965 - | 972 | 969.32 | 5.43E+01 | 28.14 | 9.54E+01 | 1.33 | | | 31 | 1106.48 | 1100 - | | 1106.20 | 3.01E+01 | 25.89 | 6.39E+01 | 7.94 | | | 32 | 1120.54 | 1115 - | | 1120.26 | 6.95E+01 | 28,45 | 6.90E+01 | 2.06 | | | 33 | 1154.56 | 1148 - | | 1154.26 | 2.36E+01 | 27.64 | 8.28E+01 | 1.97 | | | 34 | 1162.69 | 1160 - | | 1162.39 | 1.38E+01 | 18.10 | 5.05E+01 | 1.23 | | | 35 | 1238.89 | 1234 - | | 1238.55 | 2.67E+01 | 21.98 | 5.66E+01 | 2.25 | | | 36 | 1460.80 | 1455 - | | 1460.38 | 3.33E+02 | 38.14 | 1.63E+01 | 2.14 | | | 37 | 1482.77 | 1479 - | | 1482.34 | 1.01E+01 | 11.49 | 1.39E+01 | 1.34 | | | 38 | 1629.78 | 1625 - | | 1629.30 | 8.42E+00 | 8.94 | 7.17E+00 | 2.47 | | | 39 | 1658.56 | 1653 - | | 1658.06 | 9.53E+00 | 8.26 | 4.75E+00 | 1.92 | | | 40 | 1728.59 | 1724 - | | 1728.07 | 1.96E+01 | 12.25 | 1.08E+01 | 3.71 | | | 10 | | | | | | | | | 1603102-04 SEDIMENT 2016-03-16A | Peak | Energy | ROI | ROI | Peak | Net Peak | Net Area | Continuum | FWHM | |--|---|--|--------------------------------------|---|--|---|--|--| | No. | (keV) | start | end | Centroid | Area | Uncertainty | Counts | (keV) | | 41
42
43
44
45
46
47 | 1764.33
1841.07
1847.27
1959.35
2039.87
2293.63
2614.12 | 1759 -
1837 -
1844 -
1954 -
2036 -
2290 -
2607 - | 1843
1849
1964
2042
2295 | 1763.80
1840.51
1846.71
1958.76
2039.25
2292.93
2613.34 | 4.90E+01
5.13E+00
7.00E+00
1.50E+01
6.19E+00
4.50E+00
4.70E+01 | 14.00
7.52
5.29
10.11
6.65
5.74
13.71 | 0.00E+00
5.75E+00
0.00E+00
6.00E+00
3.63E+00
3.00E+00
0.00E+00 | 2.54
1.88
2.15
5.93
2.90
2.70
2.81 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 9:07:51AM Peak Analysis From Channel Peak Analysis To Channel hannel : 1 nnel : 4096 | i | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |-----|-------------|-----------------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | | 1 | 47.02 | 43 - | 50 | 1.59E+02 | 81.02 | 9.89E+02 | 6.33E+01 | | М | 2 | 75.10 | 72 - | 81 | 3.83E+02 | 79.57 | 9.00E+02 | 4.93E+01 | | m | 3 | 77.47 | 72 - | 81 | 6.13E+02 | 87.66 | 8.57E+02 | 4.81E+01 | | 411 | 4 | 87.66 | 86 - | 90 | 6.22E+01 | 70,86 | 1.07E+03 | 5.68E+01 | | | 5 | 93.30 | 91 - | 99 | 1.75E+02 | 101.45 | 1.37E+03 | 8.05E+01 | | | 6 | 186.07 | 183 - | 190 | 1.52E+02 | 68.53 | 6.84E+02 | 5.26E+01 | | М | 7 | 238.98 | 234 - | 248 | 5.03E+02 | 61.64 | 3.24E+02 | 2.96E+01 | | m | 8 | 242.05 | 234 - | 248 | 1,75E+02 | 64.65 | 3.24E+02 | 2.96E+01 | | 111 | 9 | 270.01 | 266 - | 274 | 6.40E+01 | 55.90 | 4.42E+02 | 4.40E+01 | | | 10 | 295.63 | 292 - | 299 | 2.76E+02 | 59.03 | 3.98E+02 | 4.01E+01 | | | 11 | 300.54 | 299 - | 304 | 3.88E+01 | 36.28 | 2.38E+02 | 2.80E+01 | | | 12 | 328.05 | 325 - | 332 | 4.71E+01 | 40.20 | 2.42E+02 | 3.11E+01 | | | 13 | 338.79 | 336 - | 342 | 8.56E+01 | 40.76 | 2.43E+02 | 2.98E+01 | | | 14 | 352.19 | 347 - | 357 | 4.52E+02 | 64.50 | 3.13E+02 | 3.99E+01 | | | 15 | 431.61 | 428 | 435 | 3.27E+01 | 30.33 | 1.31E+02 | 2.31E+01 | | | 16 | 463.75 | 458 - | 469 | 4.42E+01 | 45.61 | 2.32E+02 | 3.59E+01 | | | 17 | 477.89 | 475 - | 483 | 3.55E+01 | 35.29 | 1.67E+02 | 2.73E+01 | | | 18 | 510.45 | 505 - | 514 | 1.14E+02 | 38.33 | 1.45E+02 | 2.62E+01 | | | 19 | 527.51 | 521 - | 531 | 3.06E+01 | 37.79 | 1.69E+02 | 2.97E+01 | | | 20 | 569.83 | 567 - | 574 | 4.15E+01 | 25.53 | 8.30E+01 | 1.81E+01 | 1603102-04 SEDIMENT 2016-03-16A | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |-------------|-----------------|---------------|------------|------------------|-------------------------|---------------------|-------------------| | 21 | 583.52 | 5 80 – | 588 | 1.19E+02 | 39.51 | 1.67E+02 | 2.71E+01 | | 22 | 609.68 | 606 - | 612 | 3.14E+02 | 43.50 | 1.16E+02 | 2.07E+01 | | 23 | 624.70 | 622 - | 628 | 2.06E+01 | 19.90 | 5.89E+01 | 1.46E+01 | | 24 | 694.73 | 691 - | 698 | 2.17E+01 | 27.13 | 1.09E+02 | 2.09E+01 | | 25 | 767.97 | 763 - | 771 | 2.46E+01 | 29.30 | 1.17E+02 | 2.27E+01 | | 26 | 794.68 | 791 - | 799 | 2.34E+01 | 26.63 | 9.51E+01 | 2.04E+01 | | 27 | 893.26 | 887 - | 901 | 3.08E+01 | 27.61 | 6.63E+01 | 2.08E+01 | | 28 | 911.76 | 907 - | 918 | 1.23E+02 | 33.94 | 7.82E+01 | 2.11E+01 | | 29 | 933.29 | 929 - | 937 | 2.36E+01 | 23.75 | 7.29E+01 | 1.78E+01 | | 30 | 969.54 | 965 - | 972 | 5.43E+01 | 28.14 | 9.54E+01 | 1.97E+01 | | 31 | 1106.48 | 1100 - | 1112 | 3.01E+01 | 25.89 | 6.39E+01 |
1.93E+01 | | 32 | 1120.54 | 1115 - | 1125 | 6.95E+01 | 28.45 | 6.90E+01 | 1.89E+01 | | 33 | 1154.56 | 1148 - | 1159 | 2.36E+01 | 27.64 | 8.28E+01 | 2.13E+01 | | 34 | 1162.69 | 1160 - | 1166 | 1.38E+01 | 18.10 | 5.05E+01 | 1.36E+01 | | 35 | 1238.89 | 1234 - | 1242 | 2.67E+01 | 21.98 | 5.66E+01 | 1.60E+01 | | 36 | 1460.80 | 1455 - | 1465 | 3.33E+02 | 38.14 | 1.63E+01 | 9.13E+00 | | 37 | 1482.77 | 1479 - | 1486 | 1.01E+01 | 11.49 | 1.39E+01 | 7.87E+00 | | 38 | 1629.78 | 1625 - | 1632 | 8,42E+00 | 8.94 | 7.17E+00 | 5.60E+00 | | 39 | 1658.56 | 1653 - | 1661 | 9.63E+00 | 8.26 | 4.75E+00 | 4.48E+00 | | 40 | 1728.59 | 1724 - | 1733 | 1.96E+01 | 12.25 | 1.08E+01 | 6.96E+00 | | 41 | 1764.33 | 1759 - | 1767 | 4.90E+01 | 14.00 | 0.00E+00 | 0.00E+00 | | 42 | 1841.07 | 1837 - | 1843 | 5.13E+00 | 7.52 | 5.75E+00 | 4.93E+00 | | 43 | 1847.27 | 1844 - | 1849 | 7.00E+00 | 5.29 | 0.00E+00 | 0.00E+00 | | 44 | 1959.35 | 1954 - | 1964 | 1.50E+01 | 10.11 | 6.00E+00 | 5.34E+00 | | 4.5 | 2039.87 | 2036 - | 2042 | 6.19E+00 | 6.65 | 3.63E+00 | 3.63E+00 | | 46 | 2293.63 | 2290 - | 2295 | 4.50E+00 | 5.74 | 3.00E+00 | 3.18E+00 | | 47 | 2614.12 | 2607 - | 2617 | 4.70E+01 | 13.71 | 0.00E+00 | 0.00E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK WITH NID REPORT Peak Analysis Performed on : 4/13/2016 9:07:51AM Peak Analysis From Chancel Peak Analysis To Channel : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Peak Match Tolerance : 1.000 keV 1603102-04 | í | [∋] eak
No. | Energy
(keV) | ROi
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |---|-------------------------|--------------------|----------------------------------|--------------|--------------------|----------------------|-------------------------|----------------------|----------------------| | | 1 | 47.02 | 43 - | 50 | 47.25 | 1.59E+02 | 81.02 | 9.89E+02 | PB-210 | | М | 2 | 75.10 | 72 - | 81 | 75.32 | 3.83E+02 | 79.57 | 9.00E+02 | AM-243 | | m | 3 | 77.47 | 72 - | 81 | 77.68 | 6.13E+02 | 87.66 | 8.57E+02 | TI-44 | | | 4 | 87.66 | 86 - | 90 | 87.87 | 6.22E+01 | 70.86 | 1.07E+03 | SN-126 | | | | | | | | | , | | CD-109 | | | | | | | | | 502 45 | 1 275:02 | LU-176
GA-67 | | | 5 | 93.30 | 91 - | 99 | 93.50 | 1.75E+02 | 101.45 | 1.37E+03
6.84E+02 | RA-226 | | | 6 | 186.07 | 183 - | 190 | 186.23 | 1.52E+02 | 68.53
61.64 | 3.24E+02 | PB-212 | | M | 7 | 238.98 | 234 - | 248 | 239.11 | 5.03E+02
1.75E+02 | 64.65 | 3.24E+02 | | | m | 8 | 242.05 | 234 - | 248
274 | 242.17
270.12 | 6.40E+01 | 55.90 | 4.42E+02 | | | | 9 | 270.01 | 266 -
292 - | 299 | 295.73 | 2.76E+02 | 59.03 | 3.98E+02 | PB-214 | | | 10
11 | 295.63
300.54 | 299 - | 304 | 300.63 | 3.88E+01 | 36.28 | 2.38E+02 | GA-67 | | | 11 | 300.34 | 299 | 204 | 300.03 | 3.002.02 | | | PB-212 | | | | | | | | | | | BI-210M | | | 12 | 328.05 | 325 - | 332 | 328.13 | 4.71E+01 | 40.20 | 2.42E+02 | LA-140 | | | 13 | 338.79 | 336 - | 342 | 338.86 | 8.56E+01 | 40.76 | 2.43E+02 | AC-228 | | | 14 | 352.19 | 347 - | 357 | 352.26 | 4.52E+02 | 64.50 | 3.13E+02 | PB-214 | | | 15 | 431.61 | 429 - | 435 | 431.64 | 3.27E+01 | 30.33 | 1.31E+02 | | | | 16 | 463.75 | 45t - | 459 | 463.16 | 4.425+01 | 45.61 | 2.32E+02 | SB-125 | | | 17 | 477.89 | 475 - | 483 | 477.89 | 3.53E+01 | 35.29 | 1.67E+02 | BE-7 | | | 18 | 510.45 | 505 - | 514 | 510.44 | 1.14E+02 | 38.33 | 1.45E+02 | | | | 19 | 527.51 | 521 - | 531 | 527.49 | 3.06E+01 | 37.79 | 1.69E+02 | BI-207 | | | 20 | 569.83 | 567 - | 574 | 569.79 | 4.15E+01 | 25.53 | 8.30E+01 | CS-134 | | | | | | | E00 47 | 1 100.00 | 39.51 | 1.67E+02 | TL-208 | | | 21 | 583.52 | 580 - | 588 | 583.47 | 1.19E+02
3.14E+02 | 43.50 | 1.16E+02 | BI-214 | | | 22 | 609.68 | 606 - | 612 | 609.62 | 2.06E+01 | 19.90 | 5.89E+01 | D | | | 23 | 624.70 | 622 - | 628 | 624.63
694.63 | 2.17E+01 | 27.13 | 1.09E+02 | SB-126 | | | 24 | 694.73 | 691 -
763 - | 698
771 | 767.84 | 2.46E+01 | 29.30 | 1.17E+02 | | | | 25 | 767.97
794.68 | 763 -
791 - | 799 | 794.54 | 2.34E+01 | 26.63 | 9.51E+01 | | | | 26
27 | 893.26 | 887 - | 901 | 893.07 | 3.08E+01 | 27.61 | 6.63E+01 | | | | 28 | 911.76 | 907 - | 918 | 911.57 | 1.23E+02 | 33.94 | 7.82E+01 | LU-172 | | | 20 | 21.1.6,0 | 50. | | | | | | AC-228 | | | 29 | 933.29 | 929 - | 937 | 933.09 | 2.36E+01 | 23.75 | 7.29E+01 | | | | 30 | 969.54 | 965 - | 972 | 969.32 | 5.43E+01 | 28.14 | 9.54E+01 | AC-228 | | | 31 | 1106.48 | 1100 - | 1112 | 1106.20 | 3.01E+01 | 25.89 | 6.39E+01 | | | | 32 | 1120.54 | 1115 - | 1125 | 1120.26 | 6.95E+01 | 28.45 | 6.90E+01 | | | | | | | | | | | | BI-214 | | | | ₹
: | | | | 0.000.01 | 0.2 64 | 0 000.01 | TA-182 | | | 33 | 1154.56 | 1148 - | 1159 | 1154.26 | 2.36E+01 | 27.64 | 8.28E+01
5.05E+01 | | | | 34 | 1162.69 | 1160 - | 1166 | 1162.39 | 1.38E+01 | 18.10
21.98 | 5.66E+01 |
CO-56 | | | 35 | 1238.89 | 1234 - | 1242 | 1238.55 | 2.67E+01
3.33E+02 | 38.14 | 1.63E+01 | | | | 36 | 1460.80 | 1455 - | 1465 | 1460.38
1482.34 | 1.01E+01 | 11.49 | 1.39E+01 | | | | 37 | 1482.77 | 1479 - | 1486
1632 | 1629.30 | 8.42E+00 | 8.94 | 7.17E+00 | | | | 38 | 1629.78 | 1625 -
1653 - | 1661 | 1658.06 | 9.63E+00 | 8.26 | 4.75E+00 | | | | 39
40 | 1658.56
1728.59 | 1724 - | 1733 | 1728.07 | 1.96E+01 | 12.25 | 1.08E+01 | | | | 40 | 1764.33 | 1759 - | 1767 | 1763.80 | 4.90E+01 | 14.00 | 0.00E+00 | | | | 41
42 | 1841.07 | 1837 - | 1843 | 1840.51 | 5.13E+00 | 7.52 | 5.75E+00 | | | | 42 | 1847.27 | 1844 - | 1849 | 1846.71 | 7.00E+00 | 5.29 | 0.00E+00 | | | | 44 | 1959.35 | 1954 - | 1964 | 1958.76 | 1.50E+01 | 10.11 | 6.00E+00 | | | | 45 | 2039.87 | 2036 - | | 2039.25 | 6.19E+00 | 6.65 | 3.63E+00 | | | | 46 | 2293.63 | 2290 - | | 2292.93 | 4.50E+00 | 6.74 | 3.00E+00 | | | | | | | | | | | | | 1603102-04 SEDIMENT 2016-03-16A | Peak | Energy | ŔOI | ROI | Peak | Net Peak | Net Area | Continuum | | |------|---------|---------------|------|----------|----------|-------------|-----------|--------| | No. | (keV) | start | end | Centroid | Area | Uncertainty | Counts | | | 47 | 2614.12 | 2607 - | 2617 | 2613.34 | 4.70E+01 | 13.71 | 0.00E+00 | TL-208 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/13/2016 9:07:51AM | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |-------------|-----------------|------------------|-------------------------|---------------------------------------|---------------------------| | | | | | · · · · · · · · · · · · · · · · · · · | | | 1 | 47.02 | 1.59E+02 | 81,02 | 1.53E-02 | 1.58E-03 | | 1 2 | 75.10 | 3.83E+02 | 79.57 | 2.37E-02 | 2.10E-03 | | 3 | 77.47 | 6.13E+02 | 87.66 | 2.39E-02 | 2.18E-03 | | 4 | 87.66 | 6,22E+01 | 70.86 | 2.44E-02 | 2.51E-03 | | 5 | 93.30 | 1,75E+02 | 101.45 | 2.44E-02 | 2.40E-03 | | 6 | 186.07 | 1.52E+02 | 68.53 | 1.83E-02 | 1.42E-03 | | 1 7 | 238.98 | 5.03E+02 | 61.64 | 1.52E-02 | 1.18E-03 | | n 8 | 242.05 | 1.75E+02 | 64.65 | 1.51E-02 | 1.17E-03 | | 9 | 270.01 | 6.40E+01 | 55.90 | 1.38E-02 | 1.04E-03 | | 10 | 295.63 | 2.76E+02 | 59.03 | 1.28E-02 | 9.73E-04 | | 11 | 300,54 | 3.88E+01 | 36.28 | 1.26E-02 | 9.67E-04 | | 12 | 328.05 | 4.71E+01 | 40.20 | 1.17E-02 | 9.27E-04 | | 13 | 338.79 | 8.56E+01 | 40.76 | 1.14E-02 | 9.12E-04 | | 14 | 352.19 | 4.52E+02 | 64.50 | 1.11E-02 | 8.93E-04 | | 15 | 431.61 | 3.27E+01 | 30.33 | 9.28E-03 | 7.97E-04 | | 16 | 463.75 | 4.42E+01 | 45.61 | 8.72E-03 | 7.65E-04 | | 17 | 477.89 | 3.53E+01 | 35.29 | 8.49E-03 | 7.51E-04 | | 18 | 510.45 | 1.14E+02 | 38.33 | 8.02E-03 | 7.19E-04 | | 19 | 527.51 | 3.06E+01 | 37.79 | 7.79E-03 | 7.02E-04 | | 20 | | 4,15E+01 | 25.53 | 7.28E-03 | 6.59E-04 | | 21 | 583.52 | 1.19E+02 | 39.51 | 7.14E-03 | 6.46E-04 | | 22 | 609.68 | 3.14E+02 | 43.50 | 6.87E-03 | 6.20E-04 | | 23 | | 2.06E+01 | 19.90 | 6.72E-03 | 6.05E-04 | | 24 | | 2.17E+01 | 27.13 | 6.13E-03 | 5.41E-04 | | 25 | | 2.46E+01 | 29.30 | 5.62E-03 | 4.81E-04 | | 26 | | 2.34E+01 | 26.63 | 5.46E-03 | 4.59E-04 | | 27 | | 3.08E+01 | 27.61 | 4.93E-03 | 3.79E-04 | | 28 | | 1.23E+02 | 33.94 | 4.85E-03 | 3.72E-04 | | 29 | | 2.36E+01 | 23.75 | 4.752-03 | 3.68E-04 | 1603102-04 SEDIMENT 2016-03-16A | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |--|--|--|---|--|--| | 30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 | 969.54
1106.48
1120.54
1154.56
1162.69
1238.89
1460.80
1482.77
1629.78
1658.56
1728.59
1764.33
1841.07
1847.27
1959.35
2039.87
2293.63 |
5.43E+01
3.01E+01
6.95E+01
2.36E+01
1.38E+01
2.67E+01
3.33E+02
1.01E+01
8.42E+00
9.63E+00
1.96E+01
4.90E+01
5.13E+00
7.00E+00
1.50E+01
6.19E+00
4.50E+00 | 28.14
25.89
28.45
27.64
18.10
21.98
38.14
11.49
8.94
8.26
12.25
14.00
7.52
5.29
10.11
6.65
5.74 | 4.60E-03
4.12E-03
4.08E-03
3.98E-03
3.95E-03
3.75E-03
3.29E-03
3.03E-03
2.99E-03
2.90E-03
2.86E-03
2.77E-03
2.77E-03
2.77E-03
2.59E-03
2.59E-03
2.40E-03 | 3.61E-04
3.36E-04
3.33E-04
3.27E-04
3.25E-04
3.09E-04
2.69E-04
2.66E-04
2.44E-04
2.40E-04
2.29E-04
2.24E-04
2.13E-04
2.13E-04
2.13E-04
2.13E-04
2.13E-04
2.13E-04 | | 47 | 2614.12 | 4.70E+01 | 13.71 | 2.24E-03 | 2.13E-04 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma ## BACKGROUND SUBTRACT REPORT Peak Analysis Performed on · 4/13/2016 9:07:51AM Env. Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF | 1 | Peak | Energy | Original | Orig. Area | Ambient | Backgr. | Subtracted | Subtracted | |------------------|---|---|--|---|--|--|--|--| | | No. | (keV) | Area | Uncertainty | Background | Uncert. | Area | Uncert. | | M
m
M
m | 1
2
3
4
5
6
7
8
9
10
11 | 47.02
75.10
77.47
87.66
93.30
186.07
238.98
242.05
270.01
295.63
300.54
328.05 | 1.59E+02
3.83E+02
6.13E+02
6.22E+01
1.75E+02
1.52E+02
5.03E+02
1.75E+02
6.40E+01
2.76E+02
3.88E+01 | 81.02
79.57
87.66
70.86
101.45
68.53
61.64
64.65
55.90
59.03
36.28
40.20 | 3.04E+01
3.05E+00
7.72E+01
3.82E+01
1.06E+01 | 2.01E+01
2.15E+00
4.69E+00
5.87E+00
5.71E+00 | 1.28E+02
3.83E+02
6.13E+02
5.92E+01
9.73E+01
1.14E+02
4.92E+02
1.75E+02
6.40E+01
2.76E+02
3.88E+01
4.71E+01 | 8.35E+01
7.96E+01
8.77E+01
7.09E+01
1.02E+02
6.88E+01
6.19E+01
5.59E+01
5.59E+01
3.63E+01
4.02E+01 | 1603102-04 | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|----------------------|-----------------------| | 13 | 338.79 | 8.56E+01 | 40.76 | | | 8.56E+01 | 4.08E+01 | | 14 | 352.19 | 4.52E+02 | 64.50 | 0.00E+00 | 0.00E+00 | 4.52E+02 | 6.45E+01 | | 15 | 431.61 | 3.27E+01 | 30.33 | | | 3.27E+01 | 3.03E+01 | | 16 | 463.75 | 4.42E+01 | 45.61 | • | 2 | 4.42E+01 | 4.56E+01 | | 17 | 477.89 | 3.53E+01 | 35.29 | | | 3.53E+01 | 3.53E+01 | | 18 | 510.45 | 1.14E+02 | 38.33 | · | | 1.14E+02 | 3.83E+01 | | 19 | 527.51 | 3.06E+01 | 37.79 | | .*: | 3.06E+01 | 3.78E+01 | | 20 | 569.83 | 4.15E+01 | 25.53 | • | | 4.15E+01 | 2.55E+01 | | 21 | 583.52 | 1.19E+02 | 39.51 | 5.06E+00 | 2.98E+00 | 1.14E+02 | 3.96E+01 | | 22 | 609.68 | 3.14E+02 | 43.50 | 2.01E+00 | 3.84E+00 | 3.12E+02 | 4.37E+01 | | 23 | 624.70 | 2.06E+01 | 19.90 | | | 2.06E+01 | 1.99E+01 | | 24 | 694.73 | 2.17E+01 | 27.13 | | | 2.17E+01 | 2.71E+01 | | 25 | 767.97 | 2.46E+01 | 29.30 | | | 2.46E+01 | 2.93E+01 | | 26 | 794.68 | 2.34E+01 | 26.63 | | | 2.34E+01 | 2.66E+01 | | 27 | 893.26 | 3.08E+01 | 27.61 | | | 3.08E+01 | 2.76E+01 | | 28 | 911.76 | 1.23E+02 | 33.94 | 2.99E+00 | 2.93E+00 | 1.20E+02 | 3.41E+01 | | 29 | 933.29 | 2.36E+01 | 23.75 | | | 2.36E+01 | 2.37E+01 | | 30 | 969.54 | 5.43E+01 | 28.14 | | | 5.43E+01 | 2.81E+01 | | 31 | 1106.48 | 3.01E+01 | 25.89 | | | 3.01E+01 | 2.59E+01 | | 32 | 1120.54 | 6.95E+01 | 28.45 | | | 6.95E+01 | 2.84E+01 | | 33 | 1154.56 | 2.36E+01 | 27.64 | | | 2.36E+01 | 2.76E+01 | | 34 | 1162.69 | 1.38E+01 | 18.10 | | | 1.38E+01 | 1.81E+01 | | 35 | 1238.89 | 2.67E+01 | 21.98 | | | 2.67E+01 | 2.20E+01 | | 36 | 1460.80 | 3.33E+02 | 38.14 | | | 3.33E+02 | 3.81E+01 | | 37 | 1482.77 | 1.01E+01 | 11.49 | | | 1.01E+01 | 1.15É+01 | | 38 | 1629.78 | 8.42E+00 | 8.94 | | | 8.42E+00 | 8.94E+00 | | 3,9 | 1658.56 | 9.63E+00 | 8,26 | | | 9.63E+00 | 8.26E+00
1.22E+01 | | 40 | 1728.59 | 1.96E+01 | 12.25 | | | 1.96E+01 | 1.22E+01
1.40E+01 | | 41 | 1764.33 | 4.90E+01 | 14.00 | | | 4.90E+01 | 7.52E:00 | | 42 | 1841.07 | 5.13E+00 | 7.52 | | | 5.13E+00 | 5.29E±00 | | 43 | 1847.27 | 7.00E+00 | 5.29 | | | 7.00E+00 | 1.01E+01 | | 44 | 1959.35 | 1.50E+01 | 10.11 | | | 1.50E+01 | 6.65E+00 | | 45 | 2039.87 | 6.19E+00 | 6.65 | | | 6.19E+00
4.50E+00 | 5.74E+00 | | 46 | 2293.63 | 4.50E+00 | 5.74 | | | 4.50E+00
4.70E+01 | 1.37E+01 | | 47 | 2614.12 | 4.70E+01 | 13.71 | | | 4./UETUI | 1.3/6701 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma 1603102-04 SEDIMENT 2016-03-16A ### AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis Performed on : 4/13/2016 9:07:51AM Ref. Peak Energy : 0.00 Reference Date Peak Ratio : 0.00 Uncertainty : 0.00 Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Corrected Area is: Original * Peak Ratio - Background | , | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |-----|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|----------------------|----------------------| | | 1 | 47.02 | 1.59E+02 | 81.02 | 3.04E+01 | 2.01E+01 | 1.28E+02 | 8.35E+01 | | М | 2 | 75.10 | 3.83E+02 | 79.57 | | | 3.83E+02 | 7.96E+01 | | m | 3 | 77.47 | 6.13E+02 | 87.66 | | | 6.13E+02 | 8.77E+01 | | *** | 4 | 87.66 | 6.22E+01 | 70.86 | 3.05E+00 | 2.15E+00 | 5.92E+01 | 7.09E+01 | | | 5 | 93.30 | 1.75E+02 | 101.45 | 7.72E+01 | 4.69E+00 | 9.73E+01 | 1.02E+02 | | | 6 | 186.07 | 1.52E+02 | 68.53 | 3.82E+01 | 5.87E+00 | 1.14E+02 | 6.88E+01 | | М | 7 | 238.98 | 5.03E+02 | 61.64 | 1.06E+01 | 5.71E+00 | 4.92E+02 | 6.19E+01 | | m | 8 | 242.05 | 1.75E+02 | 64.65 | | | 1.75E+02 | 6.47E+01 | | | 9 | 270.01 | 6.40E+01 | 55.90 | | | 6.40E+01 | 5.59E+01 | | | 10 | 295.63 | 2.76E+02 | 59.03 | | | 2.76E+02 | 5.90E+01 | | | 11 | 300.54 | 3.88E+01 | 36.28 | | | 3.88E+01 | 3.63E+01 | | | 12 | 328.05 | 4.71E±91 | 40.20 | | | 4.71E+01 | 4.02E+01 | | | 13 | 338.79 | 8.56±+01 | 40.76 | | | 8.56E+01 | 4.08E+01 | | | 14 | 352.19 | 4.52E+02 | G4.50 | 0.00E+00 | 0.00E+00 | 4.52E+02 | 6.45E+01 | | | 15 | 431.61 | 3.27E+01 | 30.33 | | | 3.27E+01 | 3.03E+01 | | | 16 | 463.75 | 4.42E+01 | 45,61 | | | 4.42E+01 | 4.56E+01 | | | 17 | 477.89 | 3.53E+01 | 35.29 | | | 3.53E+01 | 3.53E+01
3.83E+01 | | | 18 | 510.45 | 1.14E+02 | 38.33 | | | 1.14E+02 | 3.78E+01 | | | 19 | 527.51 | 3.06E+01 | 37.79 | | | 3.06E+01 | 2.55E+01 | | | 20 | 569.83 | 4.15E+01 | 25.53 | | 0.007:00 | 4.15E+01 | 3.96E+01 | | | 21 | 583.52 | 1.19E+02 | 39.51 | 5.06E+00 | 2.98E+00 | 1.14E+02 | 4.37E+01 | | | 22 | 609.68 | 3.14E+02 | 43.50 | 2.01E+00 | 3.84E+00 | 3.12E+02 | 1.99E+01 | | | 23 | 624.70 | 2.06E+01 | 19.90 | • | | 2.06E+01
2.17E+01 | 2.71E+01 | | | 24 | 694.73 | 2.17E+01 | 27.13 | | | 2.17E+01
2.46E+01 | 2.93E+01 | | | 25 | 767.97 | 2.46E+01 | 29.30 | | | 2.46E+01
2.34E+01 | 2.66E+01 | | | 26 | 794.68 | 2.34E+01 | 26.63 | | | 3.08E+01 | 2.76E+01 | | | 27 | 893.26 | 3.08E+01 | 27.61 | 0.007.00 | 0 .00 E 100 | 1.20E+01 | 3.41E+01 | | | 28 | 911.76 | 1.23E+02 | 33.94 | 2.99E+00 | 2.93E+00 | 2.36E+01 | 2.37E+01 | | | 29 | 933.29 | 2.36E+01 | 23.75 | | | 5.43E+01 | 2.81E+01 | | | 30 | 969.54 | 5.43E+01 | 28.14 | | | 3.43E+01
3.01E+01 | 2.59E+01 | | | | 1106.48 | 3.01E+01 | 25.89 | | | 6.95E+01 | 2.84E+01 | | | | 1120.54 | 6.95E+01 | 28.45 | | | 2.36E+01 | 2.76E+01 | | | | 1154.56 | 2.36E+01 | 27.64 | | | 1.38E+01 | 1.81E+01 | | | | 1162.69 | 1.38E+01 | 18.10 | | | 2.67E+01 | 2.20E+01 | | | | 1238.89 | 2.67E+01 | 21.98 | | | 3.33E+02 | 3.81E+01 | | | | 1460.80 | 3.332+02 | 38.14 | | | 1.01E+01 | 1.15E+01 | | | | 1482.77 | 1.01E+01 | 11.49 | | • | 8.42E+00 | 8.94E+00 | | | | 1629.78 | 8.42E+00 | 8.94 | | | 9.63E+00 | 8.26E+00 | | | | 1658.56 | 9.63E+00 | 8.26 | | | 1.96E+01 | 1.22E+01 | | | | 1728.59 | 1.96E+01 | 12.25 | | | 4.90E+01 | 1.40E+01 | | | 41 | 1764.33 | 4.90E+01 | 14.00 | | | 4.500.01 | 1,101,01 | 1603102-04 SEDIMENT 2016-03-16A | Peak Energy | Original | Orig. Area | Ambient | Backgr. | Corrected | Corrected | |--|--|--|------------|---------|--|--| | No. (keV) | Area | Uncertainty | Background | Uncert. | Area | Uncert. | | 42 1841.07
43 1847.27
44 1959.35
45 2039.87
46 2293.63
47 2614.12 | 5.13E+00
7.00E+00
1.50E+01
6.19E+00
4.50E+00
4.70E+01 | 7.52
5.29
10.11
6.65
5.74
13.71 | | |
5.13E+00
7.00E+00
1.50E+01
6.19E+00
4.50E+00
4.70E+01 | 7.52E+00
5.29E+00
1.01E+01
6.65E+00
5.74E+00
1.37E+01 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide Name | Id Confidence | Energy (keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|-----|----------|-------------------------|-------------------------| | BE-7 | 0.985 | 477.59 | * | 10.42 | 9.60E-01 | 9.63E-01 | | K-40 | 1.000 | 1460.81 | * | 10.67 | 1.59E+01 | 2.26E+00 | | GA-67 | 0.650 | 93.31 | * | 35.70 | 6.87E+01 | 2.70E+02 | | | | 208.95 | | 2.24 | | | | | | 300.22 | * | 16.00 | 1.18E+02 | 4.61E+02 | | CD-109 | 0.978 | 88.03 | * | 3.72 | 1.14E+00 | 1.37E+00 | | SN-126 | 0.999 | 87.57 | * | 37.00 | 1.10E-01 | 1.32E-01 | | BI-207 | 0.407 | 569.67 | * | 97.72 | 9.79E-02 | 6.09E-02 | | | | 1063.62 | | 74.90 | | | | TL-208 | 0.855 | 583.14 | * | 30.22 | 8.89E-01 | 3.19E-01 | | 223 1.7 4 | | 860.37 | | 4.48 | | | | | | 2614.66 | * | 35.85 | 9.82E-01 | 3.01E-01 | | PB-210 | 0.957 | 46.50 | * | 4.25 | 3.32E+00 | 2.19E+00 | | PB-212 | 0.980 | 238.63 | * | 44.60 | 1.22E+00 | 1.80E-01 | | | | 300.09 | * | 3.41 | 1.51E+00 | 1.42E+00 | | BI-214 | 0.918 | £09.31 | * * | 46.30 | 1.65E+00 | 2.74E-01 | | | | 1120.29 | * | 15.10 | 1.89E+00 | 7.91E-01 | | | | 1764.49 | * | 15.80 | 1.82E+00 | 5.39E-01 | | | | 2204.22 | | 4.98 | | | | PB-214 | 0.983 | 295.21 | * | 19.19 | 1.88E+00 | 4.28E-01 | | | | 351.92 | * | 37.19 | 1.85E+00 | 3.03E-01 | | RA-226 | 0.997 | 186.21 | * | 3.28 | 3.18E+00 | 6.13E+00 | | AC-228 | 0.947 | 338.32 | * | 11.40 | 1.10E+00 | 5.32E-01 | | | | 911.07 | * | 27.70 | 1.50E+00 | 4.41E-01 | | | | 969.11 | * | 16.60 | 1.19E+00 | 6.25E-01 | 1603102-04 SEDIMENT 2016-03-16A | Nuclide Name | Id Confidence | Energy (keV) | Yield(%) | Activity
(pCi/grams) | Activity Uncertainty | |--------------|---------------|--------------|----------|-------------------------|----------------------| | AM-243 | 0.971 | 74.67 | * 66.00 | 4.11E-01 | 9.29E-02 | - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma #### **UNIDENTIFIED PEAKS** Peak Locate Performed on : 4/13/2016 9:07:51AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | No. Energy (keV) Peak Size (C | | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----|--------|-------------------------------|-------------|-----------------------------|--------------|----------------------|--| | m | 3 | 77.47 | 1.70180E-01 | 7.15 | | | | | m | 8 | 242.05 | 4.85375E-02 | 18.50 | | | | | | 9 | 270.01 | 1.77778E-02 | 43.67 | | | | | | 12 | 328.05 | 1.30721E-02 | 42.71 | Tol. | LA-140 | | | | 15 | 431.61 | 9.09297E-03 | 46.33 | Sum | | | | | 16 | 463.75 | 1.22656E-02 | 51.64 | | | | | | 1.8 | 510.45 | 3.15405E-02 | 16.88 | | | | | | 19 | 527.51 | 8.48913E-03 | 61.83 | | | | | | 23 | 624.70 | 5.71111E-03 | 48.39 | | | | | | 24 | 694.73 | 6.03984E-03 | 62.39 | Tol. | SB-126 | | | | 25 | 767.97 | 6.82898E-03 | 59.59 | | | | | | 26 | 794.68 | 6.51213E-03 | 56.80 | | | | | | 27 | 893.26 | 8.56771E-03 | 44.76 | | | | | | 29 | 933.29 | 6.54630E-03 | 50.39 | | | | | | 31 | 1106.48 | 8.35126E-03 | 43.06 | | | | | | 33 | 1154.56 | 6.55128E-03 | 58.60 | | | | | | 34 | 1162.69 | 3.82479E-03 | 65.72 | | | | | | 35 | 1238.89 | 7.41162E-03 | 41.19 | Tol. | CO-56 | | | | 37 | 1482.77 | 2.79412E-03 | 57.11 | | | | | | 38 | 1629.78 | 2.33796E-03 | 53.13 | | | | | | 39 | 1658.56 | 2.67361E-03 | 42.92 | | | | | | 40 | 1728.59 | 5.4444E-03 | 31.24 | | | | | | 42 | 1841.07 | 1.42361E-03 | 73.33 | | | | | | 43 | 1847.27 | 1.94444E-03 | 37.80 | | | | | | 44 | 1959.35 | 4.16667E-03 | 33.71 | | | | | | 45 | 2039.87 | 1.71875E-03 | 53.75 | | | | | | 46 | 2293.63 | 1.25000E-03 | 63.83 | | | | 1603102-04 SEDIMENT 2016-03-16A M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### IDENTIFIED NUCLIDES | Nuclide
Name | ld
Confidence | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |------------------|------------------|-----------------|----------|-------------------------|-------------------------| | BE-7 | 0.98 | 477.89 | 10.42 | 9.60E-01 | 9.63E-01 | | K-40 | 1.00 | 1460.81 * | 10.67 | 1.59E+01 | 2.26E+00 | | GA-67 | 0.65 | 93.31 * | 35.70 | 6.87E+01 | 2.70E+02 | | GA-07 | 0.00 | 208.95 | 2.24 | | | | | | 300.22 * | 16.00 | 1.18E+02 | 4.61E+02 | | CD-109 | 0.97 | 88.03 * | 3.72 | 1.14E+00 | 1.37E+00 | | SN-126 | 0.99 | 87.57 * | 37.00 | 1.10E-01 | 1.32E-01 | | BI-207 | 0.40 | 569.67 * | 97,72 | 9.79E-02 | 6.09E-02 | | D1-201 | 0.10 | 1063.62 | 74.90 | | | | TL-208 | 0.85 | 583.14 * | 30.22 | 8.89E-01 | 3.19E-01 | | 111-200 | 0.00 | 860.37 | 4.48 | • | | | | | 2614.66 * | 35.85 | 9.82E-01 | 3.01E-01 | | PB-210 | 0.95 | 46.50 * | 4.25 | 3.32E+00 | 2.19E+00 | | PB-210
PB-212 | 0.98 | 238.63 * | 44.60 | 1.22E+00 | 1.80E-01 | | 5D-717 | 0.50 | 300.09 * | 3.41 | 1.51E+00 | 1.42E+00 | | BI-214 | 0.91 | 609.31 * | 46.30 | 1.65E+00 | 2.74E-01 | | D1-514 | 0.71 | 1120.29 * | 15.10 | 1.89E+00 | 7.91E-01 | | | | 1764.49 * | 15.80 | 1.82E+00 | 5.39E-01 | | | | 2204.22 | 4.98 | | | | PB-214 | 0.98 | 295.21 * | 19.19 | 1.88E+00 | 4.28E-01 | | FU-714 | 0.50 | 351.92 * | 37.19 | 1.85E+00 | 3.03E-01 | | RA-226 | 0.99 | 186.21 * | 3.28 | 3,18E+00 | 6.13E+00 | | | 0.94 | 338.32 * | 11.40 | 1.10E+00 | 5.32E-01 | | AC-228 | 0.94 | 911.07 * | 27.70 | 1.50E+00 | 4.41E-01 | | | | 969.11 | 16.60 | 1.19E+00 | 6.25E-01 | | AM-243 | 0.97 | 74.67 * | 66.00 | 4.11E-01 | 9.29E-02 | 1603102-04 SEDIMENT 2016-03-16A - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. - @ = Energy line not used for Weighted Mean Activity Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma ### INTERFERENCE CORRECTED REPORT | | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |---|-----------------|-----------------------------|------------------------------------|------------------------------------|----------| | | BE-7 | 0.985 | 9.60E-01 | 9.63E-01 | | | | K-40 | 1.000 | 1.59E+01 | 2.26E+00 | | | | GA-67 | 0.650 | 5.53E+01 | 2.09E+02 | | | ? | CD-109 | 0.978 | 1.14E+00 | 1.37E+00 | | | 3 | SN-126 | 0.999 | 1.10E-01 | 1.32E-01 | | | • | BI-207 | 0.407 | 9.79E-02 | 6.09E-02 | | | | TL-208 | 0.855 | 9.38E-01 | 2.19E-01 | | | | PB-210 | 0.957 | 3.32E+00 | 2.19E+00 | | | | PB-212 | 0.980 | 1.21E+00 | 1.79E-01 | | | | BI-214 | 0.518 | 1.70E+00 | 2.33E-01 | | | | | 0.983 | 1.86E+00 | 2.47E-01 | | | | PB-214 | | 3.18E+00 | 6.13E+00 | | | | RA-226 | 0.997 | | 2.98E-01 | | | | AC-228 | 0.947 | 1.30E+00 | 9.29E-02 | | | | AM-243 | 0.971 | 4.11E-01 | 9.296-02 | | - ? = nuclide is part of an endetermined solution - X = nuclide rejected by the interference analysis - @ = nuclide contains enery, lines not used in Weighted Mean Activity Errors quoted at 2.000sigma Analysis Report for 1603102-04 SEDIMENT 2016-03-16A ### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 9:07:51AM Peak Locate From Channel : 1 : 4096 Peak Locate To Channel | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----|--------|--------------|-----------------|-----------------------------|--------------|----------------------|--| | m | 3 | 77.47 | 1.70180E-01 | 7.15 | | | | | m | 8 | 242.05 | 4.85375E-02 | 18.50 | | | | | | 9 | 270.01 | 1.77778E-02 | 43.67 | | | | | | 12 | 328.05 | 1.30721E-02 | 42.71 | Tol. | LA-140 | | | | 15 | 431.61 | 9.09297E-03 | 46.33 | Sum | | | | | 16 | 463.75 | 1.22656E-C2 | 51.64 | | | | | | 18 | 510.45 | 3.15405E-02 | 16.88 | | | | | | 19 | 527.51 | 8.48913E-03 | 61.83 | | | | | | 23 | 624.70 | 5.71111E-03 | 48.39 | | | | | | 24 | 694.73 | 6.03984E-03 | 62.39 | Tol. | SB-126 | | | | 25 | 767.97 | 6.82898E-03 | 59.59 | | | | | | 26 | 794.68 | 6.51213E-03 | 56.80 | | | | | | 27 | 893.26 | 8.56771E-03 | 44.76 | | | | | | 29 | 933.29 | 6.54630E-03 | 50.39 | | | | | | 31 | 1106.48 | 8.35126E-03 | 43.06 | | | | | | 33 | 1154.56 | 6.55128E-03 | 58.60 | | | | | | 34 | 1162.69 | 3.82479E-03 | 65.72 | | | | | | 35 | 1238.89 | 7.41162E-03 | 41.19 | Tol. | CO-56 | | | | 37 | 1482.77 | 2.79412E-03 | 57.11 | | | | | | 38 | 1629.78 | 2.33796E-03 | 53.13 | | | | | | 39 | 1658.56 | 2.67361E-03 | 42.92 | | | | | | 40 | 1728.59 | 5.44444E-03 | 31.24 | | | | | | 42 | 1841.07 | 1.42361E-03 | 73.33 | | | | | | 43 | 1847.27 | 1.94444E-03 | 37.80 | | | | | | 44 | 1959.35 | 4.16667E-03 | 33.71 | | | | | | 45 | 2039.87 | 1.71875E-03 | 53.75 | | | | | | 46 | 2293.63 | 1.25000E-03 | 63.83 | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma Analysis Report for 1603102-04 SEDIMENT 2016-03-16A ### NUCLIDE MDA REPORT | | Nuclide
Name | Energy
(keV) | | Yie!d(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | |-----------------|-----------------|--------------------|---|----------------|-------------------------|---------------------------------------|-------------------------| | | | | ٠ | 10:40 | 9.60E-01 | 1.56E+00 | 1.56E+00 | | ÷ | BE-7 | 477.59 | * | 10.42 | | 1.37E-01 | 1.37E-01 | | + | NA-22 | 1274.54 | | 99.94 | -7.94E-02 | · · · · · · · · · · · · · · · · · · · | 2.93E+12 | | + | NA-24 | 1368.53 | | 99.99 | 8.90E+11 | 2.00E+12 | 2.93E+12
2.00E+12 | | |
 2754.09 | | 99.86 | 2.27E+11 | C 455-02 | 6.45E-02 | | + | AL-26 | 1808.65 | | 99.76 | -3.59E-02 | 6.45E-02 | 1.00E+00 | | + | K-40 | 1460.81 | * | 10.67 | 1.59E+01 | 1.00E+00 | | | + | @ AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | · †· | TI-44 | 67.88 | | 94.40 | -4.20E-02 | 8.14E-02 | 8.14E-02 | | | | 78.34 | | 96.00 | 2.59E-01 | | 1.09E-01 | | + | SC-46 | 889.25 | | 99.98 | -1.60E-02 | 1.29E-01 | 1.29E-01 | | | | 1120.51 | | 99.99 | 2.84E-01 | 2 025-01 | 2.37E-01
3.82E-01 | | + | V-48 | 983.52 | | 99.98 | 8.36E-02 | 3.82E-01 | 4.24E-01 | | | · | 1312.10 | | 97,50 | 2.10E-01
4.70E-01 | 1.60E+00 | 1.60E+00 | | + | CR-51 | 320.08 | | 9.83 | | 1.17E-01 | 1.17E-01 | | + | MN-54 | 834.83 | | 99.97 | 3.89E-02 | 1.17E-01
1.42E-01 | 1.42E-01 | | 4. | CO-56 | 846.75 | | 99.96 | 4.31E-02 | 1.426-01 | 1.03E+00 | | | | 1037.75 | | 14.03 | -1.56E-01
1.93E-01 | | 2.89E-01 | | | | 1238.25
1771.40 | | 67.00
15.51 | -1.08E+00 | | 3.57E-01 | | | | 2598.48 | | 16.90 | -2.07E-01 | | 4.15E-01 | | + | CO-57 | 122.06 | | 85.51 | 4.57E-04 | 6.96E-02 | 6.96E-02 | | , | 00 0. | 136.48 | | 10.60 | 2.97E-01 | | 6.18E-01 | | + | CO-58 | 810.76 | | 99.40 | -1.17E-02 | 1.13E-01 | i.13E-01 | | + | FE-59 | 1099.22 | | 56.50 | 4.09E-02 | 3.02E-01 | 3.02E-01 | | - | | 1291.56 | | 43.20 | -1.56E-02 | | 4.57E-01 | | + | CO-60 | 1173.22 | | 100.00 | -7.30E-02 | 1.25E-01 | 1.25E-01 | | | | 1332.49 | | 100.00 | 7.48E-05 | | 1.39E-01 | | + | ZN-65 | 1115.52 | | 50.75 | -4.37E-03 | 2.39E-01 | 2.39E-01 | | + | GA-67 | 93.31 | * | 35.70 | 6.87E+01 | 1.18E+02 | 1.18E+02 | | | | 208.95 | | 2.24 | 8.15E+02 | | 1.29E+03 | | | | 300.22 | * | 16.00 | 1.18E+02 | 1 100 01 | 1.79E+02 | | + | SE-75 | 121.11 | | 16.70 | -7.79E-02 | 1.19E-01 | 3.86E-01 | | | | 136.00 | | 59,20 | 4.55E-02 | | 1.19E-01
1.57E-01 | | | | 264.65
279.53 | | 59.80
25.20 | -2.92E-02
1.28E-01 | | 3.92E-01 | | | | 400.65 | | 11.40 | 4.84E-02 | | 8.56E-01 | | + | RB-82 | 776.52 | | 13.00 | -6.08E-02 | 1.74E+00 | 1,74E+00 | | + | RB-83 | 520.41 | | 46.00 | 6.78E-02 | 2.49E-01 | | | ' | 100 | 529.64 | | 30.30 | | | 3.66E-01 | | | | ~ | | | -2.41E-01 | | 6.57E-01 | 1603102-04 | + KR-85 513.99 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |--|--------------|-----------------|-----------------|---|----------|-------------------------|----------------------------|-------------------------|---| | + SR-85 513.99 99.27 -4.28E-03 1.61E-01 1.61E-01 1.10E-01 1.836.01 99.38 2.91E-02 1.10E-01 1.10E-01 1.10E-01 1.10E-01 1.836.01 99.38 2.91E-02 1.10E-01 1.10E | | WD_85 | 513 99 | | | -7.31E-01 | 2.75E+01 | 2.75E+01 | | | + Y-88 | | | | | | | | 1.61E-01 | | | 1836.01 | | | | • | | | | | | | NB-93M | т | | | | | | | | | | + NB-94 702.63 100.00 -6.79E-03 8.94E-02 1.06E-01 871.10 100.00 -1.21E-02 8.94S-02 | 4- | | | | | | 9.89E+01 | | • | | ## NB-95 | | | | | | | | 1.06E-01 | | | + NB-95 | т | ND - 34 | | | | | | | | | + NB-95M 235.69 25.00 7.62E+01 1.01E+02 1.01E+02 1.01E+02 + 2R-95 724.18 43.70 1.56E-02 2.47E-01 3.72E-01 + MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 739.58 12.80 -1.38E+02 8.58E+02 1.13E+03 + RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + RO-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 1.30E-01 + CD-109 88.03 3.72 1.14E+00 2.24E+00 2.24E+01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-1 | + | NR-95 | | | | | 2.08E-01 | | | | ## ZR-95 | | | | | | | 1.01E+02 | 1.01E+02 | | | 756.72 55.30 1.00E-01 2.47E-01 + MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 778.00 4.5C -1.76E+02 2.47E+03 + RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 + CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 184.27 23.94 -2.44E-01 1.46E-01 - 184.27 23.94 -2.44E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 + SB-124 602.71 97.87 5.66E-02 1.44E-01 1.44E-01 - 645.55 7.26 -1.20E-01 1.39E+00 - 189.02 49.00 -6.93E-02 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 1.39E+00 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 1.39E+00 - 409.00 -6.93E-02 -2.44E-01 -2.44E-01 - 58B-125 176.33 6.99 -3.10E-02 -2.94E-01 -2.94E-01 - 427.89 29.33 5.28E-02 -2.40E-01 - 427.89 29.33 5.28E-02 -2.40E-01 - 427.89 29.33 5.28E-02 -2.94E-01 -2.94E-01 - 58B-125 176.33 6.99 -3.10E-02 -2.94E-01 -2.94E-01 - 58B-126 414.70 83.30 -9.20E-02 4.64E-01 -4.64E-01 - 58B-126 414.70 83.30 -9.20E-02 4.64E-01 -4.64E-01 - 58B-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 - 58B-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | 3.72E-01 | | | + MO-99 181.06 6.20 2.94E+02 8.58E+02 1.13E+03 739.58 12.80 -1.38E+02 8.58E+02 2.47E+03 497.08 89.00 4.5C -1.76E+02 2.47E+03 497.08 89.00 4.67E-02 1.60E-01 | 7 | 2K-33 | | | | | | 2.47E-01 | | | 739.58 12.80 -1.38E+02 2.47E+03 + RU-103 497.08 89.00 4.5€ -1.76E+02 2.47E+03 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 8.78E-01 + AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 - 722.95 90.50 -8.05E-02 1.30E-01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 763.93 21.98 -1.18E-01 6.49E-01 - 1384.27 23.94 -2.44E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 - 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 - 1645.55 7.26 -1.20E-01 1.39E+00 - 1691.02 49.00 -6.93E-02 1.44E-01 -6.93E-01 1.39E+00 1.35IE+00 - 1691.02 49.00 -6.93E-01 1.39E+00 1.35IE+00 - 1691.02 49.00 -6.93E-01 1.39E+00 1.57BE-01 - 1691.02 49.00 -6.93E-01 5.51E+00 - 1691.02 49.00 -6.93E-01 5.51E+00 - 1691.02 49.00 -6.93E-01 5.58E-01 - 17.80 1.93E-01 5.78E-01 - 18.91E-01 4.70E-01 5.34E-01 - 19.91E-01 4.64E-01 5.34E-01 - 19.91E-01 | 4. | MO-99 | | | | | 8.58E+02 | | | | T78.00 4.50 -1.76E+02 2.47E+03 H RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 H RU-106 621.84 9.80 -1.2E-01 8.78E-01 8.78E-01 H AG-108M 433.93 89.90 -1.87E-02 9.06E-02 9.06E-02 H CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+01 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 + AG-113M 263.70 0.02 2.245E+01 3.52E+02 3.52E+01 + SN-1 | • | 110 33 | | | | | | 8.58E+02 | | | + RU-103 497.08 89.00 4.67E-02 1.60E-01 1.60E-01 + RU-106 621.84 9.80 -1.22E-01 8.78E-01 9.06E-02 614.37 90.40 -7.50E-02 1.30E-01 1.24E-01 + CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 6.49E-01 1.20E-01 766.67 16.46 -2.23E-01 6.49E-01 1.46E-01 884.67 71.63 1.48E-02 1.46E-01 1.46E-01 1384.27 23.94 -2.44E-01 4.70E-01 4.70E-01 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 + SB-125 7.26 -1.20E-01 1.39E+00 1.39E+00 + T-1223 35.49 64.90 6.00E-01 1.34E-01 < | | | | | | | | | | | + AG-108M 433.93 | + | RU-103 | | | 89.00 | 4.67E-02 | 1.60E-01 | 1.60E-01 | | | The content of | + | RU-106 | 621.84 | | 9.80 | -1.22E-01 | 8.78E-01 | 8.78E-01 | | | CD-109 | + | AG-108M | 433.93 | | 89.90 | -1.87E-02 | 9.06E-02 | 9.06E-02 | | | + CD-109 88.03 * 3.72 1.14E+00 2.24E+00 2.24E+00 + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 706.67 16.46 -2.23E-01 6.49E-01 884.67 71.63 1.48E-02 1.48E-01 1.384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 4.63E+00 + TE123M 159.00
84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 7722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 463.38 10.35 4.82E-01 9.67E-01 427.89 29.33 5.28E-02 463.38 10.35 4.82E-01 9.67E-01 666.33 99.60 4.17E-02 5.07E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 4.64E-01 4.64E-01 5.78E-01 5.78E-01 5.78E-01 7.70E-01 5.78E-01 5.78E-01 7.70E-01 7.70E- | | | 614.37 | | 90.40 | -7.50E-02 | | | • | | + AG-110M 657.75 93.14 -5.94E-02 1.20E-01 1.20E-01 677.61 10.53 3.43E-03 8.83E-01 706.67 16.46 -2.22E-01 6.49E-01 763.93 21.98 -1.18E-01 1.64E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 1391.69 64.90 8.31E-02 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 -600.56 17.80 1.93E-01 5.78E-01 -635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 -666.33 99.60 4.17E-02 5.77E-01 -695.00 99.60 2.12E-01 5.34E-01 -720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | 722.95 | | | | | | • | | 677.61 10.53 3.43E-03 6.83E-01 706.67 16.46 -2.23E-01 6.49E-01 763.93 21.98 -1.18E-01 1.64E-01 884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 -666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 5.25E+01 | + | CD-109 | 88.03 | * | 3.72 | | | | | | 706.67 706.67 706.67 706.67 706.89 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 706.67 7063.93 7063.93 7063.93 7063.93 7063.93 7063.93 7062.44E-01 7064E-01 70666.33 7066E-01 7066E- | + | AG-110M | 657.75 | | 93.14 | -5.94E-02 | 1.20E-01 | | | | 763.93 21.98 -1.18E-01 1.64E-01 884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 + CD-113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 + SN-113 255.12 1.93 -1.02E+00 1.66E-01 4.63E+00 391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 5.78E-01 635.90 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | | | | 884.67 71.63 1.48E-02 1.48E-01 1384.27 23.94 -2.44E-01 4.70E-01 1384.27 0.02 -2.45E+01 3.52E+02 3.52E+02 1.02 -113M 263.70 0.02 -2.45E+01 3.52E+02 3.52E+02 1.03 -1.02E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.63E+00 1.66E-01 4.64E+01 1.66E-01 4.64E+01 1.66E-01 4.64E+01 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.70E+00 1.39E+00 2.40E-01 1.7 | | | | | | | 1 | | | | 1384.27 | | | | | | | | | | | + CD-113M 263.70 | | | | | | | | | | | + SN-113 | 4 | CD-113M | | | | | 3.52E+02 | | | | 391.69 64.90 8.31E-02 1.66E-01 + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 5.25E+01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | 4.63E+00 | | | + TE123M 159.00 84.10 2.57E-02 8.85E-02 8.85E-02 + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + T-125 35.49 6.49 6.00E-01 3.51E+00 + SB-125 176.33 6.39 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 9.67E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | DIV 113 | | | | | | 1.66E-01 | | | + SB-124 602.71 97.87 5.68E-02 1.44E-01 1.44E-01 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 1.39E+00 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.99 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 600.56 17.80 1.93E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 666.33 99.60 4.17E-02 5.07E-01 720.50 53.80 1.15E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | - | TE123M | | | | | 8.85E-02 | 8.85E-02 | | | 645.35 7.26 -1.20E-01 1.70E+00 722.78 11.10 -9.03E-01 2.40E-01 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | 1.44E-01 | 1.44E-01 | | | 722.78 | • | 05 151 | | | | | | 1.70E+00 | | | 1691.02 49.00 -6.93E-02 2.40E-01 + I-125 35.49 6.49 6.00E-01 3.51E+00 + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 9.67E-01 463.38 10.35 4.82E-01 9.67E-01 5.78E-01 600.56 17.80 1.93E-01 8.91E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 5.34E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | | | | + SB-125 176.33 6.89 -3.10E-02 2.94E-01 8.93E-01 427.89 29.33 5.28E-02 2.94E-01 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | 49.00 | | | | 4 | | 427.89 | + | I - 125 | 35.49 | | | | | | | | 463.38 10.35 4.82E-01 9.67E-01 600.56 17.80 1.93E-01 5.78E-01 635.90 11.32 2.56E-01 8.91E-01 + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | + | SB-125 | 176.33 | | | | | | | | + SB-126 | | | | | | | • | | | | + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | | | | + SB-126 414.70 83.30 -9.20E-02 4.64E-01 4.64E-01 666.33 99.60 4.17E-02 5.07E-01 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | • | | | | | | | | | 666.33 99.60 4.17E-02 5.07E-01
695.00 99.60 2.12E-01 5.34E-01
720.50 53.80 1.15E-01 9.31E-01
+ SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01
+ SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | 1 | an 106 | | | | | | | • | | 695.00 99.60 2.12E-01 5.34E-01 720.50 53.80 1.15E-01 9.31E-01 + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | + | 20-170 | | | | | | | | | 720.50 53.80 1.15E-01 9.31E-01
+ SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01
+ SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | | | | + SN-126 87.57 * 37.00 1.10E-01 2.17E-01 2.17E-01
+ SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | | | | | | | | | | | + SB-127 473.00 25.00 3.77E+00 4.09E+01 5.25E+01 | + | SN-126 | | * | | | | | | | 0.07.01 | | | | | | 3.77E+00 | 4.09E+01 | 5.25E+01 |
| | 000.20 | • | · | 685.20 | | 35,70 | 1.67E+01 | | 4.09E+01 | | | 783.80 14.70 -2.24E+01 9.77E+01 | | | | | | -2.24E+01 | | 9.77E±01 | | 1603102-04 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |----|------------------|-------------------|----------------|-------------------------|----------------------------|-------------------------|--| | | T 100 | 29.78 | 57.00 | 8.00E-02 | 5.18E-01 | 5.18E-01 | | | + | I-129 | | 13.20 | -1.60E-01 | 3,102 01 | 1.46E+00 | | | | | 33.60
39.58 | 7.52 | -8.13E-01 | | 1.63E+00 | | | + | I-131 | 284.30 | 6.05 | -5.29E+00 | 1.17E+00 | 1.43E+01 | | | T | 1 131 | 364.48 | 81.20 | 6.49E-01 | | 1.17E+00 | | | | | 636.97 | 7.26 | 6.83E+00 | | 1.52E+01 | | | | | 722.85 | 1.80 | -4.44E+01 | • | 6.84E+01 | | | + | TE-132 | 49.72 | 13.10 | -1.75E+01 | 3.20E+01 | 2.65E+02 | | | · | | 228.16 | 88.00 | 2.01E+00 | | 3.20E+01 | | | + | BA-133 | 81.00 | 33.00 | -8.00E-02 | 2.10E-01 | 2.14E-01 | | | • | 2 | 302.84 | 17.80 | 7.59E-02 | | 5.12E-01 | | | | | 356.01 | 60.00 | 3.17E-03 | | 2.10E-01 | | | + | I-133 | 529.87 | 86.30 | -1.38E+07 | 4.61E+08 | 4.61E+08 | | | + | XE-133 | 81.00 | 38.00 | -2.72E+00 | 7.28E+00 | 7.28E+00 | | | + | CS-134 | 563.23 | 8.38 | -2.60E-01 | 1.16E-01 | 1.05E+00 | | | T | C2-124 | 569.32 | 15.43 | 1.85E-01 | | 6.49E-01 | | | | | 604.70 | 97.60 | 2.83E-02 | | 7.16E-01 | | | | | 795.84 | 85.40 | 8.64E-02 | | 1.41E-01 | | | | | 801.93 | 8.73 | 2.33E-02 | | 1.14E+90 | | | + | CS-135 | 268.24 | 16.00 | 8.78E-02 | 5.43E-01 | 5,43E-01 | | | + | @ I-135 | 1131.51 | 22.50 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | • | @ | 1260.41 | 28.60 | 1.00E+26 | | 1.00E+26 | | | | 0 | 1678.03 | 9.54 | 1.00E+26 | | 1.00E+26 | | | + | CS-136 | 153.22 | 7.46 | 3.19E+00 | 3.85E-01 | 3.79E+00 | | | , | 55 | 163.89 | 4.61 | -2.39E+00 | | 5.64E+00 | | | | | 176.55 | 13.56 | -2.21E+00 | | 1.82E+00 | | | | | 273.65 | 12.66 | 1.39E-01 | | 2.98E+00 | | | | | 340.57 | 48.50 | 1.39E-01 | | 9.49E-01 | | | | | 818.50 | 99.70 | 4.69E-02 | | 3.85E-01 | | | | | 1048.07 | 79.60 | -1.77E-02 | | 6.04E-01
3.21E+00 | | | | | 1235.34 | 19.70 | 2.49E-01
5.26E-03 | 1.29E-01 | 1.29E-01 | | | + | CS-137 | 661.65 | 85.12 | | 1.83E-01 | 3.05E-01 | | | + | LA-138 | 788.74 | 34.00 | 2.75E-02 | 1.83E-01 | 1.83E-01 | | | | | 1435.80 | 66.00 | 2.41E-02 | C 00E 02 | 9.09E-02 | | | + | CE-139 | 165.85 | 80.35 | 2.94E-02 | 9.09E-02 | | | | + | BA-140 | 162.64 | 6.70 | -4.79E-01 | 1.38E+00 | 4.07E+00 | | | | | 304.84 | 4.50 | 1.28E+00 | | 8.24E+00
1.22E+01 | | | | | 423.70 | 3.20 | 5.16E+00 | | 1.88E+01 | | | | | 437.55 | 2.00 | 7.27E-01
-5.59E-02 | | 1.38E+00 | | | | T 7 1 4 0 | 537.32 | 25.00
20.50 | 1.28E+00 | 6.44E-91 | | | | + | LA-140 | 328.77 | | 2.88E-01 | 0.112 92 | 8.50E-01 | | | | | 487.03 | 45.50
23.50 | -3.23E-02 | | 1.65E+00 | | | | | 815.85
1596.49 | 95.49 | 1.70E-01 | | 6.44E-01 | | | + | CE-141 | 145.44 | 48.40 | 7,22E-02 | 2.23E-01 | | | | | CE-141
CE-143 | 57.36 | 11.80 | -3.96E+05 | | | | | + | CE-142 | 293.26 | 42.00 | | | 3.74E+05 | | | | | 293.26
664.55 | 5.20 | 1.48E+06 | | 2.64E+06 | | | L. | CE-144 | 133.54 | 10.80 | -4.18E-01 | | | | | + | CD -144 | 100.04 | | - | | | | 1603102-04 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|--------------------|----------------|---------------------------------------|----------------------------|-------------------------|-----------| | | | () | | · · · · · · · · · · · · · · · · · · · | | | E-MANAGE. | | + | PM-144 | 476.78 | 42.00 | 9.25E-02 | 8.87E-02 | 2.47E-01 | | | | | 618.01 | 98.60 | -1.36E-02 | | 8.87E-02 | | | | | 696.49 | 99.49 | 3.22E-02 | | 1.21E-01 | | | 4 | PM-145 | 36.85 | 21.70 | 1.75E-01 | 3.54E-01 | 6.79E-01 | | | | - | 37.36 | 39.70 | -1.17E-01 | | 3.54E-01 | | | | | 42.30 | 15.10 | 4,33E-02 | | 7.19E-01 | | | | | 72.40 | 2.31 | -1.02E+01 | | 3.77E+00 | | | + | PM-146 | 453.90 | 39.94 | 5.37E-02 | 2.20E-01 | 2.20E-01 | | | | | 735.90 | 14.01 | 2.28E-01 | | 7.52E-01 | | | | | 747.13 | 13.10 | -9.13E-02 | | 7.77E-01 | | | + | ND-147 | 91.11 | 28.90 | -1.50E+00 | 1.58E+00 | 1.58E+00 | | | | | 531.02 | 13.10 | -2.39E-01 | | 3.58E+00 | | | + | PM-149 | 285.90 | 3.10 | 1.16E+03 | 1.59E+04 | 1.59E+04 | | | + | EU-152 | 121.78 | 20.50 | 1.78E-03 | 2.71E-01 | 2.71E-01 | | | | | 244.69 | 5.40 | -5.56E-01 | | 1,86E+00 | | | | | 344.27 | 19.13 | -3.20E-02 | | 4.47E-01 | | | | | 778.89 | 9.20 | 2.86E-01 | | 1.11E+00 | | | | | 964.01 | 10.40 | 3.21E-02 | 9 | 1.12E+00 | | | | | 1085.78 | 7,22 | -1.76E-01 | | 1.75E+00 | | | | | 1112.02 | 9.60 | -2.14E-02 | | 1.19E+00 | | | | | 1407.95 | 14.94 | 3.29E-01 | . 0.cm 0.1 | 8.79E-01 | | | + | GD-153 | 97.43 | 31.30 | -3.15E-01 | 1.96E-01 | 1.96E-01 | | | | | 103.18 | 22.20 | -1.79E-01 | ግ ፈርሞ ሰብ | 2.64E-01 | | | + | EU-154 | 123.07 | 40.50 | 6.62E-02 | 1.42E-01 | 1.42E-01 | | | | | 723.30 | 19.70 | -3.72E-01 | | 5.74E-01 | | | | | 873.19 | 11.50 | -2.37E-01 | | 7.71E-01
9.95E-01 | | | | | 996.32 | 10.30
17.90 | -4.23E-02
2.22E-01 | | 6.38E-01 | | | | | 1004.76
1274.45 | 35.50 | -2.20E-01 | | 3.81E-01 | | | + | EU-155 | 86.50 | 30.90 | 2.14E-01 | 2.64E-01 | 2.64E-01 | | | т | ,EO 133 | 105.30 | 20.70 | 4.38E-02 | | 2.77E-01 | | | + | EU-156 | 811.77 | 10.40 | 3.47E-01 | 2.97E+00 | 2.97E+00 | | | • | HO 100 | 1153.47 | 7.20 | 4.34E+00 | | 7.34E+00 | | | | | 1230.71 | 8.90 | 1.95E+00 | | 5.29E+00 | | | + | но-166М | | 72.60 | 1.59E-01 | 1.15E-01 | 1.15E-01 | | | | | 280.45 | 29.60 | 8.98E-02 | • | 2.81E-01 | | | | | 410.94 | 11.10 | -2.96E-01 | | 7.68E-01 | | | | | 711.69 | 54.10 | -7.02E-02 | | 1.73E-01 | | | + | TM-171 | 66.72 | 0.14 | -5.44E+01 | 5.79E+01 | 5.79E+01 | | | + | HF-172 | 81.75 | 4.52 | -2.75E-01 | 5.02E-01 | 1.54E+00 | | | | | 125.81 | 11.30 | -1.92E-01 | | 5.02E-01 | | | + | LU-172 | 181.53 | 20.60 | 2.61E+00 | 3.41E+00 | 5.80E+00 | | | | | 810.06 | 16.63 | -2.43E+00 | | 9.39E+00 | | | | | 912.12 | 15.25 | 4.00E+01 | | 2.31E+01 | | | | | 1093.66 | 62.50 | 4.71E-02 | | 3.41E+00 | | | + | LU-173 | 100.72 | 5.24 | 2.58E-01 | 4.39E-01 | 1.10E+00 | | | | | 272.11 | 21.20 | 1.205-01 | | 4.39E-01 | | | + | HF-175 | 343.40 | 34.00 | -9.54E-03 | | | | | + | LU-176 | 88.34 | 13.30 | 3.37E-01 | 8.58E-02 | 6.20E-01 | | 1603102-04 | | Nuclide
Name | Energy
(ke [\] /) | ٠ | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-----|-----------------|-------------------------------|---|----------------|-------------------------|----------------------------|-------------------------|---| | | LU-176 | 201.83 | | 86.00 | -1.65E-02 | 8.58E-02 | 8.63E-02 | | | | 10 170 | 306.78 | | 94.00 | 5.12E-03 | | 8.58E-02 | | | + | TA-182 | 67.75 | | 41.20 | -1.14E-01 | 2.21E-01 | 2.21E-01 | | | | | 1121.30 | | 34.90 | 9.76E-01 | | 6.54E-01 | | | | | 1189.05 | | 16.23 | 1.15E-01 | | 9.40E-01 | | | | | 1221.41 | | 26.98 | 1.76E-01 | | 6.23E-01
1.35E+00 | | | 1 | IR-192 | 1231.02
308.46 | | 11.44
29.68 | 1.52E-01
4.76E-02 | 2.09E-01 | 3.47E-01 | | | + | IK-192 | 468.07 | | 48.10 | -4.30E-02 | 2,002 | 2.09E-01 | | | + | HG-203 | 279.19 | | 77.30 | 4.62E-02 | 1.66E-01 | 1.66E-01 | | | + . | BI-207 | 569.67 | * | 97.72 | 9.79E-02 | 9.20E-02 | 9.20E-02 | | | | B1 201 | 1063.62 | | 74.90 | -1.79E-02 | | 1.53E-01 | | | + | TL-208 | 583.14 | * | 30.22 | 8.89E-01 | 5.65E-02 | 4.48E-01 | | | · | 11 | 860.37 | | 4.48 | 6.22E-01 | | 2.59E+00 | | | | | 2614.66 | * | 35.85 | 9.82E-01 | | 5.65E-02 | | | + | BI-210M | 262.00 | | 45.00 | -1.46E-02 | 1.80E-01 | 1.80E-01 | | | | | 300.00 | | 23.00 | -1.84E+00 | | 4.08E-01 | | | + | PB-210 | 46.50 | * | 4.25 | 3.32E+00 | 3.49E+00 | 3.49E+00 | | | ÷ | PB-211 | 404.34 | | 2.90 | 2.47E-01 | 3.15E+00 | 3.15E+00 | | | | | 831.96 | | 2.90 | -5.18E-01 | | 3.78E+00 | • | | + | BI-212 | 727.17 | | 11.80 | 5.32E-01 | 1.08E+00 | 1.08E+00 | | | | | 1620.62 | | 2.75 | 7,02E-01 | 2 425-01 | 3.18E+00
3.42E-01 | | | + | PB-212 | 238.63 | * | 44.60 | 1.22E+00 | 3.42E-01 | 2.29E+00 | | | | DT 014 | 300.09 | * | 3.41
46.30 | 1.51E+00
1.65E+00 | 1.01E-01 | 2.29E+00
2.37E-01 | | | + | BI-214 | 609.31 | * | 15.10 | 1.89E+00 | 1.0111 01 | 1.11E+00 | | | | | 1120.29
1764.49 | * | 15.10 | 1.82E+00 | | 1.01E-01 | | | | | 2204.22 | | 4.98 | 1.32E+00 | | 2.92E+00 | | | + | PB-214 | 295.21 | * | 19,19 | 1.88E+00 | 3.36E-01 | 5.66E-01 | | | | | 351.92 | * | 37.19 | 1.85E+00 | | 3.36E-01 | | | + | RN-219 | 401.80 | | 6.50 | 2.20E-01 | 1.33E+00 | 1.33E+00 | | | + | RA-223 | 323.87 | | 3.88 | -3.20E-01 | 1.96E+00 | 1.96E+00 | | | + | RA-224 | 240.98 | | 3.95 | 1.86E+01 | 3.95E+00 | 3,95E+00 | | | + | RA-225 | 40.00 | | 31.00 | -7.07E-01 | 1.42E+00 | 1.42E+00 | | | + | RA-226 | 186.21 | * | 3.28 | 3.18E+00 | 3.08E+00 | 3.08E+00 | | | + | TH-227 | 50.10 | | 8.40 | -7.30E-02 | 1.06E+00 | 1.11E+00 | | | | | 236.00 | | 11.50 | 7.99E-01 | | 1.06E+00 | | | | | 256.20 | | 6.30 | -5.04E-01 | | 1.21E+00 | | | + | AC-228 | 338.32 | * | 11.40 | 1.10E+00 | 5.70E-01 | | | | | | 911.07 | * | 27.70 | 1.50E+00 | | 5.70E-01
9.25E-01 | | | | mr. 020 | 969.11 | * | 16.60
16.90 | 1.19E+00
9.66E-01 | 6.52E-01 | | | | + | TH-230 | 48.4 | | | 3.66E-01
2.52E+00 | | 1.88E+00 | | | | | 62.85
67.67 | | 4.60
0.37 | -1.07E+01 | | 2.08E+01 | | | + | PA-231 | 283.67 | | 1.60 | -1.32E+00 | | | | | • | 111 50A | 302.67 | | 2.30 | 5.84E-01 | | 3.94E+00 | | | + | TH-231 | 25.64 | | 14.70 | -5.53E-01 | | | | | | | 84.21 | | 6.40 | 1.39E-01 | | 1.10E+00 | | | | | | | | | | | | 1603102-04 SEDIMENT 2016-03-16A | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-------------------|-----------------|------------------|---|----------------|-------------------------|----------------------------|-------------------------|--| | | PA-233 | 311.98 | |
38.60 | -9.53E-02 | 4.08E-01 | 4.08E-01 | | | +
+ | PA-234 | 131.20 | | 20.40 | -9.99E~03 | 2.76E-01 | 2.76E-01 | | | 7 | FA-234 | 733.99
946.00 | | 8.80
12.00 | -6.03E-01
-4.91E-01 | | 1.14E+00
9.11E-01 | | | + | PA-234M | 1001.03 | | 0.92 | -2.39E+00 | 1.16E+01 | 1.16E+01 | | | + | TH-234 | 63.29 | | 3.80 | 1.43E+00 | 2.24E+00 | 2.24E+00 | | | + | U-235 | 143.76 | | 10.50 | -1.53E-01 | 5.49E-01 | 5.49E-01 | | | | | 163.35
205.31 | | 4.70
4.70 | -5.42E-01
-1.89E+00 | € | 1.28E+00
1.52E+00 | | | + | NP-237 | 86.50 | | 12.60 | 5.18E-01 | 6.40E-01 | 6.40E-01 | | | + | NP-239 | 106.10 | | 22.70 | -3.72E+00 | 8.92E+02 | 8.92E+02 | | | | | 228.18
277.60 | | 10.70
14.10 | 1.60E+02
1.39E+03 | | 2.54E+03
2.17E+03 | | | ·F | AM-241 | 59.54 | | 35.90 | -1.88E-02 | 2.17E-01 | 2.17E-01 | | | + | AM-243 | 74.67 | ÷ | 66.00 | 4.11E-01 | 1.84E-01 | 1.84E-01 | | | + | CM-243 | 209.75 | | 3.29 | 1.15E+00 | 6.15E-01 | 2.39E+00 | | | | | 228.14
277.60 | | 10.60 14.00 | 4.54E-02
3.93E-01 | | 7.21E-01
6.15E-01 | | - + = Nuclide identified during the nuclide identification - = Energy line found in the spectrum - > = MDA value not calculated - @ = Half-life too short to be able to perform the decay correction - ? = CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level ## NUCLIDE MDA REPORT Nuclide Library Used : \\OR \GAMMA\\ApexRoot\Countroom\Library\TiMA2.NLB | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|------------------------|----------------------------------|----------------------------------|--|----------------------------------|---|--| | + | BE-7
NA-22
NA-24 | 477.59 * 1274.54 1368.53 2754.09 | 10.42
99.94
99.99
99.86 | 1.56E+00
1.37E-01
2.93E+12
2.00E+12 | 1.56E+00
1.37E-01
2.00E+12 | 9.60E-01
-7.94E-02
8.90E+11
2.27E+11 | 7.43E-01
6.24E-02
1.31E+12
7.49E+11 | Analysis Report for 1603102-04 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----|-----------------|-----------------|---|---------------|-------------------------|---|-------------------------|---------------------------| | | AL-26 | 1808.65 | | 99.76 | 6.45E-02 | 6.45E-02 | -3.59E-02 | 2.41E-02 | | + | K-40 | 1460.81 * | | 10.67 | 1.00E+00 | 1.00E+00 | 1.59E+01 | 4.36E-01 | | | AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | C | TI-44 | 67.88 | | 94.40 | 8.14E-02 | 8.14E-02 | -4.20E-02 | 3.96E-02 | | | 11 11 | 78.34 | | 96.00 | 1.09E-01 | | 2.59E-01 | 5.34E-02 | | | SC-46 | 889.25 | | 99.98 | 1.29E-01 | 1.29E-01 | -1.60E-02 | 5.86E-02 | | | 00 10 | 1120.51 | | 99.99 | 2.37E-01 | \$ 1 | 2.84E-01 | 1.12E-01 | | | V-48 | 983.52 | | 99.98 | 3.82E-01 | 3.82E-01 | 8.36E-02 | 1.74E-01 | | | 1 40 | 1312.10 | | 97.50 | 4.24E-01 | | 2.10E-01 | 1.90E-01 | | | CR-51 | 320.08 | | 9.83 | 1.60E+00 | 1.60E+00 | 4.70E-01 | 7.63E-01 | | | MN-54 | 834.83 | | 99.97 | 1.17E-01 | 1.17E-01 | 3.89E-02 | 5.38E-02 | | | CO-56 | 846.75 | | 99.96 | 1.42E-01 | 1.42E-01 | 4.31E-02 | 6.54E-02 | | 4, | CO-36 | 1037.75 | | 14.03 | 1.03E+00 | | -1.56E-01 | 4.69E-01 | | | | 1238.25 | | 67.00 | 2.89E-01 | | 1.93E-01 | 1.33E-01 | | | | 1771.40 | | 15.51 | 3.57E-01 | | -1.08E+00 | 1.13E-01 | | | | 2598.48 | | 16.90 | 4.15E-01 | | -2.07E-01 | 1.31E-01 | | | CO-57 | 122.06 | | 35.51 | 6.96E-02 | 6.96E-02 | 4.57E-04 | 3.36E-02 | | | CO-37 | 136.48 | | 10.60 | 6.18E-01 | | 2.97E-01 | 2.98E-01 | | | CO-58 | 810.76 | | 99.40 | 1.13E-01 | 1.13E-01 | -1.17E-02 | 5.08E-02 | | | FE-59 | 1099.22 | | 56.50 | 3.02E-01 | 3.02E-01 | 4.09E-02 | 1.36E-01 | | | FE-39 | 1291.56 | | 43.20 | 4.57E-01 | , | -1.56E-02 | 2.06E-01 | | | CO-60 | 1173.22 | | 100.00 | 1.25E-01 | 1.25E-01 | -7.30E-02 | 5.68E-02 | | | CO-00 | 1332.49 | | 100.00 | 1.39E-01 | = : | 7.48E-05 | 6.30E-02 | | | DN CE | 1115.52 | | 50.75 | 2.39E-01 | 2.39E-01 | -4,37E-03 | 1.08E-01 | | | ZN-65 | | k | 35.70 | 1.18E+02 | 1.18E+02 | 6.87E+01 | 5.79E+01 | | + | GA-67 | 208.95 | | 2.24 | 1.29E+03 | | 8.15E+02 | 6.25E+02 | | | | | ŀ | 16.00 | 1.79E+02 | | 1.18E+02 | 8.54E+01 | | | CE 75 | 121.11 | | 16.70 | 3.86E-01 | 1.19E-01 | -7.79E-02 | 1.86E-01 | | | SE-75 | 136.00 | | 59.20 | 1.19E-01 | | 4.55E-02 | 5.75E-02 | | | | 264.65 | | 59.80 | 1.57E-01 | | -2.92E-02 | 7.53E-02 | | | | 279.53 | | 25.20 | 3.92E-01 | | 1.28E-01 | 1.88E-01 | | | | 400.65 | | 11.40 | 8.56E-01 | | 4.84E-02 | 4.04E-01 | | | mn 00 | 776.52 | | 13.00 | 1.74E+00 | 1.74E+00 | -6.08E-02 | 8.02E-01 | | | RB-82 | 520.41 | | 46.00 | 2.49E-01 | 2.49E-01 | 6.78E-02 | 1.17E-01 | | | RB-83 | 529.64 | | 30.30 | 3.66E-01 | G | -1.10E-02 | 1.71E-01 | | | | 552.65 | | 16.40 | 6.57E-01 | | -2.41E-01 | 3.05E-01 | | | מאס פר | 513.99 | | 0.43 | 2.75E+01 | 2.75E+01 | -7.31E-01 | 1.31E+01 | | | KR-85
SR-85 | 513.99 | | 99.27 | 1.61E-01 | 1.61E-01 | -4.28E-03 | 7.65E-02 | | | | 898.02 | | 93.40 | 1.10E-01 | 1.10E-01 | -2.81E-02 | 4.89E-02 | | | X-88 | 1836.01 | | 99.38 | 1.27E-01 | • | 2.91E-02 | 5.35E-02 | | | ND 02M | 16.57 | | 9.43 | 9.89E+01 | 9.89E+01 | -6.38E+00 | 4.80E+01 | | | NB-93M | 702.63 | | 100.00 | 1.06E-01 | 8.94E-02 | -6.79E-03 | 4.94E-02 | | | NB-94 | 871.10 | | 100.00 | 8.94E-02 | 5.3.2 1- | -1.21E-02 | 4.02E-02 | | | NID OF | 765.79 | | 99.81 | 2.08E-01 | 2.08E-01 | 1.06E-01 | 9.69E-02 | | | NB-95 | 235.69 | | 25.00 | 1.01E+02 | 1.01E+02 | 7.62E+01 | 4.92E+01 | | | NB-95M | 724.18 | | 43.70 | 3.72E-01 | 2.47E-01 | 1.56E-02 | 1.74E-01 | | | ZR-95 | | | 55.30 | 2.47E-01 | 211.2 04 | 1.00E-01 | 1.14E-01 | | | MO 00 | 756.72 | | 6.20 | 1.13E+03 | 8.58E+02 | 2.94E+02 | 5.42E+02 | | | MO-99 | 181.06 | | 12.80 | 8.58E+02 | 0.000,02 | -1.38E+02 | 3.95E+02 | | | | 739.58 | | | 2.47E+03 | | -1.76E+02 | 1.14E(03 | | | Det 100 | 778.00 | | 4.50 | 1.60E-01 | 1.60E-01 | 4.67E-02 | 7.50E-02 | | | RU-103 | 497.08 | | 89.00
9.80 | 8.78E-01 | 8.73E-01 | -1.22E-01 | 4.03E-01 | | | RU-106 | 621.84 | | | 9.06E-02 | 9.06E-02 | -1.87£-02 | 4.26E-02 | | | AG-108M | 433.93 | | 89.90 | 5.00E-02 | 3.00L | 2.072 02 | | Analysis Report for 1603102-04 | AG-108M 614.37 90.40 1.30E-01 9.06E-0 + CD-109 88.03 * 3.72 2.24E+00 2.24E+0 AG-110M 657.75 93.14 1.20E-01 1.20E-0 677.61 10.53 8.83E-01 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 722.78 11.10 1.39E+00 | A Activity Dec. Level s) (pCi/grams) (pCi/grams) | |---|--| | + CD-109 | | | AG-110M 657.75 93.14 1.20E-01 1.20E-0 677.61 10.53 8.83E-01 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 | -8.05E-02 5.78E-02 | | 677.61 10.53 8.83E-01
706.67 16.46 6.49E-01
763.93 21.98 4.64E-01
884.67 71.63 1.48E-01
1384.27 23.94 4.70E-01
CD-113M 263.70 0.02 3.52E+02 3.52E+0
SN-113 255.12 1.93 4.63E+00 1.66E-01
391.69 64.90 1.66E-01
TE123M 159.00 84.10 8.85E-02 8.85E-02
SB-124 602.71 97.87 1.44E-01 1.44E-01
645.85 7.26 1.70E+00 | | | 706.67 16.46 6.49E-01 763.93 21.98 4.64E-01 884.67 71.63 1.48E-01 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-03 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 | | | 763.93 21.98 4.64E-01
884.67 71.63 1.48E-01
1384.27 23.94 4.70E-01
CD-113M 263.70 0.02 3.52E+02 3.52E+0
SN-113 255.12 1.93 4.63E+00 1.66E-01
391.69 64.90 1.66E-01
TE123M 159.00 84.10 8.85E-02 8.85E-02
SB-124 602.71 97.87 1.44E-01 1.44E-01
645.85 7.26 1.70E+00 | 3.43E-03 4.04E-01
-2.23E-01 3.00E-01 | | 884.67 71.63 1.48E-01
1384.27 23.94 4.70E-01
CD-113M 263.70 0.02 3.52E+02 3.52E+
SN-113 255.12 1.93 4.63E+00 1.66E-01
391.69 64.90 1.66E-01
TE123M 159.00 84.10 8.85E-02 8.85E-02
SB-124 602.71 97.87 1.44E-01 1.44E-01
645.85 7.26 1.70E+00 | -1.18E-01 2.12E-01 | | 1384.27 23.94 4.70E-01 CD-113M 263.70 0.02 3.52E+02 3.52E+0 SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 | 1.48E-02 6.69E-02 | | CD-113M 263.70 0.02 3.52E+02 3.52E+0
SN-113 255.12 1.93 4.63E+00 1.66E-01
391.69 64.90 1.66E-01
TE123M 159.00 84.10 8.85E-02 8.85E-0
SB-124 602.71 97.87 1.44E-01 1.44E-01
645.85 7.26 1.70E+00 | -2.44E-01 2.05E-01 | | SN-113 255.12 1.93 4.63E+00 1.66E-01 391.69 64.90 1.66E-01 TE123M 159.00 84.10 8.85E-02 8.85E-02 SB-124 602.71 97.87 1.44E-01 1.44E-01 645.85 7.26 1.70E+00 | | | 391.69 64.90 1.66E-01
TE123M 159.00 84.10 8.85E-02 8.85E-
SB-124 602.71 97.87 1.44E-01 1.44E-
645.85 7.26 1.70E+00 | | | TE123M 159.00 84.10 8.85E-02 8.85E-0
SB-124 602.71 97.87 1.44E-01 1.44E-0645.85 7.26 1.70E+00 | 8.31E-02 7.88E-02 | | SB-124 602.71 97.87 1.44E-01 1.44E-645.85 7.26 1.70E+00 | | | 645.85 7.26
1.70E+00 | | | | -1.20E-01 7.85E-01 | | 722.78 11.10 1.39E+00 | -9.03E-01 6.49E-01 | | 1691.02 49.00 2.40E-01 | -6.93E-02 9.84E-02 | | T-125 35.49 6.49 3.51E+00 3.51E+ | | | SB-125 176.33 6.89 8.93E-01 2.94E- | | | 427.89 29.33 2.94E-01 | 5.28E-02 1.38E-01 | | 463.38 10.35 9.67E-01 | 4.82E-01 4.58E-01 | | 600.56 17.80 5.78E-01 | 1.93E-01 2.71E-01
2.56E-01 4.14E-01 | | 635.90 11.32 8.91E-01 | | | SB-126 414.70 83.30 4.64E-01 4.64E- | 4.17E-02 2.37E-01 | | 666.33 99.60 5.07E-01
6.5.00 99.60 5.34E-01 | 2.12E-01 2.49E-01 | | | 1.15E-01 4.32E-01 | | 0.455 | | | + SN-126 87.57 * 37.00 2.17E-01 2.17E-
SB-127 473.00 25.00 5.25E+01 4.09E+ | · - | | 685.20 35.70 4.09E+01 | 1.67E+01 1.89E+01 | | 783.80 14.70 9.77E+01 | -2.24E+01 4.47E+01 | | I-129 29.78 57.00 5.18E-01 5.18E- | | | 33.60 13.20 1.46E+00 | -1.60E-01 7.04E-01 | | 39.58 7.52 1.63E+00 | -8.13E-01 7.87E-01 | | I-131 284.30 6.05 1.43E+01 1.17E+ | | | 364.48 81.20 1.17E+00 | 6.49E-01 5.56E-01 | | 636.97 7.26 1.52E+01 | 6.83E+00 7.08E+00
-4.44E+01 3.19E+01 | | 722.89 1.80 6.84E+01 | • • • • • | | TE-132 49.72 13.10 2.65E+02 3.20E+ | 01 -1.75E+01 1.28E+02
2.01E+00 1.54E+01 | | 228.16 88.00 3.20E+01
BA=133 81.00 33.00 2.14E-01 2.10E- | | | DA 133 | $7.59E-02 \qquad 2.46E-01$ | | ************************************** | 3.17E-03 1.01E-01 | | 4 (17) | | | 1 100 | | | XE-133 81.00 38.00 7.28E+00 7.28E+
CS-134 563.23 8.38 1.05E+00 1.16E- | | | 569.32 15.43 6.49E-01 | 1.85E-01 3.04E-01 | | 604.70 97.60 1.16E-01 | 2.83E-02 5.43E-02 | | 795.84 85.40 1.41E-01 | 8.64E-02 6.55E-02 | | 801.93 8.73 1.14E+00 | 2.33E-02 5.22E-01 | | CS-135 268.24 16.00 5.43E-01 5.43E- | | | @ I-135 1131.51 22.50 1.00E+26 1.00E | | | e 1260.4 28.60 1.00E+26 | -26 1.00E+26 1.00E+20
1.00E+26 1.00E+20 | Analysis Report for 1603102-04 | | SEDIMENT 2016-03-1 | 6A | | | | | |------------------|--------------------|----------------|----------------------|-------------|-----------------------|----------------------| | Nuclide | Energy | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | @ I-135 | 1678.03 | 9.54 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | CS-136 | 153.22 | 7.46 | 3.79E+00 | 3.85E-01 | 3.19E+00 | 1.83E+00 | | | 163.85 | 4.61 | 5.64E+00 | , ÷ | -2.39E+00 | 2.71E+00 | | | 176.55 | 13.56 | 1.82E+00 | | -2.21E+00 | 8.74E-01 | | | 273.65 | 12.66 | 2.98E+00 | | 1.39E-01 | 1.43E+00 | | • | 340.57 | 48.50 | 9.49E-01 | | 1.39E-01 | 4.57E-01 | | | 818.50 | 99.70 | 3.85E-01 | | 4.69E-02 | 1.74E-01 | | | 1048.07 | 79.60 | 6.04E-01 | | -1.77E-02 | 2.74E-01 | | | 1235.34 | 19.70 | 3.21E+00 | | 2.49E-01 | 1.47E+00 | | CS-137 | 661.65 | 85.12 | 1.29E-01 | 1.29E-01 | 5.26E-03 | 6.05E-02
1.40E-01 | | LA-138 | 788.74 | 34.00 | 3.05E-01 | 1.83E-01 | 2.75E-02 | 8.12E-02 | | | 1435.80 | 66.00 | 1.83E-01 | 0 0.310 0.0 | 2.41型-02
2.94周-02 | 4.38E-02 | | CE-139 | 165.85 | 80.35 | 9.09E-02 | 9.09E-02 | -4.79E-01 | 1.96E+00 | | BA-140 | 162.64 | 6.70 | 4.07E+00 | 1.38E+00 | 1.28E+00 | 3.94E+00 | | | 304.84 | 4.50 | 8.24E+00 | | 5.16E+00 | 5.74E+00 | | | 423.70 | 3.20 | 1.22E+01
1.88E+01 | | 7.27E-01 | 8.84E+00 | | | 437.55 | 2.00
25.00 | 1.38E+00 | | -5.59E-02 | 6.36E-01 | | T 7 1 4 0 | 537.32 | 20.50 | 1.92E+00 | 6.44E-01 | 1.28E+00 | 9.18E-01 | | LA-140 | 328.77
487.03 | 45.50 | 8.50E-01 | 0.112 01 | 2.88E-01 | 3.98E-01 | | | 815.85 | 23.50 | 1.65E+00 | | -3.23E-02 | 7.43E-01 | | | 1596.49 | 95.49 | 6.44E-01 | | 1.70E-01 | 2.87E-01 | | CE-141 | 145.44 | 48.40 | 2.23E-01 | 2.23E-01 | 7.22E-02 | 1.07E-01 | | CE-143 | 57.36 | 11.80 | 7.75E+05 | 3.74E+05 | -3.96E+05 | 3.76E+05 | | 05 110 | 293 26 | 42.00 | 3.74E+05 | | 2.84E+04 | 1.82E+05 | | | 664.5~ | 5.20 | 2.64E+06 | | 1.48E+06 | 1.24E+06 | | CE-144 | 133.54 | 10.80 | 5.49E-01 | 5.49E-01 | -4.18E-01 | 2.64E-01 | | PM-144 | 476.78 | 42.00 | 2.47E-01 | 8.87E-02 | 9.25E-02 | 1.17E-01 | | | 618.01 | 98.60 | 8.87E-02 | | -1.36E-02 | 4.08E-02 | | | 696.49 | 99.49 | 1.21E-01 | | 3.22E-02 | 5.66E-02 | | PM-145 | 36.85 | 21.70 | 6.79E-01 | 3.54E-01 | 1.75E-01 | 3.28E-01
1.71E-01 | | | 37.36 | 39.70 | 3.54E-01 | | -1.17E-01 | 3.48E-01 | | | 42.30 | 15.10 | 7.19E-01 | : | 4.33E-02
-1.02E+01 | 1.84E+00 | | _ | 72.40 | 2.31 | 3.77E+00 | 2.20E-01 | 5.37E-02 | 1.04E-01 | | PM-146 | 453.90 | 39.94 | 2.20E-01 | Z.ZUE-UI | 2.28E-01 | 3.48E-01 | | | 735.90 | 14.01 | 7.52E-01
7.77E-01 | | -9.13E-02 | 3.58E-01 | | :
3773 | 747.13 | 13.10
28.90 | 1.58E+00 | 1.58E+00 | -1.50E+00 | 7.72E-01 | | ND-147 | 91.11
531.02 | 13.10 | 3.58E+00 | 1,000.00 | -2.39E-01 | 1.66E+00 | | DM 140 | 285.90 | 3.10 | 1.59E+04 | 1.59E+04 | 1.16E+03 | 7.61E+03 | | PM-149
EU-152 | 121.78 | 20.50 | 2.71E-01 | 2.71E-01 | 1.78E-03 | 1.31E-01 | | F0-125 | 244.69 | 5.40 | 1.86E+00 | 27.12. | -5.56E-01 | 9.01E-01 | | | 344.27 | 19.13 | 4.47E-01 | | -3.20E-02 | 2.13E-01 | | | 778.89 | 9.20 | 1.11E+00 | | 2.86E-01 | 5.09E-01 | | | 964.01 | 10.40 | 1.12E+00 | | 3.21E-02 | 5.15E-01 | | | 1085.78 | 7.22 | 1.75E+00 | | -1.76E-01 | 7.99E-01 | | | 1112.02 | 9.60 | 1.19E+00 | | -2.14E-02 | 5.36E-01 | | | 1407.95 | 14.94 | 8.79E-01 | | 3.29E-01 | 3.95E-01 | | GD-153 | 97.43 | 31.30 | 1.96E-01 | 1.96E-01 | -3.15E-01 | 9.46E-02 | | | 103.10 | 22.20 | 2.64E-01 | ÷ | -1.79E-01 | 1.27E-01 | | EU-154 | 123.07 | 40.50 | 1.42E-01 | 1.42E-01 | 6.62E-02 | 6.84E-02 | | | 723.30 | 19.70 | 5.74E-01 | | -3.72E-01 | 2.67E-01 | | | 873.19 | 11.50 | 7.71E-01 | | -2.37E-01 | 3.46E-01 | | | | | | | | | | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|------------------|--------------------|-------------------------|----------------------------|-------------------------|---------------------------| | | EU-154 | 996.32 | 10.30 | 9.95E-01 | 1.42E-01 | -4.23E-02 | 4.48E-01 | | | 20 20. | 1004.76 | 17.90 | 6.38E-01 | No. 1 | 2.22E-01 | 2.91E-01 | | | | 1274.45 | 35.50 | 3.81E-01 | , | -2.20E-01 | 1.73E-01 | | | EU-155 | 86.50 | 30.90 | 2.64E-01 | 2.64E-01 | 2.14E-01 | 1.29E-01 | | | - | 105.30 | 20.70 | 2.77E-01 | | 4.38E-02 | 1.34E-01 | | | EU-156 | 811.77 | 10.40 | 2.97E+00 | 2.97E+00 | 3.47E-01 | 1.34E+00 | | | | 1153.47 | 7.20 | 7.34E+00 | | 4.34E+00 | 3.39E+00 | | | | 1230.71 | 8.90 | 5.29E+00 | | 1.95E+00 | 2.41E+00 | | | HO-166M | 184.41 | 72.60 | 1.15E-01 | 1.15E-01 | 1.59E-01 | 5.59E-02 | | | | 280.15 | 29.60 | 2.81E-01 | | 8.98E-02 | 1.35E-01
3.63E-01 | | | | 410.94 | 11.10 | 7.68E-01 | , | -2.96E-01 | 7.97E-02 | | | | 711.69 | 54.10 | 1.73E-01 | 5 50D 101 | -7.02E-02 | 2.82E+01 | | | TM-171 | 66.72 | 0.14 | 5.79E+01 | 5.79E+01 | -5.44E+01 | 7.49E-01 | | | HF-172 | 81.75 | 4.52 | 1.54E+00 | 5.02E-01 | -2.75E-01
-1.92E-01 | 2.42E-01 | | | | 125.81 | 11.30 | 5.02E-01 | 2 (15:00 | 2.61E+00 | 2.80E+00 | | | LU-172 | 181.53 | 20.60 | 5.80E+00 | 3.41E+00 | -2.43E+00 | 4.24E+00 | | | | 810.06 | 16.63 | 9.39E+00 | | 4.00E+01 | 1.10E+01 | | | | 912.12 | 15.25 | 2.31E+01 | | 4.71E-02 | 1.55E+00 | | | | 1093.66 | 62.50 | 3.41E+00
1.10E+00 | 4.39E-01 | 2.58E-01 | 5.29E-01 | | | LU-173 | 100.72 | 5.24 | 4.39E-01 | 4.596-01 | 1.20E-01 | 2.12E-01 | | | 455 | 272.11 | 21.20 | 1.34E-01 | 1.34E-01 | -9.54E-03 | 6.41E-02 | | | HF-175 | 343.40 | 84.00 | 6.20E-01 | 8.58E-02 | 3.37E-01 | 3.03E-01 | | | LU-176 | 88.34 | 13.30
86.00 | 8.63E-01 | 0.500 02 | -1.65E-02 | 4.16E-02 | | | | 201.83 | 94.00 | 8.58E-02 | | 5.12E-03 | 4.09E-02 | | | m» 100 | 306.78 | 41.20 | 2.21E-01 | 2,21E-01 | -1.14E-01 | 1.07E-01 | | | TA-182 | 67.75
1121.30 | 34.90 | 6.54E-01 | 21222 42 | 9.76E-01 | 3.08E-01 | | | | 1189.05 | 16.23 | 9.40E-01 | | 1.15E-01 | 4.27E-01 | | | | 1221.41 | 26.98 | 6.23E-01 | | 1.76E-01 | 2.85E-01 | | | | 1231.02 | 11.44 | 1.35E+00 | | 1.52E-01 | 6.15E-01 | | | IR-192 | 308.46 | 29.68 | 3.47E-01 | 2.09E-01 | 4.76E-02 | 1.66E-01 | | | TV 1 2 2 | 463.07 | 48.10 | 2.09E-01 | | -4.30E-02 | 9.74E-02 | | | HG-203 | 279.19 | 77.30 | 1.66E-01 | 1.66E-01 | 4.62E-02 | 7.96E-02 | | + | BI-207 | 569.67 | | 9.20E-02 | 9.20E-02 | 9.79E-02 | 4.28E-02 | | ' | D1 207 | 1063.62 | 74.90 | 1.53E-01 | | -1.79E-02 | 6.93E-02 | | + | TL-208 | 583.14 | | 4.48E-01 | 5.65E-02 | 8.89E-01 | 2.13E-01 | | • | 11, 200 | 860.37 | 4.48 | 2.59E+00 | | 6.22E-01 | 1.20E+00 | | | | 2614.66 | | 5.65E-02 | • | 9.82E-01 | 0.00E+00 | | | BI-210M | 262.00 | 45.00 | 1.80E-01 | 1.80E-01 | -1.46E-02 | 8.65E-02 | | | D | 300.00 | 23.00 | 4.08E-01 | | -1.84E+00 | 1.96E-01 | | + | PB-210 | | 4.25 | 3.49E+00 | 3.49E+00 | 3.32E+00 | 1.71E+00 | | | PB-211 | 404.84 | 2.90 | 3.15E+00 | 3.15E+00 | 2.47E-01 | 1.50E+00 | | | | 831.96 | 2.90 | 3.78E+00 | | -5.18E-01 | 1.74E+00 | | | BI-212 | 727.17 | 11.80 | 1.08E+00 | 1.08E+00 | 5.32L-01 | 5.05E-01 | | | | 1620.62 | 2.75 | 3.18E+00 | | 7.02E-01 | 1.32E+00 | | + | PB-212 | 238.63 | * 44.60 | 3.42E-01 | 3.42E-01 | 1.22E+00 | 1.68E-01 | | | | 300.03 | * 3.41 | 2.29E+00 | 4 64- 65 | 1.51E+00 | 1.09E+00 | | + | BI-214 | 000.01 | * 46.30 | 2.37E-01 | 1.0:E-01 | 1.65E+00 | 1.11E-01
5.17E-01 | | | | 1120.23 | * 15.10 | 1.11E+00 | | 1.89E+00 | 0.00E+00 | | | | T/04.47 | * 15.80 | | | 1.82E+00 | 1.27E+00 | | | | 2204.22 | 4.98 | | 1 1 CF 01 | 1.32E+00
1.88E+00 | 2.74E-01 | | + | PB-214 | 2,0,21 | * 19.19
* 37.19 | | 3.36E-01 | 1.88E+00
1.85E+00 | 1.63E-01 | 1603102-04 SEDIMENT 2016-03-16A | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| | | RN-219 | 401.80 | 6.50 | 1.33E+00 | 1.33E+00 | 2.20E-01 | 6.29E-01 | | | RA-223 | 323.87 | 3.88 | 1.96E+00 | 1.96E+00 | -3.20E-01 | 9.28E-01 | | | RA-224 | 240.98 | 3.95 | 3.95E+00 | 3.95E+00 | 1.86E+01 | 1.94E+00 | | | RA-225 | 40.00 | 31.00 | 1.42E+00 | 1.42E+00
| -7.07E-01 | 6.84E-01 | | 4 | RA-226 | 186.21 * | 3.28 | 3.08E+00 | 3.08E+00 | 3.18E+00 | 1.50E+00 | | · | TH-227 | 50.10 | . 8.40 | 1.11E+00 | 1.062+00 | -7.30E-02 | 5.37E-01 | | | | 236.00 | 11.50 | 1.06E+00 | | 7.99E-01 | 5.16E-01 | | | | 256.20 | 6.30 | 1.21E+00 | | -5.04E-01 | 5.79E-01 | | + | AC-228 | 338.32 * | 11.40 | 8.04E-01 | 5.70E-01 | 1,10E+00 | 3.85E-01 | | | 110 220 | 911.07 * | 27.70 | 5.70E-01 | | 1.50E+00 | 2.68E-01 | | | | 969.11 * | 16.60 | 9.25E-01 | | 1.19E+00 | 4.33E-01 | | | TH-230 | 48.44 | 16.90 | 6.52E-01 | 6.52E-01 | 9.66E-01 | 3.18E-01 | | | ##I 230 | 62.85 | 4.60 | 1.88E+00 | | 2.52E+00 | 9.16E-01 | | | | 67.67 | 0.37 | 2.08E+01 | | -1.07E+01 | 1.01E+01 | | | PA-231 | 283.67 | 1.60 | 4.93E+00 | 3.94E+00 | -1.82E+00 | 2.36E+00 | | | 111 601 | 302.67 | 2.30 | 3.94E+00 | | 5.84E-01 | 1.89E+00 | | | TH-231 | 25.64 | 14.70 | 3.84E+00 | 1.19E+00 | -5.53E-01 | 1.86E+00 | | | 111 201 | 84.21 | 6.40 | 1.10E+00 | | 1.39E-01 | 5.34E-01 | | | PA-233 | 311.98 | 38.60 | 4.08E-01 | 4.08E-01 | -9.53E-02 | 1.94E-01 | | | PA-234 | 131.20 | 20.40 | 2.76E-01 | 2.76E-01 | -9.99E-03 | 1.33E-01 | | | IN 254 | 733.99 | 8.80 | 1.14E+00 | • | -6.03E-01 | 5.26E-01 | | | | 946.00 | 12.00 | 9.11E-01 | | -4.91E-01 | 4.15E-01 | | | PA-234M | 1001.03 | 0.92 | 1.16E+01 | 1.16E+01 | -2.39E+00 | 5.27E+00 | | | TH-234 | 63.29 | 3.80 | 2.24E+00 | 2.24E+00 | 1.43E+00 | 1.09E+00 | | | :U-235 | 143.76 | 10.50 | 5.49E-01 | 5.49E-01 | -1.53E-01 | 2.65E-01 | | | 0 200 | 163.35 | 4.70 | 1.28E+00 | | -5.42E-01 | 6.15E-01 | | | | 265.31 | 4.70 | 1.52E+00 | | -1.89E+00 | 7.32E-01 | | | NP-237 | 86.50 | 12.60 | 6.40E-01 | 6.40E-01 | 5.18E-01 | 3.13E-01 | | | NP-239 | 106.10 | 22.70 | 8.92E+02 | 8.92E+02 | -3.72E+00 | 4.31E+02 | | | 141 233 | 228.13 | 10.70 | 2.54E+03 | • | 1.60E+02 | 1.22E+03 | | | | 277.60 | 14.10 | 2.17E+03 | | 1.39E+03 | 1.04E+03 | | | AM-241 | 59.54 | 35.90 | 2.17E-01 | 2.17E-01 | -1.88E-02 | 1.06E-01 | | + | AM-243 | 74.67 * | · · | 1.84E-01 | 1.84E-01 | 4.11E-01 | 9.08E-02 | | ' | CM-243 | 209.75 | 3.29 | 2.39E+00 | 6.15E-01 | 1.15E+00 | 1.15E+00 | | | OF 240 | 228.14 | 10.60 | 7.21E-01 | | 4.54E-02 | 3.47E-01 | | | | 277.60 | 14.00 | 6.15E-01 | | 3.93E-01 | 2.96E-01 | ⁼ Nuclide identified during the nuclide identification No Action Level results available for reporting purposes. ^{* =} Energy line found in the spectrum > = MDA value not calculated ^{@ =} Half-life too short to be able to perform the decay correction 1603102-04 SEDIMENT 2016-03-16A ### DATA REVIEW COMMENTS REPORT **Creation Date** Comment User No Data Review Comments Entered. ************ Sample Title: SEDIMENT 2016-03-16A Elapsed Live time: 3600 Elapsed Real Time: 3613 3600 | | | | , | | | 1 | , | 1 | |--------------|-----------------------|-----------------|----------|--------------|----------|----------|----------|----------| | Channel | | · | | - | 0 | 0 | 0 | 0 | | 1: | 0
1 | 0
155 | 0
149 | 0
118 | 94 | 109 | 73 | 98 | | 9:
17: | $7\overset{\perp}{1}$ | 79 | 67 | 60 | 62 | 66 | 69 | 55 | | | 71 | 62 | 61 | 67 | 63 | 57 | 54 | 55 | | 25:
33: | 54 | 64 | 50 | . 59 | 61 | 53 | 55 | 43 | | 33:
41: | 65 | 58 | 64 | 47 | 52 | 71 | 171 | 131 | | 49: | 59 | 58 | 67 | 64 | 72 | 80 | 65 | 69 | | 57: | 48 | 71 | 77 | 80 | 88 | 82 | 105 | 156 | | 65: | 106 | 76 | 93 | 98 | 112 | 89 | 103 | 86 | | 73; | 81 | 115 | 259 | 283 | 298 | 407 | 127 | 79 | | 81: | 80 | 81 | 80 | 96 | 116 | 80 | 115 | 184 | | 89: | 111 | 106 | 120 | 87 | 161 | 173 | 89 | 62 | | 97: | 62 | 55 | 53 | 59 | 59 | 51 | 53 | 49 | | 105: | 49 | 74 | 60 | 54 | 54 | 68 | 57 | 49 | | 113: | 62 | 50 | 45 | 66 | 42 | 59 | 44 | 46 | | 121: | 51 | 56 | 49 | 47 | 60 | 37 | 54 | 42 | | 129: | 53 | 56 | 49 | 41 | 43 | 47 | 52 | 47 | | 137; | 51 | 70 | 55 | 48 | 5 C | 44 | 46 | 44 | | 145: | 59 | 39 | 56 | . 47 | 42 | 45 | 60 | 50 | | 153: | 43 | 55 | 73 | 38 | 46 | 65 | 44 | 46 | | 161: | 50 | 42 | 37 | 37 | 55 | 46 | 4.7 | 54 | | 169: | 44 | 47 | 37 | 39 | 50 | 49 | 38 | 40 | | 177: | 38 | 33 | 28 | 47 | 57
20 | 48 | 33 | 55
40 | | 185: | 58 | 103 | 117 | 48 | 38
42 | 42
43 | 47
45 | 45 | | 193: | 40 | 59 | 44 | 33
32 | 32 | 36 | 34 | 29 | | 201: | 34 | 28 | 35
36 | 32
36 | 32
32 | 30 | 33 | 38 | | 209: | 38 | 61
48 | 30
43 | 33 | 32
37 | 36 | 30 | 31 | | 217: | 38
35 | 30 | 31 | 33 | 20 | 33 | 38 | 36 | | 225:
233: | 26 | 28 | 36 | 39 | 37 | 75 | 305 | 188 | | 241: | 63 | 119 | 89 | 38 | 31 | 24 | 24 | 19 | | 249; | 35 | 24 | 26 | 27 | 25 | 20 | 20 | 26 | | 257: | 35 | 27 | 28 | 32 | 33 | 30 | 25 | 27 | | 265: | 24 | 24 | 32 | 28 | 35 | 40 | 38 | 40 | | 273: | 27 | $\overline{21}$ | 29 | 27 | 33 | 39 | 23 | 27 | | 281: | 26 | 21 | 23 | 28 | 16 | 23 | 27 | 28 | | 289: | 28 | 19 | 30 | 17 | 18 | 29 | 133 | 189 | | 297: | 60 | 16 | 13 | 39 | 39 | 23 | 24 | 20 | | 305: | 27 | 24 | 17 | 23 | 24 | 1.5 | 20 | 21 | | 313: | 18 | 15 | 20 | 26 | 17 | 23 | 17 | 21 | | 321: | 16 | 10 | 28 | 12 | 11 | 26 | 17 | 25 | | 329: | 33 | 21 | 21 | 14 | 22 | 18 | 15 | 13 | | 337: | 15 | 43 | 69 | 23 | 22 | 2.2 | 18 | 26 | | 345: | 20 | 9 | 20 | 16 | 21 | 18 | 55
10 | 224 | | 353: | 167 | 45 | 16 | 14 | 13 | 15 | 19
19 | 14
20 | | 361: | 21 | 18 | 16 | 19 | 14 | 22 | 19 | 20 | 369: 10 12 14 17 21 14 14 14 Sample Title: SEDIMENT 2016-03-16A | • | Dampic | 110101 | 0,22112 | | | | | | |--------------|--|----------------------------------|----------------------------|-------------------|---|-------------------|---------------------|--| | Channel | - | | | 1
20 |
16 | 16 |
18 | 12 | | 377 : | 21
18 | 14
14 | 21
16 | 19 | 21 | 16 | 16 | 23 | | 385: | | 18 | 12 | 11 | 12 | 5 | 11 | 12 | | 393: | 19 | | 16 | 14 | 13 | 19 | 18 | 14 | | 401: | 16 | 25 | 10
11 | 12 | 15 | 12 | 14 | 18 | | 409: | 21 | 15 | 17 | 13 | 12 | 15 | 15 | 16 | | 417: | 10 | 9 | 10 | 8 | 8 | 19 | 17 | 13 | | 425: | 15
12 | 14
12 | 9 | 6 | 13 | 10 | 22 | 12 | | 433:
441: | 12 | 18 | 10 | 9 | . 6 | 6 | 10 | 10 | | 441: | 3
T.2 | 17 | 9 | - 9 | 16 | 15 | 13 | 13 | | 457: | 13
3
12 | 13 | 10 | 15 | 9 | $\overline{15}$ | 26 | 26 | | 465: | 8 | 9 | | 15 | 5 | 10 | 8 | 19 | | 473: | 8
9 | 13 | 9
8 | 16 | 22 | 18 | 16 | 10 | | 481: | 12 | 9 | 8 | | 14 | 13 | 12 | 8 | | 489: | 8 | 10 | 11 | 9
6 | 5 | 13 | 11 | 8 | | 497: | 13 | 11 | 10 | 8 | 10 | 12 | 10 | 4 | | 505: | 10 | 12 | 12 | 10 | 14 | 25 | 49 | 33 | | 513: | 14 | 7 | . 8 | 9 | 13 | 13 | 8 | 13 | | 521: | 10 | 8 | 10 | , 6
5 | 17 | 9
5 | 17 | 12 | | 529: | 9 | 13 | 4 | 5 | 8
9
8 | 5 | 8 | 4 | | 537 : | 12 | 6 | 6 | 7 | . 6 | 9 | 7 | 7
6 | | 545: | 9 | 7 | 13 | 9 | 8 | 8 | 6
9 | 7 | | 553: | 14 | 8 | 10 | 7 | 11 | 1.3 | 4 | 12 | | 561: | 6 | 6 | 12 | 9 | 12 | 4
5 | " 1
7 | 13 | | 569: | 19 | 15
6 | 10
12 | 6 | و
8 | 14 | 68 | 74 | | 577 : | 8
10 | 8 | 5 | 9 | 10 | 3 | | 7 | | 585:
593: | 12 | 8 | 11 | 4 | 9 | 12 | | 7 | | 601: | 13 | 13 | 11 | 10 | 12 | 7 | 9 | | | 609: | 141 | 142 | 45 | 6 | 8 | 12 | 9 | 7 | | 617: | 7 | 8 | 7 | 5 | 8
1 | 4 | | 9 | | 625: | | 10 | 7 | 4 | 7 | 3.0 | 6 | | | 633: | 9
8 | | 7 | 7 | 14 | 6 | 10 | | | 641: | 2
6 | 9
6 | 12 | 4 | 4 | ნ
8 | 6 | 10 | | 649: | 6 | 10 | 9 | 7 | 4
5 | 8 | 10 | 7 | | 657 : | 12 | 12 | 6 | 6 | 10 | 15 | 16 | 7 | | 665: | 11 | 1.3 | 3 | 12 | 4 | 11
8 | 3 | 4 | | 665:
673: | 3 | 9 | 8 | 6
12
3
7 | 6 | 8 | . 8 | | | 681: | 4 | 13
9
5
5
7 | 6
3
8
2
8
9 | 7 | 4
6
5
10
11
2
5 | 9 | | 11 | | 689:
697: | 9 | 5 | 8 | 7 | 10 | 1.0 | 16
10 | 1.1 | | 697: | 9 | 5 | 9 | 7 | T.T | 9
6 | ; 6 | | | 705: | / | 3 | 11 | 9 | <u>ک</u>
5 | 8 | 9 | 9 | | 713: | 5 | 11 | 11 | 3 | 7 | ។
1 ន | 19 | 14 | | 721: | ď | 11 | 8 9 | 6 | | | 4 | 3 | | 729:
737: | 11
3
4
9
7
5
6
9
8 | 7.0 | 9
10 | <i>A</i> | <u>፲</u> ሀ | 18
7
7
9 | 11 | 7 | | 737:
745: | <i>Σ</i>
Ω | ے
ح | 8 | 4 | 6. | ; c | 5 | 7 | | 753: | 4 | 8 | 8 | 6 | 8 | 4 | . 6 | 6 | | 761: | 5 | 3 | 8 | 9 | 3 | 7 | ' 4 | 15 | | 769: | 19 | 10
9
5
8
3
8
6 | 10
8
8
8
10 | 5 | 12 | . 7 | ' 6 | 8 | | 777: | 19
6 | 6 | 4 | 7 | 7 | 6 | 3 | 5 | | 785: | 4 | 6 | 8 | 984644695789 | 10
5
€
8
3
12
7
7
5 | 9 5 | 3 7 | 9
14
3
7
7
6
15
8
8
5
6
5 | | 793: | 4 | 12 | 1.7 | 9 | 5 | | 5 6 | 5 5 | | Channel | Data Repor | ct | 4 | /13/2016 | 9:08: | 06 AM | | Page | 3 | |--|--|--------------------------------------|---------------------------------|---|--|---|--|---|---| | 801: | 3 | 7 | 6 | 3 | 8 | 6 | l ₄ | 5 | | | | Sample T | itle: | SEDIMENT | 2016-03- | 16A | | | | | | Channel 809:
817:
825:
833:
841:
849:
857: | 1
4
4
5
2
6 | 8
7
8
8
8
10
5 | 3
2
4
4
2
3
5 | 7
8
7
6
6 |
5
2
11
9
11
5 | 2
3
5
6
6 | 5
6
6
7
5
3 | - -
2
5
7
3
6
6 | | | 865:
873:
881:
889:
897:
905:
913:
921: | , 6
3
5
4
3
5
4
9 | 6
4
8
5
3
6
4 | 5
6
7
6
7
4 | 3
1
8
6
2
4
8 | 5
5
5
3
1
7
4
3 | 3
6
3
6
3
2
4
1
8 | 3
5
2
2
5
51
4
4 | 6
7
5
4
9
40
4
3 | | | 929:
937:
945:
953:
961:
969: | 4
3
3
6
5
41 |
4
6
7
5
3
16 | 7
3
3
5
7
11 | 7
6
3
6
9
5 | 11
5
8
6
6
4 | 12
6
9
10
6
5 | 7
6
9
3
4
6 | 5
6
4
8
13
5 | | | 977:
985:
993:
1001:
1009:
1017:
1025: | 5
5
2
3
4
5
8 | 3
6
5
3
3 | 4
7
2
8
4
7
8 | 5
3
5
5
10
6
3 | 3
4
5
7
3
7 | 6
4
5
1
2 | 7
2
3
6 | 3
4
5
3
6
4 | | | 1033:
1041:
1049:
1057:
1065:
1073: | 4
6
8
7
5
2
5 | 5
4
2
4
5
9
5
7 | 6
8
4
5
3
6 | 3
3
6
5
3
3
2 | 4
5
1
7
6 | 7
9
4
4
3
2 | 3
0
1
3
6
3
6 | 4
3
1
5
6
7 | | | 1081:
1089:
1097:
1105: | 7
7
2
19 | 3
6
6
4 | 6
6
4
5
3
6
1 | 5
3
2
4
3
2
2
7
6 | 1
6
2
4
5
2
6
5
3
4 | 7
3
7
6
2 | 4
10
4
17
3 | 5
4
2
32
5
4 | | | 1121:
1129:
1137:
1145:
1153:
1161:
1169:
1177: | 2
2
3
6
2
10 | 4
4
13
12
2 | 10
4
9
7 | 6
5
4
6
2
4
1 | 7
6 | 1
3
5
5
3
8
7 | 4
3
6
0
5
4
5
3
5
1 | 3
4
4
6
7
5
6 | | | 1177:
1185:
1193:
1201:
1209:
1217:
1225: | 10
5
5
2
9
4
11
4 | 1
4
3
6
5 | 3
4
5
7
3
6
7 | 4
8
1
5
3 | 4
3
5
5
6
6
3 | 9
2
6
5
6
3 | 3
5
1
2
6
7 | 9
4
6
1
8
7 | | | Channel | Data Repor | t | 4, | /13/2016 | 9:08:0 | 06 AM | | Page | 4 | |-------------------------|-----------------------|---------------|------------------|-------------|----------------------------|------------------|------------------|------------------|---| | 1233: | 3 | 6 | 1 | 4 | 8 | 13 | 9 | 5 | | | | Sample Ti | tle: | SEDIMENT | 2016-03- | 16A | | | | | | Channel | | | | | | | [| | | | 1241: | 5 ່ | 4 | 0 ' | 4 | 5 | 3 | 1 | 1 | | | 1249: | 5 | 5 | 4 | 4 | 7 | 3 | 4 | 3
2
5 | | | 1257: | 4 | 3 | 6 | 2 | 5 | 2 | 4
4 | <u>ک</u>
ج | | | 1265: | 3 | 6 | 2
2 | 3
8 | 2
2 | 4
4 | 6 | 10 | | | 1273:
1281: | 2
4 | 2
4 | 7 | 10 | 2 | 3 | 3 | 3 | | | 1289: | 5 | 3 | 1 | 5 . | 3 | Ö | 6 | 4 | | | 1297: | 4 | 2 | 3 | 5 | 3 | 3 | 8 | 4 | | | 1305: | i | 2 | | 2 | 3 | 6 | 1 | 2 | | | 1313: | 3 | 5 | _2 | 2 | 1 | 1 | 1 | 2
3
5 | | | 1321: | 4 | 1 | 2
2
5
5 | 2 | <u>C</u> | 2 | 2 | 5 | | | 1329: | 3 | 2 | | 7 | 5 | 2 | 2 3 | 0 | | | 1337: | 7 | 2
1. | 2
1 | 3
5 | 3
0 | 2
3 | 4 | 0 | | | 1345:
1353: | 2 | 1. | 1 | 0 | 5 | 3 | 3 | ĭ | | | 1361: | 4 | 3 | ī | 3 | $\tilde{2}$ | 5 | 2 | 2 | | | 1369: | 2 | Ō | 5 | 2 | 1 | 2 | 2 | 2
3 | | | 1377: | 7 | 4 | 3 | 1 | 1 | 3 | 0 | | | | 1385: | 2 | 1 | 2 | 3 | 3 | 2 | 0 | 1 | | | 1393: | 1 | 2
2 | 0
1 | 1
3 | 0
0 | 2
4 | 2
5 | 6 | | | 1401:
1409: | 6
1 | 2 | 5 | 0 | 2 | 2 | 5 | 2 | | | 1417: | 0 | ī | 4 | Ŏ | 2 | 3 | 2 | -0 | | | 1425: | 3 | 3 | 1 | 4 | 4 | 1 | 1 | 1 | | | 1433: | 1 | 4 | 3 | 7 | 1 | 1 | 2 | 0 | | | 1441: | .3 | 3 | 2 | 2 | 3
2 | 1
1 | 0 | .1 | | | 1449: | 1 3 | <u>?</u>
6 | 4
40 | 1.
143 | 111 | 33 | 1 | 1 | | | 1457:
1465: | . 1 | 0 | 0 | 1 | C | 4 | 3 | 0 | | | 1473: | 3 | 2 | 2 | 2 | 2 | 7 | 2 | 2 | | | 1481: | | 3
2 | | 1
1 | 1
1. | 0 | 1 | 3 | | | 1489: | 2 | 2 | 6
3
2 | 1 |]. | 1 | 4 | 1 | | | 1497: | 2
2
2
3
2 | 4
1 | 2 | 0
3 | 1
4 | 1
5 | 1
1 | 3
1
1
3 | | | 1505:
1513: | ა
2 | 1 | 2 | 3 | | 5
1
3
1 | ī | Ö | | | 1521: | - 2 | 1
2
3 | 2
1 | 3
2
5 | 1
3
1 | 3 | 1 | 1 | | | 1521:
1529:
1537: | 7 | 3 | 0 | 5 | 1 | 1 | 1
2
3 | 0 | | | 1537: | 6 | 0 | 3 | 2 | 0 | 1 | 0 | 3
2 | | | 1545: | 0 | 2 | 0
0 | 0
0 | 4 | 0
2 | 0 | 1 | | | 1553:
1561: | 3
0 | 1
1 | Û | 1 | 2
2
2
2
2
2 | 1 | | Ō | | | 1569: | Ö | 2 | Ö | ĩ | 2 | Ō | 3
1 | 1 | | | 1577: | ĺ | 1 | 0 | 1
3 | 2 | 0 | 1
6
3
3 | 1
3 | | | 1585: | 0 | 4 | 2
2 | 3 | 2 | 1 | 6 | 3 | | | 1593: | 5 | 5 | 2 | 1 | | 2 | ್ತ
ಇ | 0
1 | | | 1601: | 2
0 | 0
2 | 1
1 | C
1 | 0
0 | 4
1 | 0 | 0 | | | 1609:
1617: | 0 | 0 | 2 | 1
3 | 0 | 2 | | Ő | | | 1625: | ŏ | ĭ | 1 | 0 | 3 | 4 | 1
3 | 0 | | | 1633: | 2 | 1 | 0 | 1 | 1 | 3 | 1 | 0 | | | 1641: | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 1
2 | | | 1649: | 1 | 0 | 0 | 1
2 | 0
0 | 1
0 | 1
1 | 1 | | | 1657: | 0 | 2 | 4 | ۷ | U | U | 1 | Т | | | Channel | Data Rep | ort | 4 | /13/2016 | 9:08: | 06 AM | | Page | 5 | |------------------|----------|----------------------------|-----------|-----------------------|----------------|-------------|-----------------------|-------------|---| | 1665: | 0 | 1 | 2 | 1. | 0 | 2. | 1 | 0 | | | | Sample | Title: | SEDIMENT | 2016-03- | 16A | | | | | | Channel
1673: | -
2 | 0 | I
0 | ·
2 | |
2 | 0 |
4 | | | 1681:
1689: | 0
1 | 3
1 | 1
0 | 0
1 | 2 | 0
1 | 0
0 | 0 | | | 1697:
1705: | 1
0 | 1
2 | 0
0 | 1
C | 0
0 | 2
1 | 1.
1. | 1
0 | | | 1713: | 0 | 2 | 0 | 1 | Ö | 1 | 0 | 0 | | | 1721:
1729: | 0
8 | 3
3 | 0
1 | 0
1 | 1
1. | 4
1 | 0
0 | 6
0 | | | 1737: | 1 | 1 | 0 | 0 | ī | 0 | 1 | 1 | | | 1745:
1753: | 0
1 | 2
0 | 2 | 0
0 | 2
1 | 0
0 | 0
0 | 0
2 | | | 1761: | 0 | 4 | 11 | 18 | 11. | 3 | 0 | 0 | | | 1769:
1777: | 0
0 | 0
0 | 0
0 | 0
3 | 1
1 | 0
1 | 0
2 | 0 | | | 1785: | 0 | 0 | 0 | 0 | 0 | 0 | 2
1 | 0 | | | 1793:
1801: | 1
2 | 1
0 | 0
1 | 0
0 | 0 | 1 | 0 | 0 | | | 1809: | 1 | 0 | 0 | 1 | 1 | 1.
O | 1
0 | 0 | | | 1817:
1825: | 0
0 | 1
0 | 1
0 | 0
1 | 0
0 | 1 | 1 | Ŏ | | | 1833: | 4 | 1 | 1
0 | 1
0 | 1
0 | 1
3 | 0
3 | 3
1 | | | 1341:
1849: | 2 | 1
0 | 2 | 1 | 0 | 1 | 1 | 1 | | | 1857; | 2 | 1 | ŋ | 2
1 | <u>1</u>
1. | 1
1 | 2
0 | 0 | | | 1865:
1873: | 1
0 | Û | 0 | 2 | 0 | Ű | 0 | 0 | | | 1881:
1889: | 1
3 | 1 | 1
0 | 1.
O | 0
1 | 0
1 | 0
2 | 0 | | | 1897: | 2 | 1 | Ö | Õ | 0 | 1 | 4 | 0 | | | 1905:
1913: | 0
0 | 1
0 | 1 | 1
0 | 2
0 | 0
0 | 0
1 | 0 | | | 1921: | 1 | 3
2 | 3
1 | 1 | 2 | 0 | <u>1</u>
1 | 0
1 | | | 1929:
1937: | 1
0 | 2
0 | 0
0 | 1
0 | 1
2 | 0
0 | 1
1
1
1
3 | 0 | | | 1945: | 2 | 0 | 0 | 0 | 0 | 1
3 | 1
ว | 1
4 | | | 1953:
1961: | 0
1 | 0
1 | 3
2 | 0
0 | 1
1 | 0 | | 1 | | | 1969: | . 0 | 1
1 | 0 | 1
3 | 0
2 | 0
0 | 0
2
2 | 1
3
0 | | | 1977:
1985: | 0 | 0
3
0 | .3 | 0 | 0 | 0 | 2 | 1 0 | | | 1993: | 2
0 | 0
1 | 1
0 | 0
0 | 1
0 | 1
3
1 | 0
0 | 0 | | | 2001:
2009: | 0 | 1 | 0 | ĭ | 0 | | 1 | 1 | | | 2017:
2025: | 1
0 | 0 | 1
1 | 1
2 | 2
0 | 1
1 | 0
0 | 1 | | | 2033: | 0 | 0
2
1
0
1
1 | 0 | 1
1
2
0
1 | 0 | 2 | 2 | 3 | | | 2041:
2049: | 1
0 | 9 | 1
0 | 0 | 2
0 | 2
1
0 | 1 | 0 | | | 2057: | 2
1 | 1 | 0 | 1
1 | 1 | 0
1 | 0 | 0 | | | 2065:
2073: | 0 | 1
0 | .2
1 · | <u>).</u>
1 | 0
0 | 0 | 1
1
2 | 0 | | | 2081: | 2 2 | 0 | Û | 1
1
0 | 1
0 | 0
1 | 2
0 | 0
2 | | | 2089: | 2 | 0 | 0 | U | U | Т | U | ۷ | | | Channel | Data Re | port | 4 | /13/2016 | 9:08: | 06 AM | | Page | |--|---|--|--|---
---|--|--|---| | 2097: | 1 | Ö | 0 | 2 | 0 | 3 | 2 | 1 | | • , | Sample | Title: | SEDIMENT | 2016-03- | -16A | | | | | Chanel 2105: 212129: 2121297: 2121297: 2121297: 2121297: 212129753: 212129757 | 12010110010200000000100000030202010100001011110000101 | 121012201030200001002000010010200011111000001000 | 211111000100613000212109010111110000003111111000001111 | 03210101105000011001100110031200000202010101111 | 1001420001031011001001002011200121020200311000020110000 | 02000012011120011000000111100000022021000000 | 010200001010000201000200001021000110340000011000 | 121000102001011000000012111001110011001 | | Channel | Data Repor | ct | 4 | /13/2016 | 9:08: | MA 60 | | Page | 7 | |--|------------|--|---|---|---|---|---|---|---| | 2529 : | 0 | 1 | 0 | 0 | C | 1 | 0 | 0 | | | | Sample Ti | itle: | SEDIMENT | 2016-03- | 16A | | | | | | Channel 2537: 2561: 25561: 25569: 25609: 26617: 256649: 26625: 2666575: 2666575: 2666575: 2666575: 2666575: 2666575: 2666575: 2774551: 277451: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 2774551: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451: 277451 | | 00001000001010101111201000000100000000 | 000000000000000000000000000000000000000 | 010100100500010000110000000000000000000 | 100001100000000000000000000000000000000 | 0001110008010010 1000000000000000000000 | 011010000000000000000000000000000000000 | 000001012100100001000100000000000000000 | | | Channel | Data | Report | • | | 4/13/201 | 6 9:0 | 8:06 AM | | Page | 8 | |---|------|---|---|---|---
---|---|---|------|---| | 2961: | | 1 | 2 | 0 | 0 | 0 | 0 | C | 0 | | | | Samp | ple Tit | le: | SEDIMEN | NT 2016-9 | 3-16A | | | | | | Channel 2969: 2977: 2985: 29973: 3009: 3017: 3025: 3033: 3049: 30575: 3049: 30575: 3089: 30897: 3145: 3145: 3145: 3145: 3145: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129: 3145: 3129: | | 1001010001002000000000000000001100001000000 | 120000100000001020001101000002000000000 | 000101001000001000010000000000000000000 | 110000000000000000000000000000000000000 | 000010001000000011000000000000000000000 | 010000000000000000000000000000000000000 | 000000001000000011000000000000000000000 | | | | Channel | Data Repor | ·t | 4 / | 13/2016 | 9:08:0 | 06 AM | | Page | |----------------|------------|----------|-------------|----------|--------|---------------|----------|--------| | 3393: | 0 | 0 | 0. | 0 | 0 | 0 | 0 | 0 | | | Sample Ti | tle: | SEDIMENT | 2016-03- | 16A | | | | | Channel | | | | | | | <u>!</u> | | | 3401: | 0 | 0 | 0 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | | 3409:
3417: | 0
0 | 0
0 | 0
0 | 0 | 0 | Ő | Ö | ĭ | | 3425: | ĭ | Ö | ő | Ö | 1 | 1 | 0 | 0 | | 3433: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3441: | 0 | 0 | 0 | 0
0 | 0
0 | 0
0 | 0
0 | 1
0 | | 3449.
3457: | 0 | 0
0 | 1
0 | 0 | 0 | 0 | 1 | Ŏ | | 3465: | ŏ | ĺ | Ő | Ö | 0 | 0 | 0 | 1 | | 3473: | 0 | 0 | 0 | 0 | C | 0 | 0
1 | 0 | | 3481: | 0 | 0
0 | 0 | 0
+ 0 | 0
0 | 0
1 | 0 | 0 | | 3489:
3497: | 0
0 | 0 | 0 | Ö | 1 | Ő | Ö | Ö | | 3505: | ő | ĺ | Ō | 1 | 0 | 0 | 0 | 0 | | 3513: | 0 | 0 | 1 | 0 | 0 | 0
0 | 1
0 | 0
0 | | 3521: | 0
0 | 0
0 | 0
0 | 0
0 | C
0 | 0 | 0 | 0 | | 3529:
3537: | 0 | 0 | 0 | 1 | ő | Ö | Ö | 0 | | 3545: | Ö | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3553: | 0 | 9 | 0 | 0
0 | 0
0 | 0
0 | 0
0 | 0 | | 3561:
3569: | 0
0 | 0
0 | 0
0 | 0 | 0 | 0 | ŏ | Ö | | 3577 : | Ö | Ö | ő | 0 | 0 | 1 | <u>C</u> | 0 | | 358 5: | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 3593: | 0 | 0
0 | 0
0 | 0
0 | 0 | 0
0 | 0 | 0 | | 3601:
3609: | 0 | 0 | 1 | ő | 0 | Ŏ | Õ, | Ō | | 3617: | Ö | Ö | 0 | 0 - | 0 | 0 | 0 | 0 | | 3625: | 0 | 0 | 1 | 0 | 0
0 | 0
0 | 0
0 | 0 | | 3633:
3641: | 0 | 0
0 . | 0
0 | 0
0 | 1 | Ű | Ö | Ö | | 3649: | 0 | 0 | ő | Ŏ · | Ō | 0 | 1 | 0 | | 3657: | 1 | 0 | 0 | 0 | 0 | 0 | 0
0 | 1
0 | | 3665: | 0 | 2
0 | 0
1 | 0
0 | 0
Ü | 0
0 | 0 | 0 | | 3673:
3681: | 0
1 | 0 | 1 | 0 | 0 | ő | 0 | 1 | | 3689: | Õ | Ō | 0 | 0 | 0 | 0 | C | 0 | | 3697: | 0 | 0 | 0 . | 0 | 0 | 0
1 | 0
0 | 0
0 | | 3705:
3713: | 0
0 | 0
0 | 0
0 | 0
0 | 1
0 | 1. | 1 | 0 | | 3721: | 1 | Ö | ŏ | Ö | 0 | 0 | 1 | 0 | | 3729: | 1 | 0 | 0 | 0 | 0 | 0 | 0
0 | 0
1 | | 3737: | 0 | 0
0 | 1
1
0 | 0 | 0
0 | 0
0 | 0 | 0 | | 3745:
3753: | 1
0 | 0 | 0 | 0 | Ö | Ö | Ö | 0 | | 3761: | 0 | 1 | 0 | 0 | 0 | ÷, | 0 | 0 | | 3769: | 0 | 0 | 1
0 | 0
0 | 0
0 | 0 | 0
0 | 0
0 | | 3777:
3785: | 1
0 | 0
0 | 1 | 0 | 0 | 0 | 0 | 0 | | 3793: | 0 | Ö | 0 | 0 | ĺ | 0 | 0 | 0 | | 3801: | 0 | 0 | 0 | O | 0 | 0 | 0
1 | 0
0 | | 3809: | 1
0 | 0
0 | 0
0 | 0 | 0
0 | 0
1 | 1 | 0 | | 3817: | U | U | U | J | 5 | | | - | | Channel | Data Re | eport | | 4/13/20 | 016 9:0 | MA 30:80 | | Page 10 | | | |---|------------------------------------|---|---|---|---|----------------------------|------------------------|---------|--|--| | 3825: | 0 | 0 | 0 | 1 | 0 | 0 | C | 0 | | | | | Sample Title: SEDIMENT 2016-03-16A | | | | | | | | | | | Channel 3833: 3841: 3849: 3857: 3865: 3873: 3889: 3897: 3905: 3913: 3929: 3929: 3929: 3945: 3945: 3969: 3969: 3969: 3969: 4001: 4009: 4017: 4025: | Sample 0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0 | | | | | | | 4033:
4041:
4049:
4057:
4065:
4073:
4081:
4089: | 0
0
1
0
0
0 | 0
0
1
0
0 | 0 0 0 0 0 0 | 0
0
0
0
1
0 | 0 0 0 0 | 0
0
0
0
2
0 | 1.
0
0
0
0 | 0 | | | | 1000, | Ŭ | • | - | | | | | | | | 0000035696.CNF 1603102-05 SEDIMENT 2016-03-16B ### GAMMA SPECTRUM ANALYSIS Sample Identification Sample Description Sample Type : 1603102-05 : SEDIMENT 2016-03-16B : SOIL Sample Size Facility : 5.413E+02 grams : Countroom Sample Taken On **Acquisition Started** : 3/16/2016 1:45:27PM : 4/13/2016 9:12:11AM Procedure Operator **Detector Name** : GAS-1402 pCi : Administrator : GE3 : GAS-1402 Geometry Live Time Real Time : 3600.0 seconds : 3611.8 seconds Dead Time : 0.33 % Peak Locate Threshold Peak Locate Range (in channels) Peak Area Range (in channels) Identification Energy Tolerance : 2.50 : 1 - 4096 : 9 - 4096 : 1.000 keV Energy Calibration Used Done On Efficiency Calibration Used Done On : 10/25/2014 : 10/25/2014 Efficiency Calibration Description Sample Number : 35701 # PEAK-TO-TOTAL CALIBRATION REPORT #### Peak-to-Total Efficiency Calibration Equation 1603102-05 SEDIMENT 2016-03-16B ## PEAK LOCATE REPORT Peak Locate Performed on : 4/13/2016 10:12:24AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 Peak Search Sensitivity : 2.50 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 1 | 46.96 | 47.19 | 0.0000 | 0.00 | | 2 | 74.94 | 75.15 | 0.0000 | 0.00 | | 3 | 77.63 | 77.85 | 0.0000 | 0.00 | | 4 | 93.14 | 93.34 | 0.0000 | 0.00 | | 5 | 99.10 | 99.30 | 0.0000 | 0.00 | | 6 | 105.27 | 105.47 | 0,0000 | 0.00 | | 7 | 143.61 | 143.78 | 0.0000 | 0.00 | | 8 | 186.10 | 186.25 | 0.0000 | 0.00 | | 9 | 211.75 | 211.89 | 0.0000 | 0.00 | | 10 | 238.90 | 239.03 | 0.000 | 0.00 | | 11 | 241.86 | 241.99 | 0.000 | 0.00 | | 12 | 270.57 | 270.68 | 0.000 | 0.00 | | 13 | 295.68 | 295.78 | 0.0000 | 0,00 | | 14 | 309.46 | 309.55 | 0.0000 | 0.00 | | 15 | 338.74 | 338.82 | 0.0000 | 0.00 | | 16 | 342.11 | 342.18 | 0.0000 | 0.00 | | 17 | 348.34 | 348.41 | 0,0000 | 0.00 | | 18 | 352.37 | 352.44 | 0.0000 | 0.00 | | 19 | 464.39 | 464.40 | 0.0000 | 0.00 | | 20 | 477.97 | 477.98 | 0.0000 | 0.00 | | 21 | 511.71 | 511.70 | 0.0000 | 0.00 | | 22 | 549.41 | 549.39 | 0.0000 | 0.00 | | 23 | 579.04 | 579.00 | 0.0000 | 0.00 | | 24 | 583.85 | 583.80 | 0.0000 | 0.00 | | 25 | 609.72 | 609,66 | 0.0000 | 0.00 | | 26 | 698.53 | 698.43 | 0.0000 | 0.00 | | 27 | 702.53 | 702.43 | 0.0000 | 0.00 | | 28 | 710.67 | 710.57 | 0.0000 | 0.00 | | 29 | 728.02 | 727.91 | 0.0000 | 0.00 | | 30 | 734.74 | 734.63 | 0.0000 | 0.00 | | 31 | 768.74 | 768.61 | 0.0000 | 0.00 | | 32 | 795.34 | 795.20 | 0.0000 | 0.00 | | 33 | 851.90 | 851.73 | 0.0000 | 0.00 | | 34 | 857.83 | 857.66 | 0.0000 | 0.00 | | 35 | 861.01 | 860.84 | 0.0000 | 0.00 | | 36 | 911.61 | 911.41 | 0.0000 | 0.00 | | 37 | 969.44 | 969.22 | 0.0000 | 0.00 | | 38 | 973.00 | 9 72.78 | 0.0000 | 0.00 | | 39 | 976.44 | 976.22 | 0.0000 | 0.00 | | 40 | 984.30 | 984.07 | 0.0000 | 0.00 | | 41 | 1003.36 | 1003.12 | 0.0000 | 0.00 | | 42 | 1098.37 | 1098.10 | 0.0000 | 0.00 | 1603102-05 SEDIMENT 2016-03-16B | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 43 | 1120.29 | 1120.01 | 0.0000 | 0.00 | | 44 |
1126.05 | 1125.76 | 0.0000 | 0.00 | | 45 | 1148.36 | 1148.06 | 0.0000 | 0.00 | | 46 | 1155.50 | 1155.20 | 0.0000 | 0.00 | | 47 | 1160.24 | 1159.94 | 0.000 | 0.00 | | 48 | 1232.21 | 1231.87 | 0.0000 | 0.00 | | 49 | 1237.82 | 1237.49 | 0.0000 | 0.00 | | 50 | 1282.37 | 1282.02 | 0.0000 | 0.00 | | 51 | 1381.53 | 1381.14 | 0.0000 | 0.00 | | 52 | 1460.80 | 1460.38 | 0.0000 | 0.00 | | 53 | 1496.40 | 1495.97 | 0.0000 | 0.00 | | 54 | 1510.05 | 1509.61 | 0.0000 | 0.00 | | 55 | 1590.33 | 1589.86 | 0.000 | 0.00 | | 56 | 1629.99 | 1629.51 | 0,0000 | 0.00 | | 57 | 1764.39 | 1763.86 | 0.0000 | 0.00 | | 58 | 1776.37 | 1775.83 | 0.0000 | 0.00 | | 59 | 1845.91 | 1845.35 | 0.0000 | 0.00 | | 60 | 1985.77 | 1985.17 | 0.0000 | 0.00 | | 61 | 2118.89 | 2118.25 | 0.0000 | 0.00 | | 62 | 2203.33 | 2202.66 | 0.0000 | 0.00 | | 63 | 2217.47 | 2216.80 | 0.0000 | 0.00 | | 64 | 2283.78 | 2283.09 | 0.0000 | 0.00 | | 65 | 26146 | 2613.58 | 0.0000 | 0.00 | ? = Adjacent peak noted Errors quoted at 2.000sigma for 1603102-05 SEDIMENT 2013-05-16B ### PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 10:12:24AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |-----|---------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | - | 1 | 46.96 | 44 - | 49 | 47.19 | 1.63E+02 | 62.36 | 6.43E+02 | 1.70 | | М | $\frac{1}{2}$ | 74.94 | 72 - | 81 | 75.15 | 2.39E+02 | 77.39 | 9.42E+02 | 1.66 | | m | 3 | 77.63 | 72 - | 81 | 77.85 | 4.97E+02 | 84.36 | 9.22E+02 | 1.67 | | ••• | 4 | 93.14 | 90 - | 97 | 93.34 | 3.61E+02 | 90.73 | 1.04E+03 | 2.15 | | | 5 | 99.10 | 98 - | 103 | 99.30 | 4.69E+01 | 55.05 | 5.80E+02 | 1.55 | | | . 6 | 105.27 | 103 - | 108 | 105.47 | 6.93E+01 | 56.44 | 5.85E+02 | 2.82 | | | 7 | 143.61 | 140 - | 147 | 143.78 | 7.87E+01 | 68.93 | 7.39E+02 | 2.55 | | | 8 | 186.10 | 182 - | 190 | 186.25 | 1.89E+02 | 72.68 | 6.95E+02 | 2.07 | | | 9 | 211.75 | 205 - | 220 | 211.89 | 1.05E+02 | 101.67 | 9.89E+02 | 7.68 | | M | 10 | 238.90 | 234 - | 246 | 239.03 | 4.87E+02 | 60.88 | 3.10E+02 | 1.89 | | m | 11 | 241.86 | 234 ~ | 246 | 241.99 | 1.40E+02 | 62.37 | 3.41E+02 | 1.89 | | 110 | 12 | 270.57 | 267 - | 273 | 270.68 | 6.83E+01 | 44.16 | 3.05E+02 | 2.14 | | | 13 | 295.68 | 292 - | 298 | 295.78 | 1.83E+02 | 48.57 | 3.36E+02 | 1.58 | | | 14 | 309.46 | 306 - | 314 | 309.55 | 4.19E+01 | 42.87 | 2.58E+02 | 2.05 | | М | 15 | 338.74 | 336 - | 345 | 338.82 | 1.15E+02 | 34.37 | 1.55E+02 | 1.99 | | m | 16 | 342.11 | 336 | 345 | 342.18 | 3.81E+01 | 33.84 | 1.25E+02 | 1.99 | | M | 17 | 348.34 | 346 - | 357 | 348.41 | 2.93E+01 | 20.88 | 7.44E+01 | 2.06 | | m | 18 | 352.37 | 346 - | 357 | 352.44 | 3.76E+02 | 44.51 | 1.15E+02 | 1.75 | | 111 | 19 | 464.39 | 460 - | 472 | 464.40 | 6.23E+01 | 47.91 | 2.41E+02 | 4.21 | | | 20 | 477.97 | 474 - | 482 | 477.98 | 5.00E+01 | 35.40 | 1.62E+02 | 1.56 | | | 21 | 511.71 | 506 - | 518 | 511.70 | 1.58E+02 | 42.18 | 1.30E+02 | 2.32 | | | 22 | 549.41 | 546 - | 552 | 549.39 | 3.10E+01 | 22.56 | 7.00E+01 | 1.16 | | М | 23 | 579.04 | 578 - | 590 | 579.00 | 1,28E+01 | 10.30 | 2.78E+01 | 1.98 | | m | 24 | 583.85 | 578 - | 590 | 583.80 | 1.21E+02 | 32.29 | 8.98E+01 | 2.18 | | 111 | 25 | 609.72 | 606 - | 615 | 609.66 | 2.34E+02 | 44.61 | 1.52E+02 | 1.86 | | M | 26 | 698.53 | 696 - | 713 | 698.43 | 2.62E+01 | 16.11 | 3.15E+01 | 2.49 | | m | . 27 | 702.53 | 696 - | 713 | 702.43 | 2.47E+01 | 21.15 | 4.81E+01 | 2.49 | | m | 28 | 710.67 | 606 - | 713 | 710.57 | 1.94E+01 | 18.85 | 5.41E+01 | 2.49 | | | 29 | 728.02 | 723 - | 731 | 727.91 | 3.31E+01 | 27.74 | 9.59E+01 | 3,23 | | | 30 | 734.74 | 732 - | 737 | 734.63 | 1.63E+01 | 17.06 | 4.55E+01 | 2.42 | | | 31 | 768.74 | 765 - | 772 | 768.61 | 2.41E+01 | 27.57 | 1.08E+02 | 1.91 | | | 32 | 795.34 | 790 - | 799 | 795.20 | 3.10E+01 | 26.78 | 8.40E+01 | 5.08 | | | 33 | 851.90 | 849 - | 855 | 851.73 | 1.65E+01 | 17.53 | 4.10E+01 | 2.51 | | М | | 857.83 | 856 - | 865 | 857.66 | 1.21E+01 | 11.49 | 1.74E+01 | 2.67 | | m | | 861.01 | 856 - | 865 | 860.84 | 3.37E+01 | 21.87 | 4.70E+01 | 2.85 | | 111 | 36 | 911.61 | 907 - | 915 | 911.41 | 9,05E+01 | 27.78 | 6.30E+01 | 1.75 | | М | | 969.44 | 965 | 978 | 969.22 | 7.14E+01 | 25.26 | 8.68E+01 | 2.42 | | m | | 973.00 | 965 - | 978 | 972.78 | 1.62E+01 | 24.37 | 5,12E+01 | 2.42 | | m | | 976.44 | 965 - | 978 | 976.22 | 1.38E+01 | 15.17 | 2.08E+01 | 2.40 | | 111 | 40 | 984.30 | 979 - | 990 | 984.07 | 2.98E+01 | 21.35 | 4.25E+01 | 8.05 | 1603102-05 SEDIMENT 2016-03-16B | | Peak
No. | Energy
(keV) | ROI RO
start en | | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |---|-------------|-----------------|--------------------|-----------|------------------|-------------------------|---------------------|---------------| | - | 41 | 1003.36 | 1000 - 100 | 6 1003.12 | 1.70E+01 | 15.56 | 3.19E+01 | 2.80 | | | 42 | 1098.37 | 1095 - 110 | 1 1098.10 | 1.65E+01 | 17.06 | 3,90E+01 | 3.63 | | М | 43 | 1120.29 | 1115 - 112 | 8 1120.01 | 4.96E+01 | 22.81 | 6.56E+01 | 2.46 | | m | 44 | 1126.05 | 1115 - 112 | 8 1125.76 | 1.23E+01 | 15.91 | 3.39E+01 | 3.33 | | Μ | 45 | 1148.36 | 1145 - 116 | 3 1148.06 | 2.19E+01 | 13.08 | 1.89E+01 | 3.34 | | m | 46 | 1155.50 | 1145 - 116 | 3 1155.20 | 1.69E+01 | 18,59 | 3.22E+01 | 3.04 | | m | 47 | 1160.24 | 1145 - 116 | 3 1159.94 | 1.40E+01 | 16.37 | 3.08E+01 | 3,35 | | М | 48 | 1232.21 | 1230 - 124 | 7 1231.87 | 1.20E+01 | 10.95 | 2.40E+01 | 2.81 | | m | 49 | 1237.82 | 1230 - 124 | 7 1237.49 | 3.29E+01 | 20.49 | 4.80E+01 | 2.68 | | | 50 | 1282,37 | 1277 - 128 | 8 1282.02 | 3.14E+01 | 20.40 | 3.73E+01 | 4.30 | | | 51 | 1381.53 | 1374 - 139 | 0 1381.14 | 2.60E+01 | 19.20 | 2.40E+01 | 12.56 | | | 52 | 1460.80 | 1455 - 146 | 6 1460.38 | 3.35E+02 | 39.75 | 3.06E+01 | 2.28 | | | 53 | 1496.40 | 1492 - 149 | 9 1495.97 | 9.15E+00 | 9.17 | 7.69E+00 | 3.10 | | | 54 | 1510.05 | 1507 - 151 | 2 1509.61 | 5.78E+00 | 7.35 | 6.44E+00 | 1.68 | | | 55 | 1590.33 | 1583 - 159 | 5 1589.86 | 1.97E+01 | 13.73 | 1.26E+01 | 8.13 | | | 56 | 1629.99 | 1626 - 163 | | 1.27E+01 | 10.00 | 8.59E+00 | 1.56 | | | 57 | 1764.39 | 1757 - 176 | 7 1763.86 | 5.60E+01 | 14.97 | 0.00E+00 | 2.47 | | | 58 | 1776.37 | 1772 - 177 | | 6.00E+00 | 4.90 | 0.00E+00 | 1.12 | | | 59 | 1845.91 | 1840 - 184 | 9 1845.35 | 1.07E+01 | 8.77 | 4.54E+00 | 4.88 | | | 60 | 1985.77 | 1982 - 198 | | 6.00E+00 | 4.90 | 0.00E+00 | 1.98 | | | 61 | 2118.89 | 2114 - 212 | 2 2118.25 | 1.20E+01 | 6.93 | 0.00E+00 | 1.47 | | | 62 | 2203.33 | 2198 - 220 | | 1.12E+01 | 10.68 | 9.63E+00 | 1.87 | | | 63 | 2217.47 | 2212 - 222 | | 1.00E+01 | 6.32 | 0.00E+00 | 3.65 | | | 64 | 2283.78 | 2277 - 228 | 2283.09 | 6.17E+00 | 7.81 | 5.67E+00 | 1,28 | | | 65 | 2614.36 | 2610 - 261 | | 3.60E+01 | 1.2.00 | 0.00E+00 | 1.49 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 10:12:24AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | , | Peak | Energy | ROI | ROI | Net Peak | Net Area | Continuum | Critical | |--------|-------------|-------------------------|----------------------|----------------|----------------------------------|-------------------------|----------------------------------|----------------------------------| | | No. | (keV) | start | end | Area | Uncertainty | Counts | Level | | M
m | 1
2
3 | 46.96
74.94
77.63 | 44 -
72 -
72 - | 49
81
81 | 1.63E+02
2.39E+02
4.97E+02 | 62 36
77.39
84.36 | 6.43E+02
9.42E+02
9.22E+02 | 4.68E+01
5.05E+01
4.99E+01 | Analysis Report for 1603102-05 | 4 93.14 90 - 97 3.61E+02 99.73 1.04B+03 6.77E+01 5 99.10 98 - 103 4.69E+01 55.05 5.80E+02 4.38E+01 6.05.27 103 - 108 6.93E+01 56.45 5.85E+02 4.38E+01 7 143.61 140 - 147 7.87E+01 68.93 7.39E+02 5.48E+01 81.61.01 182 - 190 1.99E+02 72.66 6.95E+02 5.48E+01 9 211.75 205 - 220 1.05E+02 101.67 9.89E+02 5.48E+01 9 211.75 205 - 220 1.05E+02 101.67 9.89E+02 8.18E+01 11 241.86 234 - 246 1.40E+02 62.37 3.10E+02 8.99E+01 8.99E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.73E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.73E+01 13 295.68 292 - 298 1.83E+01 44.16 3.05E+02 3.05E+02 4.20E+01 13 395.68 292 - 298 1.83E+01 44.287 2.58E+02 4.20E+01 13 395.68 292 - 298 1.83E+01 42.87 2.58E+02 2.05E+01 13 395.68 293 - 295 295 295 295 295 295 295 295 295 295 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level |
--|-----|-------------|-----------------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | 5 99.10 98 - 103 4.69E+01 55.05 5.80E+02 4.38E+01 7 103 - 108 6.93E+01 56.44 5.85E+02 5.48E+01 7 143.61 140 - 147 7.87E+01 68.93 7.39E+02 5.48E+01 9 211.75 205 - 207 1.05E+02 101.67 9.89E+02 2.54E+01 10 238.90 234 - 246 4.87E+02 60.88 3.10E+02 2.89E+01 12 241.86 234 - 246 1.40E+02 60.88 3.10E+02 2.89E+01 12 270.57 267 - 273 6.83E+01 44.16 3.05E+02 3.04E+01 13 295.68 292 - 298 1.83E+02 48.57 3.36E+02 3.37E+01 13 295.68 292 - 298 1.83E+02 44.57 3.36E+02 3.37E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 14 309.46 336 - 314 4.19E+01 42.87 2.58E+02 3.36E+01 17 348.34 346 - 357 2.93E+01 33.84 1.25E+02 3.43F+0 13 384 346 - 357 2.93E+01 20.88 7.44E+01 1.42E+01 19 464.39 460 - 472 6.33E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 442 5.00E+01 35.40 1.62E+02 2.76EE+01 19 464.39 460 - 472 6.33E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 442 5.00E+01 35.40 1.62E+02 2.76EE+01 22 549.41 546 552 3.10E+01 32.49 1.62E+02 2.76EE+01 10.30 2.76E±01 16.61E+01 1.61E±01 1.61E±01 22 549.41 546 552 3.10E±01 32.29 8.98E±01 1.61E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 10.30 2.78E±01 1.56E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 10.30 2.78E±01 1.56E±01 1.61E±01 32 579.04 578 - 550 1.28E±01 16.11 3.15E±02 2.76E±01 32 579.34 7790 - 702.53 696 - 713 2.62E±01 16.11 3.15E±02 2.67E±01 33 785.70 596 5713 2.62E±01 16.11 3.15E±01 2.08E±01 33 766.74 765 - 772 2.41E±01 27.77 1.08E±01 27.77 1.08E±02 2.67E±01 33 851.90 899 855 1.63E±01 17.06 4.55E±01 1.24E±01 32 795.34 790 - 799 3.10E±01 27.77 1.08E±01 2.08E±01 1.14E±01 2.774 4.70E±01 1.14E±01 3.75E±01 1.14E±01 2.775 1.08E±01 1.28E±01 1.030 976.44 965 978 1.33E±01 17.06 4.55E±01 1.13E±01 2.08E±01 1.13E±01 2.774 4.70E±01 1.13E±01 2.08E±01 1.13E±01 2.774 4.70E±01 1.13E±01 2.08E±01 1.15E±01 | | 4 | 93.14 | 90 - | 97 | 3.61E+02 | 90:73 | | | | 7 143.61 140 - 147 7.878+01 68.93 7.398+02 2.548+01 8.86.10 182 - 190 1.898+02 72.68 6.958+02 2.548+01 9 211.75 205 - 220 1.058+02 101.67 9.898+02 2.548+01 12 238.90 234 - 246 4.878+02 60.88 3.108+02 2.898+01 12 241.86 234 - 246 4.878+02 60.88 3.108+02 2.898+01 12 270.57 267 - 273 6.888+01 44.16 3.058+02 3.378+01 13 295.68 292 - 298 1.838+01 44.16 3.058+02 3.378+01 14 309.46 306 - 314 4.198+01 42.87 3.368+02 4.208+01 14 309.46 336 - 314 4.198+01 42.87 3.368+02 4.208+01 14 309.46 336 - 314 4.198+01 42.87 3.368+02 2.058+01 14 338.34 336 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38.38 38.38 36 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38.38 38 38 36 - 345 3.818+01 33.84 1.258+02 2.058+01 18 38 38 38 38 36 - 357 2.938+01 2.088 7.448+01 1.428+01 18 38 32.37 346 - 357 2.938+01 2.088 7.448+01 1.428+01 18 38 32.37 346 - 357 2.938+01 2.088 7.448+01 1.428+01 19 464.39 460 - 472 6.238+01 47.91 2.418+02 2.678+01 22 549.41 546 - 552 3.108+01 22.56 7.008+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.618+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.618+01 1.618+01 18 32 579.04 578 - 590 1.288+01 10.30 2.788+01 1.5668+00 18 25 699.72 606 - 615 2.348+02 44.61 1.528+02 2.678+01 32 599.54 578 - 590 1.288+01 10.30 2.788+01 1.5668+00 18 25 699.72 606 - 615 2.348+02 44.61 1.528+02 2.678+01 32 599.54 799.2 31 33 3104+01 22.56 7.008+01 1.618+01 32 599.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 1.147+01 1.147+01 32 7.77 702.53 696 - 713 2.478+01 11.147+01 | | | | 98 - | 103 | 4.69E+01 | 55.05 | 5.80E+02 | | | Record 143 | | | | | 108 | 6.93E+01 | 56.44 | 5.85E+02 | 4.43E+01 | | B | | | | | | 7.87E+01 | 68.93 | 7.39E+02 | | | M | | | | | | 1.89E+02 | 72.68 | 6.95E+02 | | | M 10 238.90 234 - 246 4.87E+02 60.88 3.10E+02 2.89E+01 m 11 241.86 234 - 246 1.40E+02 62.37 3.11E+02 3.06E+02 3.37E+01 13 295.68 239 - 298 1.83E+02 48.57 3.36E+02 3.37E+01 M 15 338.74 336 - 345 3.15E+02 34.37 1.55E+02 2.05E+01 M 16 342.11 336 - 345 3.15E+02 34.37 1.55E+02 1.84E+01 M 17 348.34 346 - 357 2.93E+01 20.88 7.4EE+01 1.42E+01 M 17 348.34 346 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 M 17 348.34 366 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 M 20 477.97 474 - 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506 - 518 1.58E+02 42.18 1.30E | | | | | | 1.05E+02 | 101.67 | 9.89E+02 | 8.18E+01 | | The color of | M | | | | | 4.87E+02 | 60.88 | 3.10E+02 | 2.89E+01 | | 12 | | | | | | 1.40E+02 | 62.37 | 3.41E+02 | 3.04E+01 | | 13 | | | | | | 6.83E+01 | 44.16 | 3.05E+02 | | | 14 | | | | | | | 48.57 | 3.36E+02 | 4.20E+01 | | M 15 338.74 336 - 345 1.15E-02 34.37 1.55E+02 2.05E+01 m 16 342.11 336 - 345 3.81E+01 33.84 1.25E+02 1.84E+01 1.42E+01 1.32E+01 1.32E+01 1.42E+01 1 | | | | | | | 42.787 | 2.58E+02 | 3.36E+01 | | m 16 342.11 336 - 345 3.81E+01 33.84 1.25E+02 1.84E+01 M 17 348.34 346 - 357 2.93E+01 20.88 7.44E+01 1.42E+01 M 18 352.37 346 - 357 3.76E+02 44.51 1.15E+02 1.76E+01 19 464.39 460 - 472 6.23E+01 47.91 2.41E+02 3.72E+01 20 477.97 474 - 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506 - 518 1.58E+02 42.18 1.30E+02 2.78E+01 22 549.41 546 - 552 3.10E+01 22.56 7.00E+01 1.61E+01 23 579.04 578 - 590 1.28E+01 10.30 2.78E+01 8.6E+00 25 609.72 606 - 615 2.34E+02 34.16 1.55E+02 2.67E+01 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 27 702.53 696 - 713 <td>M</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.37</td> <td>1.55E+02</td> <td>2.05E+01</td> | M | | | | | | 34.37 | 1.55E+02 | 2.05E+01 | | M 17 348.34 346- 357 2.93E+01 20.88 7.44E+01 1.42E+01 1.9 464.39 460- 472 6.23E+01 47.91 2.41E+02 1.76E+01 20 477.97 474- 482 5.00E+01 35.40 1.62E+02 2.67E+01 21 511.71 506- 518 1.58E+02 42.18 1.30E+02 2.78E+01 22 549.41 546- 552 3.10E+01 22.56 7.00E+01 1.61E+01 22.56 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 25 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 25 609.72 606- 615 2.34E+02 44.61 1.52E+02 2.67E+01 27.70 2.53 696- 713 2.47E+01 16.11 3.15E+01 9.23E+00 29 728.02 723- 731 3.31E+01 27.74 9.59E+01 1.24E+01 31 768.74 732- 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765- 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790- 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849- 855 1.65E+01 17.53 4.10E+01 1.3E+01 3.5E+01 32.89E+01 1.5EE+01 32.99 795.34 790- 799 3.10E+01 27.77 8.62E+01 1.3EE+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 27.78 6.30E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 32.99 795.34 790- 919 0.5EE+01 17.53 4.10E+01 1.3EE+01 1.3EE+01 32.99 796.44 965- 978 7.14E+01 27.57 1.08E+02 2.12EE+01 35.90 391.61 907- 915 9.05E-01 27.78 6.30E+01 1.3EE+01 1.3EE+01 40.90E+01 1.5EE+01 1.3EE+01 1 | | | | | | | 33.84 | 1.25E+02 | 1.84E+01 | | The color of | | | | | | | 20.88 | 7.44E+01 | 1.42E+01 | | 19 | | | | | | | 44.51 | 1.15E+02 | 1.76E+01 | | 20 | 111 | | | | | | 47.91 | 2.41E+02 | 3.72E+01 | | Section | | | | | | | 35.40 | 1.62E+02 | | | Name | | | | | | | | 1.30E+02 | 2.78E+01 | | M 23 579.04 578 - 590 1.28E+01 10.30 2.78E+01 8.66E+00 2.56E+00 2.5 609.72 606 - 615 2.34E+02 32.29 8.98E+01 1.56E+01 2.5 609.72 606 - 615 2.34E+02 44.61 1.52E+02 2.67E+01 2.6 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 2.7 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 2.9 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 33
851.90 849 - 855 1.65E+01 17.53 4.10E+01 2.00E+01 33 851.90 849 - 855 1.21E+01 11.49 1.74E+01 6.86E+00 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 21.87 4.70E+01 1.13E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 21.87 4.70E+01 1.13E+01 1.3E+01 38 973.00 965 - 978 7.14E+01 25.26 8.66E+01 1.53E+01 1.16E+01 1.16E+01 1.26E+01 41 1.003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.23E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.99E+01 1.23E+01 1.33E+01 41 1003.36 1145 - 1163 1.49E+01 15.91 3.39E+01 1.23E+01 1.51E+01 1.50E+01 | | | | | | | | 7.00E+01 | 1.61E+01 | | m 24 583.85 578 - 590 1.21E+02 32.29 8.98E+01 1.56E+01 25 609,72 606 - 615 2.34E+02 44.61 1.52E+02 2.67E+01 M 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 M 35 <t< td=""><td>M</td><td></td><td></td><td></td><td></td><td>· ·</td><td></td><td>2.78E+01</td><td>8.66E+00</td></t<> | M | | | | | · · | | 2.78E+01 | 8.66E+00 | | 25 | | | | | | | | 8.98E+01 | 1.56E+01 | | M 26 698.53 696 - 713 2.62E+01 16.11 3.15E+01 9.23E+00 m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.4E+01 28 710.67 696 - 713 1.94E+01 18.55 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 34 857.83 856 - 865 1.21E+01 17.53 4.10E+01 1.28E+01 36 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.3E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 39 976.44 965 - 978 1.38E+01 25.26 8.68E+01 1.53E+01 40 984.30 979 - 990 2.98E+01 15.17 2.08E+01 1.18E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.51E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 43 1120.29 1115 - 1128 4.96E+01 15.91 3.39E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 16.37 3.08E+01 9.57E+00 M 48 1232.21 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.4E+01 51 1381.53 1374 1390 2.60E+01 19.20 2.40E+01 1.4E+01 51 1381.53 1374 1390 2.60E+01 19.20 2.40E+01 1.48E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.38E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 4.48E+00 | 111 | | | | | | | 1.52E+02 | 2.67E+01 | | m 27 702.53 696 - 713 2.47E+01 21.15 4.81E+01 1.14E+01 m 28 710.67 696 - 713 1.94E+01 18.55 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 33 851.90 849 - 855 1.65E+01 17.753 4.10E+01 1.28E+01 33 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 <t< td=""><td>M</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.15E+01</td><td>9.23E+00</td></t<> | M | | | | | | | 3.15E+01 | 9.23E+00 | | m 28 710.67 696 - 713 1.94E+01 18.85 5.41E+01 1.21E+01 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 - | | | | | | | | 4.81E+01 | 1.14E+01 | | 29 728.02 723 - 731 3.31E+01 27.74 9.59E+01 2.08E+01 30 734.74 732 - 737 1.63E+01 17.06 4.55E+01 1.24E+01 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 | | | | | | | | 5.41E+01 | 1.21E+01 | | 30 | 111 | | | | | | | 9.59E+01 | 2.08E+01 | | 31 768.74 765 - 772 2.41E+01 27.57 1.08E+02 2.12E+01 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 1.28E+01 11.49 1.74E+01 1.28E+01 11.49 1.74E+01 1.28E+01 11.49 1.74E+01 1.3E+01 1.28E+01 11.49 1.74E+01 1.3E+01 | | | | | | | | 4.55E+01 | 1.24E+01 | | 32 795.34 790 - 799 3.10E+01 26.78 8.40E+01 2.00E+01 33 851.90 849 - 855 1.65E+01 17.53 4.10E+01 1.28E+01 M 34 857.83 856 - 865 1.21E+01 11.49 1.74E+01 6.86E+00 M 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 M 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 17.06 3.90E+01 1.23E+01 M 44 1126.05 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.34E+01 50 1282.37 1277 - 1288 3.14E+01 50 1282.37 1277 - 1288 3.14E+01 50 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 5.66E+00 5 | | | | | | | | 1.08E+02 | 2.12E+01 | | M 34 857.83 856- 865 1.21E+01 11.49 1.74E+01 6.86E+00 m 35 861.01 856- 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907- 915 9.05E+01 27.78 6.30E+01 1.66E+01 m 38 973.00 965- 978 7.14E+01 25.26 8.68E+01 1.53E+01 25.26 8.68E+01 1.53E+01 1.8E+01 38 973.00 965- 978 1.38E+01 24.37 5.12E+01 1.18E+01 40 984.30 979- 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095- 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115- 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115- 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145- 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145- 1163 1.69E+01 13.08 1.89E+01 7.15E+00 M 47 1160.24 1145- 1163 1.40E+01 16.37 3.08E+01 9.57E+00 M 48 1232.21 1230- 1247 1.20E+01 10.95 2.40E+01 9.12E+00 M 48 1237.82 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230- 1247 3.29E+01 10.95 2.40E+01 1.40E+01 50 1282.37 1277- 1288 3.14E+01 20.49 4.80E+01 1.4E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 51 1496.40 1492- 1499 9.15E+00 9.17 7.669E+00 5.66E+00 | | | | | | | | 8.40E+01 | 2.00E+01 | | M 34 857.83 856~ 865 1.21E+01 11.49 1.74E+01 6.86E+00 m 35 861.01 856- 865 3.37E+01 21.87 4.70E+01 1.13E+01 36 911.61 907- 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965- 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965- 978 1.62E+01 24.37 5.12E+01 1.18E+01 M 39 976.44 965-
978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979- 990 2.98E+01 121.35 4.25E+01 1.51E+01 M 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 M 1003.36 1000- 1006 1.70E+01 15.56 3.19E+01 1.08E+01 M 1120.29 1115- 1128 4.96E+01 17.06 3.90E+01 1.23E+01 M 1126.05 1115- 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 1148.36 1145- 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 155.50 1145- 1163 1.69E+01 13.08 1.89E+01 7.15E+00 M 1160.24 1145- 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 1232.21 1230- 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 1237.82 1230- 1247 3.29E+01 10.95 2.40E+01 1.40E+01 50 1282.37 1277- 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374- 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455- 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492- 1499 9.15E+00 9.17 7.669E+00 5.66E+00 5.6 | | | | | | | | 4.10E+01 | 1.28E+01 | | m 35 861.01 856 - 865 3.37E+01 21.87 4.70E+01 1.13E+01 m 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 m 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.3EE+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1155 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1155 - 1128 1.23E+01 15.91 3.39E+01 7.15E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 | M | | | | | | | 1.74E+01 | 6.86E+00 | | 36 911.61 907 - 915 9.05E+01 27.78 6.30E+01 1.66E+01 M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.40E+01 16.37 3.08E+01 9.34E+00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.70E+01</td> <td>1.13E+01</td> | | | | | | | | 4.70E+01 | 1.13E+01 | | M 37 969.44 965 - 978 7.14E+01 25.26 8.68E+01 1.53E+01 m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 m 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | 111 | | | | | | | 6.30E+01 | 1.66E+01 | | m 38 973.00 965 - 978 1.62E+01 24.37 5.12E+01 1.18E+01 m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 10.95 2.40E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 45 1282.00 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 46 155 - 166E+00 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 47 1160.24 1145 - 1163 1.40E+01 19.20 2.40E+01 1.34E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 54 145 - 1468 1.28E+01 55 1460.80 1455 - 1466 3.35E+02 56 1460.80 1455 - 1466 3.35E+02 57 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 57 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1499 9.15E+00 9.17 7.69E+00 5.66E+00 58 1496 1496 1496 1496 1496 1496 1496 1496 | M | | | | | | | 8.68E+01 | 1.53E+01 | | m 39 976.44 965 - 978 1.38E+01 15.17 2.08E+01 7.49E+00 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 | | | | | - | | 24.37 | 5.12E+01 | 1.18E+01 | | 40 984.30 979 - 990 2.98E+01 21.35 4.25E+01 1.51E+01 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 4.80E+01 5.66E+00 | | | | | | | | 2.08E+01 | 7.49E+00 | | 41 1003.36 1000 - 1006 1.70E+01 15.56 3.19E+01 1.08E+01 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 4.57E+00 | 111 | | | | | | | 4.25E+01 | 1.51E+01 | | 42 1098.37 1095 - 1101 1.65E+01 17.06 3.90E+01 1.23E+01 M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 M 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 M 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 M 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 M 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | 3.19E+01 | 1.08E+01 | | M 43 1120.29 1115 - 1128 4.96E+01 22.81 6.56E+01 1.33E+01 m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 m 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 4.80E+01 1.14E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 5.66E+00 | | | | | | | | 3.90E+01 | 1.23E+01 | | m 44 1126.05 1115 - 1128 1.23E+01 15.91 3.39E+01 9.57E+00 M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.49 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | M | | | | | | 22.81 | 6.56E+01 | 1.33E+01 | | M 45 1148.36 1145 - 1163 2.19E+01 13.08 1.89E+01 7.15E+00 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 16.37 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 16.37
16.37 1 | | | | | | | 15.91 | 3.39E+01 | 9.57E+00 | | m 46 1155.50 1145 - 1163 1.69E+01 18.59 3.22E+01 9.34E+00 m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 m 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | 1.89E+01 | 7.15E+00 | | m 47 1160.24 1145 - 1163 1.40E+01 16.37 3.08E+01 9.12E+00 M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | 3.22E+01 | 9.34E+00 | | M 48 1232.21 1230 - 1247 1.20E+01 10.95 2.40E+01 8.05E+00 m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | | 9.12E+00 | | m 49 1237.82 1230 - 1247 3.29E+01 20.49 4.80E+01 1.14E+01 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | | 8.05E+00 | | 50 1282.37 1277 - 1288 3.14E+01 20.40 3.73E+01 1.40E+01 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | | 1.14E+01 | | 51 1381.53 1374 - 1390 2.60E+01 19.20 2.40E+01 1.34E+01 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | 111 | | | | | | | | | | 52 1460.80 1455 - 1466 3.35E+02 39.75 3.06E+01 1.28E+01 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | | | | 53 1496.40 1492 - 1499 9.15E+00 9.17 7.69E+00 5.66E+00 | | | | | | | | | | | JJ 1450,40 1452 1155 3,500 00 00 00 00 00 00 00 00 00 00 00 00 | 4.57E+00 | 1603102-05 SEDIMENT 2016-03-16B | Peak
No. | // 1/ | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |-------------|---------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | 55 | 1590.33 | 1583 - | 1595 | 1.97E+01 | 13.73 | 1.26E+01 | 8.61E+00 | | 56 | 1629,99 | 1626 - | 1633 | 1.27E+01 | 10.00 | 8.59E+00 | 5.76E+00 | | 57 | 1764.39 | 1757 - | 1767 | 5.60E+01 | 14.97 | 0.00E+00 | 0.00E+00 | | 58 | 1776.37 | 1772 - | 1777 | 6.00E+00 | 4.90 | 0.00E+00 | 0.00E+00 | | 59 | 1845.91 | 1840 | 1849 | 1.07E+01 | 8.77 | 4.54E+00 | 4.80E+00 | | 60 | 1985.77 | 1982 - | 1987 | 6.00E+00 | 4.30 | 0.00E+00 | 0.00E+00 | | 61 | 2118.89 | 2114 - | 2122 | 1.20E+01 | 6.93 | 0.00E+00 | 0.00E+00 | | 62 | 2203,33 | 2198 - | 2207 | 1.12E+01 | 10.68 | 9.63E+00 | 6.84E+00 | | 63 | 2217,47 | 2212 - | 2220 | 1.00E+01 | 6.32 | 0.00E+00 | 0.00E+00 | | 64 | 2283.78 | 2277 - | 2286 | 6.17E+00 | 7.81 | 5.67E+00 | 4.95E+00 | | 65 | 2614.36 | 2610 - | 2617 | 3.60E+01 | 12.00 | 0.00E+00 | 0.00E+00 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma #### PEAK WITH NID REPORT Peak Analysis Performed on : 4/13/2016 10:12:24AM Peak Analysis From Channel ; 1 Peak Analysis To Channel : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Peak Match Tolerance : 1.000 keV | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Unce/tainty | Continuum
Counts | Tentative
Nuclide | |-----|-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|----------------------| | | 1 | 46.96 | 44 - | 49 | 47.19 | 1.63E+02 | 62.36 | 6.43E+02 | PB-210 | | Μ | 2 | 74.94 | 72 - | 81 | 75.15 | 2.39E+02 | 77.39 | 9.42E+02 | AM-243 | | m | 3 | 77.63 | 72 - | 81 | 77.85 | 4.97E+02 | 84.36 | 9.22E+02 | TI-44 | | | 4 | 93.14 | 90 | 97 | 93.34 | 3.61E+02 | 90.73 | 1.04E+03 | GA-67 | | | 5 | 99.10 | 98 – | 103 | 99.30 | 4.69E+01 | 55.05 | 5.80E+02 | | | | 6 | 105.27 | 103 - | 108 | 105.47 | 6.93E+01 | 56.44 | 5.85E+02 | EU-155 | | | - | | | | | | | | NP-239 | | | 7 | 143.61 | 140 - | 147 | 143.78 | 7.87E+01 | 68.93 | 7.39E+02 | U-235 | | | 8 | 186.10 | 182 - | 190 | 186.25 | 1.89E+02 | 72.68 | 6.95E+02 | RA-226 | | | 9 | 211.75 | 205 - | 220 | 211.89 | 1.05E+02 | 101.67 | 9.89E+02 | | | М | 10 | 238.90 | 234 - | 246 | 239.03 | 4.87E+02 | 60.88 | 3.10E+02 | PB-212 | | m | 11 | 241.86 | 234 - | 246 | 241.99 | 1,40E+02 | 62.37 | 3.41E+02 | RA-224 | | *** | 12 | 270.57 | 267 - | 273 | 270.68 | €.83≌+01 | 44.16 | 3.05E+02 | | | | 13 | 295.68 | 252 - | 298 | 295.78 | 1.83E+02 | 48.57 | 3.36E+02 | PB-214 | | | 14 | 309.46 | 305 | 314 | 309.55 | 4.19E+01 | 42.87 | 2.58E+02 | | | | | 222 | | | | | | | | 1603102-05 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Tentative
Nuclide | |------|-------------|-----------------|-----------------------|------------|------------------|------------------|-------------------------|---------------------|----------------------| | M | 15 | 338.74 | 336 - | 345 | 338.82 | 1.15E+02 | 34.37 | 1.55E+02 | AC-228 | | m | 16 | 342.11 | 336 - | 345 | 342.18 | 3.81E+01 | 33.84 | 1.25E+02 | | | M | 17 | 348.34 | 346 - | 357 | 348.41 | 2.93E+01 | 20.88 | 7.44E+01 | | | m | 18 | 352.37 | 343 - | 357 | 352.44 | 3.76E+02 | 44.51 | 1.15E+02 | PB-214 | | | 19 | 464.39 | 460 - | 472 | 464.40 | 6.23E+01 | 47.91 | 2.41E+02 | | | | 20 | 477.97 | 474 - | 482 | 477.98 | 5.00E+01 | 35.40 | 1.62E+02 | BE-7 | | | 21 | 511.71 | 506 - | 518 | 511.70 | 1.58E+02 | 42.18 | 1.30E+02 | | | | 22 | 549.41 | 546 - | 552 | 549.39 | 3.10E+01 | 22.56 | 7.00E+01 | | | M | 23 | 579.04 | 578 - | 590 | 579.00 | 1.28E+01 | 10.30 | 2.78E+01 | | | m | 24 | 583.85 | 578 - | 590. | 583.80 | 1.21E+02 | 32.29 | 8.98E+01 | TL-208 | | 4,,, | 25 | 609.72 | 606 - | 615 | 609.66 | 2.34E+02 | 44.61 | 1.52E+02 | BI-214 | | M | 26 | 698.53 | 696 - | 713 | 698.43 | 2.62E+01 | 16.11 | 3.15E+01 | | | m | 27 | 702.53 | 696 - | 713 | 702.43 | 2.47E+01 | 21.15 | 4.81E+01 | NB-94 | | m | 28 | 710.67 | 696 - | 713 | 710.57 | 1.94E+01 | 18.85 | 5.41E+01 | | | 7(1 | 29 | 728.02 | 723 - | 731 | 727.91 | 3.31E+01 | 27.74 | 9.59E+01 | BI-212 | | | 30 | 734.74 | 732 - | 737 | 734.63 | 1.63E+01 | 17.06 | 4.55E+01 | PA-234 | | | 31 | 768.74 | 765 - | 772 | 768.61 | 2.41E+01 | 27.57 | 1.08E+02 | | | | 32 | 795.34 | 790 – | 799 | 795.20 | 3.10E+01 | 26.78 | 8.40E+01 | CS-134 | | | 33 | 851.90 | 849 - | 855 | 851.73 | 1.65E+01 | 17.53 | 4.10E+01 | | | М | 34 | 857.83 | 856 - | 865 | 857.66 | 1.21E+01 | 11.49 | 1.74E+01 | • • • • | | | 35 | 861.01 | 856 - | 865 | 860.84 | 3.37E+01 | 21.87 | 4.70E+01 | TL-208 | | m | 36 | 911.61 | 907 - | 915 | 911.41 | 9.05E+01 | 27.78 | 6.30E+01 | LU-172 | | | 30 | 911.01 | <i>301</i> – | 913 | 211.41 | J. 03D (01 | 27.70 | 0.002.01 | AC-228 | | 3.4 | 37 | 969.44 | 965 - | 978 | 969.22 | 7.14E+01 | 25.26 | 8.68E+01 | AC-228 | | M | | 973.00 | 965 - | 978 | 972.78 | 1.62E+01 | 24.37 | 5.12E+01 | | | m | 38 | | 965 -
965 - | 978 | 976.22 | 1.38E+01 | 15.17 | 2.08E+01 | | | m | 39 | 976.44 | 979 - | 970 | 984.07 | 2.98E+01 | 21.35 | 4.25E+01 | V-48 | | • | 40 | 984.30 | | 1006 | 1003.12 | 1.70E+01 | 15.56 | 3.19E+01 | | | | 41 | 1003.36 | 1000 - | 1101 | 1003.12 | | 17.06 | 3.90E+01 | FE-59 | | | 42 | 1098.37 | 1095 - | 1128 | 1120.01 | 4.96E+01 | 22.81 | 6.56E+01 | BI-214 | | М | 43 | 1120.29 | 1115 - | 1120 | | IOTAGE, P | | | SC-46 | | m | 44 | 1126.05 | 1115 - | 1128 | 1125.76 | 1.23E+01 | 15.91 | 3.39E+01 | | | M | 45 | 1148.36 | 1145 - | 1163 | 1148.06 | 2.19E+01 | 13.08 | 1.89E+01 | | | m | 46 | 1155.50 | 1145 - | 1163 | 1,155.20 | 1.69E+01 | 18.59 | 3.22E+01 | | | m | 47 | 1160.24 | 1145 - | 1163 | 1159.94 | 1.40E+01 | 16.37 | 3.08E+01 | | | М | 48 | 1232.21 | 1230 - | 1247 | 1231.87 | 1.20E+01 | 10.95 | 2.40E+01 | | | m | 49 | 1237.82 | 1230 | 1247 | 1237.49 | 3.29E+01 | 20.49 | 4.80E+01 | CO-56 | | | 50 | 1282.37 | 1277 - | 1288 | 1282.02 | 3.14E+01 | 20.40 | 3.73E+01 | | | | 51 | 1381.53 | 1374 - | 1390 | 1381.14 | 2.60E+01 | 19.20 | 2.40E+01 | | | | 52 | 1460.80
| 1455 - | 1466 | 1460.38 | 3.35E+02 | 39.75 | 3.06E+01 | K-40 | | | 53 | 1496.40 | 1492 - | 1499 | 1495.97 | 9.15E+00 | 9.17 | 7.69E+00 | | | | 54 | 1510.05 | 1507 - | 1512 | 1509.61 | 5.78E+00 | 7.35 | 6.44E+00 | | | | 55 | 1590.33 | 1583 - | 1595 | 1589.86 | 1.97E+01 | 13.73 | 1.26E+01 | | | | 56 | 1629.99 | 1626 - | 1633 | 1629.51 | 1.27E+01 | 10.00 | 8.59E+00 | | | | 57 | 1764.39 | 1757 - | 1767 | 1763.86 | 5.60E+01 | 14.97 | 0.00E+00 | BI-214 | | | 58 | 1776.37 | 1772 - | 1777 | 1775.83 | 6.00E+00 | 4.90 | 0.00E+00 | | | | 59 | 1845.91 | 1840 - | 1849 | 1845.35 | 1.07E+01 | 8.77 | 4.54E+00 | | | | 60 | 1985.77 | 1982 - | 1987 | 1985.17 | 6.00E+00 | 4.90 | 0.00E+00 | | | | 61 | 2118.89 | 2114 - | 2122 | 2118.25 | 1.20E+01 | 6.93 | 0.00E+00 | | | | 62 | 2203.33 | 2198 - | 2207 | 2202.66 | 1.12E+01 | 10.68 | 9.63E+00 | BI-214 | | | 63 | 2217.47 | 2212 - | 2220 | 2216.80 | 1.00E+01 | 6.32 | 0.00E+00 | | | | 64 | 2283.78 | 2277 - | 2286 | 2283.09 | 6.17E+00 | 7.81 | 5.67E+00 | | | | - 65 | 2614.36 | 2610 - | 2517 | 2613.58 | 3.60E+01 | 12.00 | 0.00E+00 | TL-208 | | | . 05 | 2014.00 | 2010 | المالية بت | 2.020100 | 0,000.00 | | - | | 1603102-05 SEDIMENT 2016-03-16B M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/13/2016 10:12:24AM | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |-----|-------------|-----------------|------------------|-------------------------|-----------------------|---------------------------| | | 1 | 46.96 | 1.63E+02 | 62.36 | 1.53E-02 | 1.58E-03 | | M | 2 | 74.94 | 2.39E+02 | 77.39 | 2.36E-02 | 2.09E-03 | | m | 3 | 77.63 | 4.97E+02 | 84.36 | 2.39E-02 | 2.18E-03 | | | 4 | 93.14 | 3.61E+02 | 90.73 | 2.44E-02 | 2.41E-03 | | | 5 | 99.10 | 4.69E+01 | 55.05 | 2.43E-02 | 2.27E-03 | | | 6 | 105.27 | 6.93E+01 | 56.44 | 2.41E-02 | 2.12E-03 | | | 7 | 143.61 | 7.87E+01 | 68.93 | 2.14E-02 | 1.62E-03 | | | 8 | 186.10 | 1.89E+02 | 72.68 | 1.83E-02 | 1.42E-03 | | | 9 | 211.75 | 1.05E+02 | 101.67 | 1.67E-02 | 1.30E-03 | | M | 10 | 238.90 | 4.87E+02 | 60.88 | 1.52E-02 | 1,18E-03 | | m | 11 | 241.86 | 1.40E+02 | 62.37 | 1.51E-02 | 1.17E-03 | | ••• | 12 | 270.57 | 6.83E+01 | 44.16 | 1.38E-02 | 1.04E-03 | | | 13 | 295.68 | 1.83E+02 | 48.57 | 1.28E-02 | 9.73E-04 | | | 14 | 309.46 | 4.19E+01 | 42.87 | 1.23E-02 | 9.54E-04 | | M | 15 | 338.74 | 1.15E+02 | 34.37 | 1.14E-02 | 9.12E-04 | | m | 16 | 342.11 | 3.81E+01 | 33.84 | 1.13E-02 | 9.08E-04 | | M | 1.7 | 348.34 | 2.93E+01 | 20.88 | 1.12E-02 | 8.99E-04 | | m | 18 | 352.37 | 3.76E+02 | 44.51 | 1.10E-02 | 8.93E-04 | | | 19 | 464.39 | 6.23E+01 | 47.91 | 8./ ₄ E-03 | 7.65E-04 | | | 20 | 477.97 | 5.00E+01 | 35.40 | 8.49E-03 | 7.51E-04 | | | 21 | 511.71 | 1.58E+02 | 42.18 | 8.00E-03 | 7.17E-04 | | | 22 | 549.41 | 3.10E+01 | 22.56 | 7.52E-03 | 6.80E-04 | | M | 23 | 579.04 | 1.28E+01 | 10.30 | 7.18E-03 | 6.50E-04 | | m | 24 | 583.85 | 1.21E+02 | 32.29 | 7.13E-03 | 6.45E-04 | | | 25 | 609.72 | 2.34E+02 | 44.61 | 6.87E-03 | 6.20E-04 | | M | 26 | 698.53 | 2.62E+01 | 16.11 | 6.10E-03 | 5.38E-04 | | m | 27 | 702.53 | 2.47E+01 | 21.15 | 6.07E-03 | 5.34E-04 | | m | 28 | 710.67 | 1.94E+01 | 18.85 | 6.01E-03 | 5.28E-04 | | | 29 | 728.02 | 3.31E+01 | 27.74 | 5.89E-03 | 5.14E-04 | | | 30 | 734.74 | 1.63E+01 | 17.06 | 5.84E-03 | 5.08E-04 | | | 31 | 768.74 | 2.41E+01 | 27.57 | 5.61E-03 | 4.80E-04 | | | 32 | 795.34 | 3.10E+01 | 26.78 | 5.45E-03 | 4.59E-04 | | | 33 | 851.90 | 1.65E+01 | 17.53 | 5.14E-03 | 4.12E-04 | | M | 34 | 857.83 | 1.21E+01 | 11.49 | 5.11E-03 | 4.07E-04 | 1603102-05 SEDIMENT 2016-03-16B | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |---|-------------|-----------------|------------------|-------------------------|----------------------|---------------------------| | | | 0.61 01 | 2 375.01 | 21.87 | 5.09E-03 | 4.05E-04 | | m | 35 | 861.01 | 3.37E+01 | 27.78 | 4.85E-03 | 3.72E-04 | | | 36 | 911.61 | 9.05E+01 | 25.26 | 4.60E-03 | 3.61E-04 | | M | 37 | 969.44 | 7.14E+01 | 24.37 | 4.59E-03 | 3.61E-04 | | m | 38 | 973.00 | 1.62E+01 | 15.17 | 4.57E-03 | 3.60E-04 | | m | 39 | 976.44 | 1.38E+01 | 21.35 | 4.54E-03 | 3.59E-04 | | | 40 | 984.30 | 2.98E+01 | 15.56 | 4.47E-03 | 3.55E-04 | | 1 | 41 | 1003.36 | 1.70E+01 | 17.06 | 4.47E-03 | 3.37E-04 | | | 42 | 1098.37 | 1.65E+01 | | 4.14E-03
4.08E-03 | 3.33E-04 | | M | 43 | 1120.29 | 4.96E+01 | 22.81 | 4.06E-03 | 3.32E-04 | | m | 44 | 1126.05 | 1.23E+01 | 15.91 | 3.99E-03 | 3.28E-04 | | M | 45 | 1148.36 | 2.19E+01 | 13.08 | 3.99E-03
3.97E-03 | 3.27E-04 | | m | 46 | 1155.50 | 1.69E+01 | 18.59 | | 3.26E-04 | | m | 47 | 1160.24 | 1.40E+01 | 16.37 | 3.96E-03 | 3.11E-04 | | M | 48 | 1232.21 | 1.20E+01 | 10.95 | 3.77E-03 | 3.09E-04 | | m | 49 | 1237.82 | 3.29E+01 | 20.49 | 3.76E-03 | 3.00E-04 | | | 50 | 1282.37 | 3.14E+01 | 20.40 | 3.65E-03 | | | | 51 | 1381.53 | 2.60E+01 | 19.20 | 3.44E-03 | 2.81E-04 | | | 52 | 1460.80 | 3.35E+02 | 39.75 | 3.29E-03 | 2.69E-04 | | | 53 | 1496.40 | 9.15E+00 | 9.17 | 3.23E-03 | 2.64E-04 | | | 54 | 1510.05 | 5.78E+00 | 7.35 | 3.21E-03 | 2.62E-04 | | | 55 | 1590.33 | 1.97E+01 | 13.73 | 3.08E-03 | 2.50E-04 | | | 56 | 1629.99 | 1.27E+01 | 10.00 | 3.03E-03 | 2.44E-04 | | | 57 | 1764.39 | 5.60E+01 | 14.97 | 2.86E-03 | 2.24E-04 | | | 58 | 1776.37 | 6.00E+00 | 4.90 | 2.34E-03 | 2.22E-04 | | | 59 | 1845.91 | 1.67E+01 | 8.77 | 2.77E-03 | 2.13E-04 | | | 60 | 1985.77 | 6.00E+00 | 4.90 | 2.63E-03 | 2.13E-04 | | | 61 | 2118.89 | 1.20E+01 | 6.93 | 2.52E-03 | 2.13E-04 | | | 62 | 2203.33 | 1.12E+01 | 10.68 | 2.46E-03 | 2.13E-04 | | | 63 | 2217.47 | 1.00E+01 | 6.32 | 2.45E-03 | 2.13E-04 | | | 64 | 2283.78 | 6.17E+00 | 7.81 | 2.41E-03 | 2.13E-04 | | | 65 | 2614.36 | 3.60E+01 | 12.00 | 2.24E-03 | 2.13E-04 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma ## BACKGROUND SUBTRACT REPORT Peak Analysis Performed on : 4/13/2016 10:12:24AM Env. Background File : \\CR-GAMMA1\ApexRoot\Countroom\Data\0000035178,CNF Analysis Report for 1603102-05 | | Peak | Energy | Original | Orig. Area | Ambient | Backgr. | Subtracted | Subtracted | |--------------|------|---------|----------|-------------|------------|----------|------------|------------| | | No. | (keV) | Area | Uncertainty | Background | Uncert. | Area | Uncert. | | - | 1 | 46.96 | 1.63E+02 | 62.36 | 3.04E+01 | 2.01E+01 | 1.32E+02 | 6.55E+01 | | Μ | 2 | 74.94 | 2.39E+02 | 77.39 | • | | 2.39E+02 | 7.74E+01 | | m | 3 | 77.63 | 4.97E+02 | 84.36 | | | 4.97E+02 | 8.44E+01 | | | 4 | 93.14 | 3.61E+02 | 90.73 | 7.72E+01 | 4.69E+00 | 2.84E+02 | 9.09E+01 | | | 5 | 99.10 | 4.69E+01 | 55.05 | • | • | 4.69E+01 | 5.51E+01 | | | 6 | 105.27 | 6.93E+01 | 56.44 | *. | | 6.93E+01 | 5.64E+01 | | | 7 | 143.61 | 7.87E+01 | 68.93 | | | 7.87E+01 | 6.89E+01 | | | 8 | 186.10 | 1.89E+02 | 72.68 | 3.82E+01 | 5.87E+00 | 1.51E+02 | 7.29E+01 | | | 9 | 211.75 | 1.05E+02 | 101.67 | • | • | 1.05E+02 | 1.02E+02 | | М | 10 | 238.90 | 4.87E+02 | 60.88 | 1.06E+01 | 5.71E+00 | 4.76E+02 | 6.11E+01 | | m | 11 | 241.86 | 1.40E+02 | 62.37 | | ** | 1.40E+02 | 6.24E+01 | | | 12 | 270.57 | 6.83E+01 | 44.16 | | | 6.83E+01 | 4.42E+01 | | | 13 | 295.68 | 1.83E+02 | 48.57 | | | 1.83E+02 | 4.86E+01 | | | 14 | 309.46 | 4.19E+01 | 42.87 | | | 4.19E+01 | 4.29E+01 | | М | 15 | 338.74 | 1.15E+02 | 34.37 | | | 1.15E+02 | 3.44E+01 | | m | 16 | 342.11 | 3.81E+01 | 33.84 | | | 3.81E+01 | 3.38E+01 | | M | 17 | 348.34 | 2.93E+01 | 20.88 | | | 2.93E+01 | 2.09E+01 | | m | 18 | 352.37 | 3.76E+02 | 44.51 | 0.00E÷00 | 0.00E+00 | 3.76E+02 | 4.45E+01 | | | 19 | 464.39 | 6.23E+01 | 47.91 | | | 6.23E+01 | 4.79E+01 | | | 20 | 477.97 | 5.00E+01 | 35.40 | | | 5.00E+01 | 3.54E+01 | | | 21 | 511.71 | 1.58E+02 | 42.18 | 5.95E+01 | 4.92E+00 | 9.85E+01 | 4.25E+01 | | | 22 | 549.41 | 3.10E+01 | . 22.56 | | | 3.10E+01 | 2.26至+01 | | М | 23 | 579.04 | 1.28E+01 | 10.30 | | | 1.28E+01 | 1.03E+01 | | m | 24 | 583.85 | 1.21E+02 | 32.29 | 5.06E+00 | 2.98E+00 | 1.16E+02 | 3.24E+01 | | | 25 | 609.72 | 2.34E+02 | 44.61 | 2.01E+00 | 3.84E+00 | 2.32E+02 | 4.48E+01 | | М | 26 | 698.53 | 2.62E+01 | 16.11 | | | 2.62E+01 | 1.61E+01 | | m | 27 | 702.53 | 2.47E+01 | 21.15 | | | 2.47E+01 | 2.12E+01 | | m | 28 | 710.67 | 1.94E+01 | 18.85 | | | 1.94E+01 | 1.89E+01 | | | 29 | 728.02 | 3.31E+01 | 27.74 | | | 3.31E+01 | 2.77E+01 | | | 30 | 734.74 | 1.63E+01 | 17.06 | | | 1.63E+01 | 1.71E+01 | | | 31 | 768.74 | 2.41E+01 | 27:57 | | | 2.41E+01 | 2.76E+01 | | | 32 | 795.34 | 3,10E+01 | 26.78 | | | 3.10E+01 | 2.68E+01 | | | 33 | 851.90 | 1.65E+01 | 17.53 | | | 1.65E+01 | 1.75E+01 | | М | 34 | 857.83 | 1.21E+01 | 11.49 | | | 1.21E+01 | 1.15E+01 | | m | 35 | 861.01 | 3.37E+01 | 21.87 | | | 3.37E+01 | 2.19E+01 | | | 36 | 911.61 | 9.05E+01 | 27.78 | 2.99E+00 | 2.93E+00 | 8.75E+01 | 2.79E+01 | | M | 37 | 969.44 | 7.14E+01 | 25.26 | | | 7.14E+01 | 2.53E+01 | | m | 38 | 973.00 | 1.62E+01 | 24.37 | | · | 1.62E+01 | 2.44E+01 | | m | 39 | 976.44 | 1.38E+01 | 15.17 | | | 1.38E+01 | 1.52E+01 | | | 40 | 984.30 | 2.98E+01 | 21.35 | | | 2.98E+01 | 2.14E+01 | | | 41 | 1003.36 | 1.70E+01 | 15.56 | | | 1.70E+01 | 1.56E+01 | | | 42 | 1098.37 | 1.65E+01 | 17.06 | | | 1.65E+01 | 1.71E+01 | | Μ | 43 | 1120.29 | 4.96E+01 | 22.81 | | | 4.96E+01 | 2.28E+01 | | m | 44 | 1126.05 | 1.2SE+01 | 15.91 | | • | 1.23E+01 | 1.59E+01 | | M | 45 | 1148.36 | 2.19三+01 | 13.08 | • | | 2.19E+01 | 1.31E+01 | | m | 46 | 1155.50 | 1.69E+01 | 18.59 | | | 1.69E+01 | 1.86E+01 | | m | 47 | 1160.24 | 1.40E+01 | 16.37 | | | 1.40E+01 | 1.64E+01 | | Μ | 48 | 1232.21 | 1.20E+01 | 10.95 | | | 1.20E+01 | 1.10E+01 | | m | 49 | 1237.82 | 3.29E+01 | 20.49 | | | 3.29E+01 | 2.05E+01 | | | 50 | 1282.37 | 3.14E+01 | 20.40 | | | 3.14E+01 | 2.04E+01 | | | 51 | 1381.53 | 2.60E+01 | 19.20 | | | 2.60E+01 | 1.92E+01 | | | 52 | 1460.80 | 3.35E+02 | 39.75 | | |
3.35E+02 | 3.97E+01 | | | 53 | 1496.40 | 9.15E+00 | 9.17 | | | 9.15%+00 | 9.17E+00 | | | 54 | 1510.05 | 5.78E+00 | 7.35 | | | 5.78E+00 | 7.35E+00 | 1603102-05 SEDIMENT 2016-03-16B | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|--------------------|-----------------------| | 55 | 1590.33 | 1.97E+01 | 13.73 | | | 1.97E+01 | 1.37E+01 | | 56 | 1629.99 | 1.27E+01 | 10.00 | | | 1.27E+01 | 1.00E+01 | | 57 | 1764.39 | 5.60E+01 | 14.97 | | | 5.60E+01 | 1.50E+01 | | 58 | 1776.37 | 6.00E+00 | 4.90 | | | 6.00E+00 | 4.90E+00 | | 59 | 1845.91 | 1.07E+01 | 8.77 | | | 1.07E+01 | 8.77E+00 | | 60 | 1985.77 | 6.00E+00 | 4.90 | | | 6.00E+00 | 4.90E+00 | | 61 | 2118.89 | 1.20E+01 | 6.93 | | | 1.20E+01 | 6.93E+00 | | 62 | 2203.33 | 1.12E+01 | 10.68 | | | 1.12E+01 | 1.07E+01 | | 63 | 2217.47 | 1.00E+01 | 6,32 | | | 1.00E+01 | 6.32E+00 | | 64 | 2283.78 | 6.17E+00 | 7.81 | | | 6.17E+00 | 7.81E+00 | | 65 | 2614.36 | 3.60E+01 | 12.00 | | | 3.60E+01 | 1.20E+01 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ## AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis Performed on : 4/13/2016 10:12:24AM Ref. Peak Energy : 0.00 Reference Date Peak Ratio : 0.00 : 0.00 Background File Uncertainty : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Corrected Area is: Original * Peak Ratio - Background | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |----------|-------------|-----------------|------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | | 1 | 46.96 | 1.63E+02 | 62.36 | 3.04E+01 | 2.01E+01 | 1.32E+02 | 6.55E+01 | | М | . 2 | 74.94 | 2.39E+02 | 77.39 | | | 2.39E+02 | 7.74E+01 | | m | 3 | 77.63 | 4.97E+02 | 84.36 | | | 4.97E+02 | 8.44E+01 | | ••• | 4 | 93.14 | 3.61E+02 | 90.73 | 7.72E+01 | 4.69E+00 | 2.84E+02 | 9.09E+01 | | | 5 | 99.10 | 4.69E+01 | 55.05 | | | 4.69E+01 | 5.51E+01 | | | 6 | 105.27 | 6.93E+01 | 56.44 | | | 6.93E+01 | 5.64E+01 | | | 7 | 143.61 | 7.87E+01 | 68.93 | | | 7.87E+01 | 6.89E+01 | | | 8 | 186.10 | 1.89E+02 | 72,68 | 3.82E+01 | 5.87E+00 | 1.51E+02 | 7.29E+01 | | | 9 | 211.75 | 1.05E+02 | 101.67 | | | 1.05E+02 | 1.02E+02 | | М | 10 | 238.90 | 4.87E+02 | 60.88 | 1.06E+01 | 5.71E+00 | 4.76E+02 | 6.11E+01 | | m | 11 | 241.86 | 1.40E+02 | 62.37 | | | 1.40E+02 | 6.24E+01 | | 111 | 12 | 270.57 | 6.83E+01 | 44.16 | | | 6.83E+01 | 4.42E+01 | | | 13 | 295.68 | 1.83E+02 | 48.57 | | | 1.83E+02 | 4.86E+01 | | | 14 | 309.46 | 4.19E+01 | 42.87 | | | 4.19E+01 | 4.29E+01 | | М | 15 | 338.74 | 1.15E+02 | 34.37 | | | 1.15E+02 | 3.44E+01 | | m
1,1 | 16 | 342.11 | 3.81E+01 | 33.84 | | | 3.81E+01 | 3.38E+01 | | M | 17 | 348.34 | 2.93E+01 | 20.88 | | | 2.93E+01 | 2.09E+01 | Analysis Report for 1603102-05 | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |---|-------------|--------------------|----------------------|---------------------------|-----------------------|--------------------|----------------------|----------------------| | m | 18 | 352.37 | 3.76E+02 | 44.51 | . 0.00E+00 | C.00E+00 | 3.76E+02 | 4.45E+01 | | | 19 | 464.39 | 6.23E+01 | 47.91 | • | | 6.23E+01 | 4.79E+01 | | | 20 | 477.97 | 5.00E+01 | 35.40 | | 1 m | 5.00E+01 | 3.54E+01 | | | 21 | 511.71 | 1.58E+02 | 42.18 | 5.95E+01 | 4.92E+00 | 9.85E+01 | 4.25E+01 | | | 22 | 549.41 | 3.10E+01 | 22.56 | | • | 3.10E+01 | 2.26E+01 | | M | 23 | 579.04 | 1.28E+01 | 10.30 | | | 1.28E+01 | 1.03E+01 | | m | 24 | 583.85 | 1.21E+02 | 32.29 | 5.06E+00 | 2.98E+00 | 1.16E+02 | 3.24E+01 | | | 25 | 609.72 | 2.34E+02 | 44.61 | 2.01E+00 | 3.84E+00 | 2.32E+02 | 4.48E+01 | | Μ | 26 | 698.53 | 2.62E+01 | 16.11 | • | - | 2.62E+01 | 1.61E+01 | | m | 27 | 702.53 | 2.47E+01 | 21.15 | | . 6.0 | 2.47E+01 | 2.12E+01 | | m | 28 | 710.67 | 1.945+01 | 18.85 | | | 1.94E+01 | 1.89E+01 | | | 29 | 728.02 | 3.31E+01 | 27.74 | | • | 3.31E+01 | 2.77E+01 | | | 30 | 734.74 | 1.63E+01 | 17.06 | | | 1.63E+01 | 1.71E+01 | | | 31 | 768.74 | 2.41E+01 | 27.57 | | | 2.41E+01 | 2.76E+01 | | | 32 | 795.34 | 3.10E+01 | 26.78 | | | 3.10E+01 | 2.68E+01 | | | 33 | 851.90 | 1.65E+01 | 17.53 | | | 1.65E+01 | 1.75E+01 | | Μ | 34 | 857.83 | 1.21E+01 | 11.49 | | | 1.21E+01 | 1.15E+01 | | m | 35 | 861.01 | 3.37E+01 | 21.87 | | | 3.37E+01 | 2.19E+01 | | | 36 | 911.61 | 9.05E+01 | 27.78 | 2.99E+00 | 2.93E+00 | 8.75E+01 | 2.79E+01 | | Μ | 37 | 969.44 | 7.14E+01 | 25.26 | | | 7.14E+01 | 2.53E+01 | | m | 38 | 973.00 | 1.62E+01 | 24.37 | | | 1.62E+01 | 2.44E+01 | | m | 39 | 976.44 | 1.38E+01 | 15.17 | i. | | 1.38E+01 | 1.52E+01 | | | 40 | 984.30 | 2.98E+01 | 21.35 | | | 2.98E+01 | 2.14E+01
1.56E+01 | | | 41 | 1003.36 | 1.70E+01 | 15.56 | | | 1.70E+01
1.65E+01 | 1.71E+01 | | | 42 | | 1.65E+01 | 17.06 | | | 4.96E+01 | 2.28E+01 | | Μ | | 1120.29 | 4.96E+01 | 22.81 | | | 1.23E+01 | 1.59E+01 | | m | | 1126.05 | 1.23E+01 | 15.91 | | | 2.19E+01 | 1.31E+01 | | М | | 1148.36 | 2.19E+01 | 13.08 | | | 1.69E+01 | 1.86E+01 | | m | | 1155.50 | 1.69E+01 | 18.59 | | | 1.40E+01 | 1.64E+01 | | m | | 1160.24 | 1.40E+01 | 16.37 | | | 1.40E+01 | 1.10E+01 | | M | | 1232.21 | 1.20E+01 | 10.95 | | | 3.29E+01 | 2.05E+01 | | m | 49 | | 3.29E+01 | 20.49
20.40 | | | 3.14E+01 | 2.04E+01 | | | 50 | | 3.14E+01 | 19.20 | | | 2.60E+01 | 1.92E+01 | | | | 1381.53 | 2.60E+01 | 39.75 | | | 3.35E+02 | 3.97E+01 | | | | 1460.80 | 3.35E+02
9.15E+00 | 9.17 | | | 9.15E+00 | 9.17E+00 | | | | 1496.40 | 5.78E+00 | 7.35 | | | 5.78E+00 | 7.35E+00 | | | | 1510.05 | 1.97E+01 | 13.73 | | | 1.97E+01 | 1.37E+01 | | | | 1590.33 | 1.97E+01
1.27E+01 | 10.00 | | | 1.27E+01 | 1.00E+01 | | | | 1629.99 | 5.60E+01 | 14.97 | | | 5.60E+01 | 1.50E+01 | | | | 1764.39
1776.37 | 6.00E+00 | 4.90 | | | 6.00E+00 | 4.90E+00 | | | | 1845.91 | 1.07E+01 | 8.77 | | | 1.07E+01 | 8.77E+00 | | | | 1985.77 | 6.00E+00 | 4.90 | | | 6.00E+00 | 4.90E+00 | | | | 2118.89 | 1.20E+01 | 6.93 | | | 1.20E+01 | 6.93E+00 | | | | 2203.33 | 1.12E+01 | 10.68 | | | 1.12E+01 | 1.07E+01 | | | | 2203.33 | 1.00E+01 | 6.32 | | | 1.00E+01 | 6.32E+00 | | | | 2283.78 | 6.17E+00 | 7.81 | | | 6.17E+00 | 7.81E+00 | | | | 2614.36 | 3.60E+01 | 12.00 | | | 3.60E+01 | 1.20E+01 | | | 00 | | 0.000.00 | | | | | | 1603102-05 SEDIMENT 2016-03-16B M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2,000sigma #### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide Name | ld Confidence | Energy (keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|---|----------|-------------------------|-------------------------| | BE-7 | 0.975 | 477.59 | * | 10.42 | · 1.12E+00 | 8.02E-01 | | K-40 | 1.000 | 1460.81 | * | 10.67 | 1.32E+01 | 1.93E+00 | | GA-67 | 0.390 | 93.31 | * | 35.70 | 1.67E+02 | 6.38E+02 | | | | 208.95 | | 2.24 | | | | | | 300.22 | | 16.00 | | | | TL-208 | 0.955 | 583.14 | × | 30.22 | 7.47E-01 | 2.19E-01 | | | i e | 860.37 | * | 4.48 | 2.05E+00 | 1.34E+00 | | | | 2614.66 | * | 35.85 | 6.22E-01 | 2.16E-01 | | PB-210 | 0.967 | 46.50 | * | 4.25 | 2.84E+00 | 1.44E+00 | | BI-212 | 0.680 | 727.17 | ۶ | 11.80 | 6.60E-01 | 5.57E-01 | | | • | 1620.62 | | 2.75 | | | | PB-212 | 0.885 | 238.63 | * | 44.60 | 9.74E-01 | 1.46E-01 | | | | 300.09 | | 3,41 | | | | BI-214 | 0.977 | 609.31 | * | 46.30 | 1.01E+00 | 2.16E-01 | | | | 1120.29 | * | 15.10 | 1.12E+00 | 5.22E-01 | | | | 1764.49 | * | 15.80 | 1.72E+00 | 4.79E-01 | | * 1 | | 2204.22 | * | 4.98 | 1.26E+00 | 1.21E+00 | | PB-214 | 0.967 | 295.21 | * | 19.19 | 1.03E+00 | 2.85E-01 | | | | 351.92 | * | 37.19 | 1.27E+00 | 1.82E-01 | | RA-224 | 0.883 | 240.98 | * | 3.95 | 3.26E+00 | 1.48E+00 | | RA-226 | 0.998 | 186.21 | * | 3.28 | 3.48E+00 | 6.60E+00 | | AC-228 | 0.967 | 338.32 | * | 11.40 | 1.23E+00 | 3.79E-01 | | 1 | | 911.07 | * | 27.70 | 9.03E-01 | 2.97E-01 | | | | 969.11 | * | 16.60 | 1.30E+00 | 4.70E-01 | | AM-243 | 0.989 | 74.67 | * | 66.00 | 2.13E-01 | 7.13E-02 | ^{* =} Energy line found in the spectrum. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma ^{- =} Manually added nuclide. ^{? =} Manually edited nuclide. SEDIMENT 2016-03-16B #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 10:12:24AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
T <u>y</u> pe | Tolerance
Nuclide | |----|--------|--------------|----------------------------|-----------------------------|-----------------------|----------------------| | m | 3 | 77.63 | 1.37926E-01 | 8.50 | Tol. | TI-44 | | | 5 | 99.10 | 1.30349E-02 | 58.66 | D-Esc | | | | 6 | 105.27 | 1.92526E-02 | 40.71 | Tol | EU-155 | | | | | | | _ | NP-239 | | | 7 | 143.61 | 2.18713E-02 | 43.78 | Tol. | U-235 | | | 9 | 211.75 | 2.92556E-02 | 48.27 | | | | | 12 | 270.57 | 1.89794E-02 | 32.31 | | | | | 14 | 309.46 | 1.16252E-02 | 51.22 | _ | | | m | 16 | 342.11 | 1.05713E-02 | 44.46 | Sum | | | M | 17 | 348.34 | 8.14869E-03 | 35.59 | | | | | 19 | 464.39 | 1.72936E-02 | 38.48 | | | | | 21 | 511.71 | 2.73688E-02 | 21.55 | | | | | 22 | 549.41 | 8.61111E-03 | 36.39 | | | | M | 23 | 579.04 | 3.55030E-03 | 40.28 | | | | M | 26 | 698.53 | 7.26792E-03 | 30.78 | 0 | | | m | 27 | 702.53 | 6.85775E-03 | 42.84 | Sum | | | m | 28 | 710.67 | 5.39317E-03 | 48.56 | m – 1 | 77 72 A | | | 30 | 734.74 | 4.51567E-03 | 52.47 | Tol. | PA-234 | | | 31 | 768.74 |
6.69872E-03 | 57.16 | C | | | | 32 | 795.34 | 8.60921E-03 | 43.20 | Sum | | | | 33 | 851.90 | 4.58709E-03 | 53.07 | Sum | • | | M | 34 | 857.83 | 3.35604E-03 | 47.55 | | | | m | 38 | 973.00 | 4.50222E-03 | 75.19 | | | | m | 39 | 976.44 | 3.82767E-03 | 55.03 | m o 1 | V-48 | | | 40 | 984.30 | 8.26797E-03 | 35.87 | Tol. | V-40 | | | 41 | 1003.36 | 4.73485E-03 | 45.66 | Sum | | | | 42 | 1098.37 | 4.58333E-03 | 51.69 | Sum | | | m | 44 | 1126.05 | 3.41036E-03 | 64.78 | | | | M | 45 | 1148.36 | 6.08893E-03 | 29.83
54.89 | Sum | | | m | 46 | 1155.50 | 4.70521E-03 | 58.36 | . Sum | | | m | 47 | 1160.24 | 3.89615E-03 | 45.47 | | | | M | 48 | 1232.21 | 3.34641E-03 | 31.19 | Tol. | CO-56 | | m | 49 | 1237.82 | 9.12701E-03 | 32.52 | 101. | CO 30 | | | 50 | 1282.37 | 8.71111E-03 | 36.91 | | | | | 51 | 1381.53 | 7.22588E-03 | 50.06 | Sum | | | | 53 | 1496.40 | 2.54274E-03
1.60494E-03 | 63.59 | Sun | | | | 54 | 1510.05 | | 34.86 | | | | | 55 | 1590.33 | 5.47008E-03 | 39.35 | | | | | 56 | 1629.99 | 3.52941E-03 | 40.82 | | | | | 58 | 1776.37 | 1.66667E-03
2.98077E-03 | 40.89 | | | | | 59 | 1845.91 | 1.66667E~03 | 40.82 | | | | | 60 | 1985.77 | T * 00001E-03 | 40.02 | | | 1603102-05 SEDIMENT 2016-03-16B | Peak No. | Energy (keV) | Feak Size (CPS) | Peak CPS (%) Uncertainty | Peak
Type | Tolerance
Nuclide | | |----------|--------------|-----------------|--------------------------|--------------|----------------------|--| | 61 | 2118.89 | 3.3333E-03 | 28.87 | | | | | 63 | 2217.47 | 2.77778E-03 | 31.62 | | | | | 64 | 2283.78 | 1.71296E-03 | 63.33 | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### IDENTIFIED NUCLIDES | Nuclide
Name | ld
Confidence | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |-----------------|------------------|-----------------|----|----------|-------------------------|-------------------------| | BE-7 | 0.97 | 477.59 | * | 10.42 | 1.12E+00 | 8.02E-01 | | K-40 | 1.00 | 1460.81 | * | 10.67 | 1.32E+01 | 1.93E+00 | | GA-67 | 0.39 | 93.31 | * | 35.70 | 1.67E+02 | 6.38E+02 | | 011 0. | | 208.95 | | 2.24 | | | | | | 300.22 | | 16.00 | | | | TL-208 | 0.95 | 583.14 | * | 30.22 | 7.47E-01 | 2.19E-01 | | 1.2 2 4 | | 860.37 | * | 4.48 | 2.05E+00 | 1.34E+00 | | | • | 2614.66 | * | 35.85 | 6.22E-01 | 2.16E-01 | | PB-210 | 0.96 | 46.50 | * | 4.25 | 2.84E+00 | 1.44E+00 | | BI-212 | 0.68 | 727.17 | * | 11.80 | 6.60E-01 | 5.57E-01 | | | | 1620.62 | | 2.75 | | | | PB-212 | 0.88 | 238.63 | * | 44.60 | 9.74E-01 | 1.46E-01 | | | 1 | 300.09 | | 3.41 | | | | BI-214 | 0.97 | 609.31 | * | 46.30 | 1.01E+00 | 2.16E-01 | | | | 1120.29 | * | 15.10 | 1.12E+00 | 5.22E-01 | | | | 1764.49 | * | 15.20 | 1.72E+00 | 4.79E-01 | | | | 2204.22 | ٠. | . 4.98 | 1.26E+00 | 1.21E+00 | | PB-214 | 0.96 | 295.21 | * | 19.19 | 1.03E+00 | 2.85E-01 | | | | 351.92 | * | 37.19 | 1.27E+00 | 1.82E-01 | | RA-224 | 0.88 | 240.98 | * | 3.95 | 3.26E+00 | 1.48E+00 | | RA-226 | 0.99 | 186.21 | * | 3.28 | 3.48E+00 | 6.60E+00 | | AC-228 | 0.96 | 338.32 | * | 11.40 | 1.23E+00 | 3.79E-01 | | • * * | | 911.07 | * | 27.70 | 9.03E-01 | 2.97E-01 | | | | 969.11 | * | 16.60 | 1.30E+00 | 4.70E-01 | | AM-243 | 0.98 | 74.67 | * | 66.00 | 2.13E-01 | 7.13E-02 | 1603102-05 SEDIMENT 2016-03-16B - * = Energy line found in the spectrum. - = Manually added nuclide. - ? = Manually edited nuclide. - @ = Energy line not used for Weighted Mean Activity Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma ## INTERFERENCE CORRECTED REPORT | Nuclide
Name | Nuclide
Id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |-----------------|-----------------------------|------------------------------------|------------------------------------|----------| | BE-7 | 0.975 | 1.12E+00 | 8.02E-01 | | | K-40 | 1.000 | 1.32E+01 | 1.93E+00 | | | GA-67 | 0.390 | 1,67E+02 | 6.38E+02 | | | TL-208 | 0.955 | 7.01E-01 | 1.53E-01 | | | PB-210 | 0.967 | 2.84E+00 | 1.44E+00 | | | BI-212 | 0.680 | 6.60E-01 | 5.57E-01 | | | PB-212 | 0.885 | 9.74E-01 | 1.46E-01 | | | BI-214 | 0.977 | 1.13E+00 | 1.82E-01 | | | PB-214 | 0.967 | 1.20E+00 | 1.53E-01 | | | RA-224 | 0.883 | 3.26E+00 | 1.48E+00 | | | RA-226 | 0.998 | 3.48E+00 | 6.60E+00 | | | AC-228 | 0.967 | 1.08E+00 | 2.09E-01 | | | AM-243 | 0.989 | 2.13E-01 | 7.13E-02 | | - ? = nuclide is part of an undetermined solution - X = nuclide rejected by the interference analysis - @ = nuclide contains energy lines not used in Weighted Mean Activity Errors quoted at 2.000sigma 1603102-05 SEDIMENT 2016-03-16B ### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 10:12:24AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----|----------------|--------------|-----------------|-----------------------------|--------------|----------------------|--| | m | 3 | 77.63 | 1.37926E-01 | 8.50 | Tol. | TI-44 | | | | 5 | 99.10 | 1.30349E-02 | 58.66 | D-Esc | | | | | 6 | 105.27 | 1.92526E-02 | 40.71 | Tol. | EU-155 | | | | | | | | | NP-239 | | | | 7 | 143.61 | 2.18713E-02 | 43.78 | Tol. | U-235 | | | | 9 | 211.75 | 2.92556E-02 | 48.27 | | | | | | 12 | 270.57 | 1.89794E-02 | 32.31 | | | | | | 14 | 309.46 | 1.16252E-02 | 51.22 | | | | | m | 16 | 342.11 | 1.05713E-02 | 44.46 | Sum | | | | М | 17 | 348.34 | 8.14869E-03 | 35.59 | | | | | | 19 | 464.39 | 1.72936E-02 | 38.48 | | | | | | 21 | 511.71 | 2.73698E-02 | 21.55 | | | | | | .22 | 549.41 | 8.61111E-03 | 36.39 | | | | | M | 23 | 579.04 | 3.55030E-03 | 40.28 | | | | | М | 26 | 698.53 | 7.26792E-03 | 30.78 | | | | | m | 27 | 702.53 | 6.85775E-03 | 42.84 | Sum | | | | m | 28 | 710.67 | 5.39317E-03 | 48.56 | | | | | | 30 | 734.74 | 4.51567E-03 | 52.47 | Tol. | PA-234 | | | | 31 | 768.74 | 6.69872E-03 | 57.16 | | | | | | 32 | 795.34 | 8.60921E-03 | 43.20 | Sum | | | | | 33 | 851.90 | 4.58709E-03 | 53.07 | Sum | | | | M | 34 | 857.83 | 3.35604E-03 | 47.55 | | | | | m | 38 | 973.00 | 4.50222E-03 | 75.19 | | | | | m | 39 | 976.44 | 3.82767E-03 | 55.03 | | | | | | 40 | 984.30 | 8.26797E-03 | 35.87 | Tol. | V-48 | | | | 41 | 1003.36 | 4.73485E-03 | 45.66 | | | | | | 42 | 1098.37 | 4.58333E-03 | 51.69 | Sum | | | | m | 44 | 1126.05 | 3.41036E-03 | 64.78 | | | | | M | 45 | 1148.36 | 6.08893E-03 | 29.83 | | | | | m | 46 | 1155.50 | 4.70521E-03 | 54.89 | Sum | | | | m | 47 | 1160.24 | 3.89615E-03 | 58.36 | | | | | M | 48 | 1232.21 | 3.34641E-03 | 45.47 | | | | | m | 49 | 1237.82 | 9.12701E-03 | 31.19 | Tol. | CO-56 | | | | 50 | 1282.37 | 8.71111E-03 | 32.52 | | | | | | 51 | 1381.53 | 7.22588E-03 | 36.91 | | | | | | - - | | | | | | | 1603102-05 SEDIMENT 2016-03-16B | Peak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | |----------|--------------|-----------------|-----------------------------|--------------|----------------------| | 53 | 1496.40 | 2.54274E-03 | 50.06 | Sum | | | 54 | 1510.05 | 1.60494E-03 | 63.59 | | | | 55 | 1590.33 | 5.47008E-03 | 34.86 | | | | 56 | 1629.99 | 3.52941E-03 | 39.35 | | | | 58 | 1776.37 | 1.66667E-03 | 40.82 | | | | 59 | 1845.91 | 2,98077E-03 | 40.89 | | | | 60 | 1985.77 | 1.66667E-03 | 40.82 | | | | 61 | 2118.89 | 3.33333E-03 | 28.87 | | | | 63 | 2217.47 | 2.77778E-03 | 31.62 | | | | 64 | 2283.78 | 1.71296E-03 | 63.33 | | | M = First peak in a multiplet region ### NUCLIDE MDA REPORT | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|-----------------|--------------------|---|----------------|-------------------------|----------------------------|-------------------------|--| | | BE-7 | 477.59 | * | 10.42 | 1.12E+00 | 1.26E+00 | 1.26E+00 | | | | NA-22 | 1274.54 | | 99.94 | 2.47E-02 | 9.85E-02 | 9.85E-02 | | | | NA-24 | 1368.53 | | 99.99 | 4.71E+11 | 1.19E+12 | 2.49E+12 | | | | 3.20 – 1 | 2754.09 | | 99.86 | 1.61E+11 | | 1.19E+12 | | | | AL-26 | 1808.65 | | 99,76 | -1.09E-02 | 6.49E-02 | 6.49E-02 | | | - | K-40 | 1460.81 | * | 10.67 | 1.32E+01 | 1,12E+00 | 1.12E+00 | | | | @ AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | i.00E+26 | | | - | TI-44 | 67.88 | | 94.40 | -2.01E-02 | 6.97E-02 | 6.97E-02 | | | - | SC-46 | 78.34
889.25 | | 96.00
99.98 | 1.84E-01
1.21E-02 | 1.09E-01 | 8.65E-02
1.09E-01 | | | - | V-48 | 1120.51
983.52 | | 99.99 | 2.55E-01
1.37E-01 | 3.13E-01 | 1.92E-01
3.13E-01 | | | F | CR-51 | 1312.10
320.08 | | 97.50
9.83 | -1.73E-01
-2.67E-01 | 1.33E+00 | 3.32E-01
1.33E+00 | | | - | MN-54 | 834.83 | | 99.97 | -7.39E-04 | 9.27E-02 | 9.27E-02 | | | ŀ | CO-56 | 846.75 | | 99.96 | -2.26E-02 | 1.05E-01 | 1.05E-01 | | | | | 1037.75
1238.25 | | 14.03
67.00 | -3.63E-01
1.64E-01 | • | 7.68E-01
2.64E-01 | | m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma 1603102-05 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-----|-----------------
--|----------------|-------------------------|----------------------------|-------------------------|---| | | GO 5.6 | 1771 46 | 15.51 | -2.36E-01 | 1.05E-01 | 4.82E-01 | | | | CO-56 | 1771.40
2598.48 | 16.90 | -2.36E-01 | 1.000E-01 | 3.43E-01 | | | + | CO-57 | 122.06 | 85.51 | • | 5.97E-02 | 5.97E-02 | | | • | | 136.48 | 10.60 | 6.40E-03 | - · · · | 4.95E-01 | | | + | CO-58 | 810.76 | 99.40 | -4.82E-02 | 1.03E-01 | 1.03E-01 | | | + | FE-59 | 1099.22 | 56.50 | 5.48E-02 | 2.72E-01 | 2.72E-01 | | | | | 1291.56 | 43.20 | 1.53E-01 | | 3.54E-01 | | | + | CO-60 | 1173.22 | 100.00 | -1.41E-02 | 9.43E-02 | 9.43E-02 | | | | | 1332.49 | 100.00 | -2.91E-02 | | 9.71E-02 | | | + | ZN-65 | 1115.52 | 50.75 | -6.24È-03 | 1.88E-01 | 1.88E-01 | | | + | GA-67 | 93.31 | * 35.70 | 1.67E+02 | 8.35E+01 | ð.35E+01 | | | | | 208.95 | 2.24 | 7.93E+02 | | 1.12E+03 | | | | | 300.22 | 16.00 | 4.70E+01 | 0.677 | 1.66E+02 | | | + | SE-75 | 121.11 | 16.70 | -3.08E-02 | 9.67E-02 | 3.35E-01 | | | | | 136.00 | 59.20 | 1.72E-02 | | 9.67E-02
1.25E-01 | | | | | 264.65 | 59.80
25.20 | 2.96E-02
1.19E-01 | | 3.33E-01 | | | | | 279.53
400.65 | 11.40 | -1.82E-01 | | 7.31E-01 | | | + | RB-82 | 776.52 | 13.00 | 2.78E-01 | 1.30E+00 | 1.30E+00 | | | + | RB-83 | 520.41 | 46.00 | -2.49E-02 | 1.73E-01 | 1.73E-01 | | | | 112 00 | 529.64 | 30.30 | -1.74E-01 | | 2.88E-01 | | | | | 552.65 | 16.40 | -5.89%-02 | ÷ | 5.52E-01 | | | + | KR-85 | 513.99 | 0.43 | 3.34E+01 | 2.35E+01 | 2.35E+01 | • | | + | SR-85 | 513.99 | 99.27 | 1.96E-01 | 1.38E-01 | 1.38E-01 | 5 | | + | Y-88 | 898.02 | 93.40 | 2.41E-02 | 7.89E-02 | 1.23E-01 | | | | | 1836.01 | 99.38 | -1.40E-02 | | 7.89E-02 | | | + | NB-93M | 16.57 | 9.43 | -2.34E+01 | 8.01E+01 | 8.01E+01 | | | + | NB-94 | 702.63 | 100.00 | -2.68E-03 | 9.06E-02 | 9.06E-02 | | | | | 871.10 | 100.00 | 1.33E-02 | | 9.23E-02 | | | + | NB-95 | 765.79 | 99.81 | 3.61E-03 | 1.83E-01 | 1.83E-01 | | | + | NB-95M | 235.69 | 25.00 | 9.81E+01 | 8.38E+01 | 8.38E+01 | | | + | ZR-95 | 724.18 | 43.70 | 9.85E-03 | 1.87E-01 | | | | | | 756.72 | 55.30 | -6.74E-03 | 5 5400 | 1.87E-01 | | | . + | MO-99 | 181.06 | 6.20 | 2.67E+01 | 6.51E+02 | | | | | | 739.58 | 12.80 | 3.48E+01 | | 6.51E+02
1.84E+03 | | | | DII 102 | 778.00 | 4.50
89.00 | -5.81E+02
5.33E-02 | 1.29E-01 | | | | + | RU-103 | 497.08 | 9.80 | 8.84E-02 | 8.15E-01 | | | | + | RU-106 | 621.84 | 89.90 | -1.02E-02 | 8.19E-02 | | | | + | AG-108M | * The state of | | | 0.195 02 | 9.97E-02 | | | | | 614.37
722.95 | 90.40
90.50 | 2.10E-02
6.35E-03 | | 9.22E-02 | | | + | CD-109 | 88.03 | 3.72 | -1.09E+00 | | | | | + | AG-110M | | 93.14 | -4.92E-02 | | | | | 1 | AG-TIOM | 677.61 | 10.53 | -4.21E-01 | | 6.96E-01 | | | | | 706.67 | 16.46 | -4.41E-01 | | 5.22E-01 | | | | | 763.93 | 21.98 | 1.69E-02 | | 4.42E-01 | | | | | 884.67 | 71.63 | -4.41E-02 | | 1.27E-01 | | | | | 1384.27 | 23.94 | 1.01E-02 | | 4.09E-01 | | Analysis Report for 1603102-05 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide idDA
(pCi/grams) | Line MDA
(pCi/grams) | | |----|-----------------|------------------|----------------|-------------------------|-----------------------------|-------------------------|---| | + | CD-113M | 263.70 | 0.02 | -1.67E+00 | 2.71E+02 | 2.71E+02 | | | + | SN-113 | 255.12 | 1.93 | 5.67E-02 | 1.22E-01 | 3.92E+00 | | | Т | 2N-112 | 391.69 | 64.90 | -9.33E-02 | 1.222 01 | 1.22E-01 | | | + | TE123M | 159.00 | 84.10 | 1.11E-02 | 7.31E-02 | 7.31E-02 | | | + | SB-124 | 602.71 | 97.87 | -4.95E-02 | 1.05E-01 | 1.05E-01 | | | Т | 20-124 | 645.85 | 7.26 | -4.26E-01 | _ 1 0 0 0 0 0 - | 1.39E+00 | | | | | 722.78 | 11.10 | 7.13E-02 | | 1.03E+00 | | | | | 1691.02 | 49.00 | -4.85E-02 | | 2.10E-01 | | | + | I-125 | 35.49 | 6.49 | -1.47E-01 | 2.77E+00 | 2,77E+00 | | | + | SB-125 | 176.33 | 6.89 | -2.98E-01 | 2.39E-01 | 7.29E-01 | | | | | 427.89 | 29.33 | -8.99E-02 | | 2.39E-01 | | | | | 463.38 | 10.35 | 2.29E-01 | | 8.20E-01 | | | | | 600.56 | 17.80 | 2.51E-01 | | 4.78E-01 | | | | | 635.90 | 11.32 | -1.94E-01 | 0 75- 01 | 6.84E-01 | | | + | SB-126 | 414.70 | 83.30 | -4.71E-02 | 3.76E-01 | 3.99E-01 | | | | | 666.33 | 99.60 | -2.89E-01 | | 3.76E-01 | | | | | 695.00 | 99.60 | 9.05E-02
-8.12E-02 | | 3.80E-01
7.05E-01 | | | 4. | SN-126 | 720.50
87.57 | 53.80
37.00 | -1.05E-01 | 1.70E-01 | 1.70E-01 | | | + | | 473.00 | 25.00 | -5.77E±01 | 3.41E+01 | 4.15E+01 | | | + | SB-127 | 685.20 | 35.70 | 6.12E+00 | J. 41B. O1 | 3.41E+01 | , | | | | 783.80 | 14.70 | 6.41E÷01 | | 9.54E+01 | | | + | I-129 | 29.78 | 57.00 | -1.04E-01 | 3.95E-01 | 3.95E-01 | | | • | . 4 113 | 33.60 | 13.20 | 1.11E-01 | | 1.16E+00 | | | | | 39.58 | 7.52 | -1.40E-01 | | 1.36E+00 | | | + | I-131 | 284.30 | 6.05 | 2.93E-01 | 7.95E-01 | 1.28E+01 | | | | | 364.48 | 81.20 | -5.38E-02 | | 7.95E-01 | | | | | 636.97 | 7.26 | -4.09E+00 | | 1.15E+01 | | | | | 722.89 | 1.80 | 3.52E+00 | 0 647.01 | 5.10E+01 | | | + | TE-132 | 49.72 | 13.10 | 1.65E+01 | 2.64E+01 | 2.05E+02 | | | | 100 | 228.16 | 88.00 | -3.68E+00 | 1 66E-01 | 2.64E+01
1.76E-01 | | | + | BA-133 | 81.00 | 33.00 | -6.96E-02 | 1.66E-01 | 3.66E-01 | | | | | 302.84 | 17.80
60.00 | 1.49E-01
-1.24E-03 | | 1.66E-01 | | | + | I-133 | 356.01
529.87 | 86.30 | -2.27E+08 | 3.75E+08 | 3.75E+08 | | | + | XE-133 | 81.00 | 38.00 | -2.38E+00 | 6.03E+00 | 6.03E+00 | | | + | CS-134 | 563.23 | 8.38 | -3.69E-01 | 8.60E-02 | 8.22E-01 | | | 41 | CD 134 | 569.32 | 15.43 | -9.29E-02 | ***** | 4,94E-01 | | | | • | 604.70 | 97.60 | 9.39E-03 | | 8.60E-02 | | | | | 795.84 | 85.40 | 8.705-02 | | 1.18E-01 | | | | | 801.9ა | 8.73 | -6.47E-01 | | 8.49E-01 | | | + | CS-135 | 268.24 | 16.00 | 9.96E-03 | 4.44E-01 | 4.44E-01 | | | + | @ I-135 | 1131.51 | 22,50 | 1.00E+26 | 1.00E+26 | | | | | @ | 1260.41 | 28.60 | 1.00E+26 | | 1.00E+26 | | | | 0 | 1678.03 | 9.54 | 1.00E+26 | | 1.00E+26 | | | + | CS-136 | 153.22 | 7.46 | 1.59E+00 | 3.33E-01 | | | | | | 163.89 | 4.61 | -4.93E-01 | | 4.63E+00 | | | | | 176.55 | 13.56 | -3.61E-01 | | 1.61E+00 | | | | | 273.65 | 12.66 | -1.69E÷00 | | 2.38E+00 | | 1603102-05 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-----|------------------|--|--|--|----------------------------|--|--| | | CS-136 | 340.57
818.50
1048.07
1235.34 | 48.50
99.70
79.60
19.70 | 1.38E+00
-5.58E-02
1.05E-01
1.43E+00 | 3.33E-01 | 7.59E-01
3.33E-01
4.86E-01
2.94E+00 | | | + | CS-137 | 661.65 | 85.12 | 1.27E-02 | 1.00E-01 | 1.00E-01 | | | + | LA-138 | 788.74 | 34.00 | 8.61E-02 | 1.45E-01 | 2.57E-01 | | | + | CE-139 | 1435.80
165.85 | 66.00
80.35 | 3.31E-03
-4.97E-05 | 7.11E-02 | 1.45E-01
7.11E-02 | | | + | BA-140 | 162.64 | 6.70 | -1.60E+00 | 1.36E+00 | 3.30E+00 | | | + | I.A-140 | 304.84
423.70
437.55
537.32
328.77 | 4.50
3.20
2.00
25.00
20.50 | -6.28E-01
3.95E+00
5.82E+00
2.17E-01
-6.56E-02 | 4.42E-01 | 6.22E+00
1.01E+01
1.68E+01
1.36E+00
1.59E+00 | | | | CE-141 | 487.03
815.85
1596.49
145.44 | 45.50
23.50
95.49
48.40 | -3.23E-02
-1.47E-01
-3.91E-02
1.18E-01 | 1.99E-01 | 6.96E-01
1.49E+00
4.42E-01
1.99E-01 | | | + | CE-141
CE-143 | 57.36 | 11.80 | 1,28E+05 | 2.80E+05 | 7.01E+05 | | | т | | 293.26
664.55 | 42.00
5.20 | 2.16E+04
1.12E+06 | | 2.80E+05
2.12E+06 | | | ;+ | CE-144 | 133.54 | 10.80 | -1.38E-01 | 4.77E-C1
8.06E-C2 | 4.77E-01
2.11E-01 | | | + | PM-144
PM-145 | 476.78
618.01
696.49
36.85 | 42.00
98.60
99.49
21.70 | 1.63E-01
-1.71E-02
2.40E-02
-3.52E-01 | 2.98E-01 | 8.06E-02
9.02E-02
5.38E-01 | | | | | 37.36
42.30
72.40 | 39.70
15.10
2.31 |
1.77E-01
-1.47E-01
-6.14E+00 | | 2.98E-01
5.88E-01
3.07E+00 | | | + | PM-146 | 453.90
735.90
747.13 | 39.94
14.01
13.10 | -4.72E-02
2.74E-02
-1.81E-01 | 1.83E-01 | 1.83E-01
5.87E-01
5.83E-01 | | | + | ND-147 | 91.11
531.02 | 13.10 | -4.49E-01
-1.91E+00 | | 1.33E+00
3.07E+00 | | | ÷ | PM-149 | 285.90 | 3.10 | 5.53E+03 | 1.40E+04 | 1.40E+04 | | | + | EU-152 | 121.78
244.69
344.27
778.89 | 20.50
5.40
19.13
9.20 | -7.12E-03
1.73E-01
-6.68E-01
-4.90E-01 | 2.33E~01 | 2.33E-01
1.50E+00
3.33E-01
7.80E-01 | | | . • | | 964.01
1085.78
1112.02
1407.95 | 10.40
7.22
9.60
14.94 | 2.39E-01
-1.23E-01
9.83E-02
-2.24E-01 | | 1.10E+00
1.32E+00
1.01E+00
6.02E-01 | | | + | GD-153 | 97.43
103.18 | 31.30
22.20 | -2.30E-01
-2.04E-01 | 1.65E-01 | 1.65E-01
2.23E-01 | | | + | EU-154 | 123.07
723.30
873.19
996.32 | 40.50
19.70
11.50
10.30 | 2.10E-02
2.93E-02
-2.58E-01
2.49E-01 | 1.20E-01 | | | 1603102-05 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |----------------|-----------------|--------------------|---|----------------|-------------------------|----------------------------|-------------------------|---| | | | | | | | · · · | | | | ÷ | EU-154 | 1004.76
1274.45 | | 17.90
35.50 | 4.65E-02
6.87E-02 | 1.20E-01 | 5.35E-01
2.73E-01 | | | + | EU-155 | 86.50 | | 30.90 | -9.26E-03 | 2.08E-01 | 2.08E-01 | | | | 456 | 105.30 | | 20.70 | 1.42E-01
1.27E-01 | 2.75E+00 | 2.36E-01
2.75E+00 | | | + | EU-156 | 811.77
1153.47 | | 10.40
7.20 | -6.80E-02 | 2.756+00 | 5.41E+00 | | | | | 1230.71 | | 8.90 | 3.99E-01 | | 4.27E+00 | | | + | HO-166M | 184.41 | | 72.60 | 1.54E-01 | 9.54E-02 | 9.54E-02 | | | | | 280.45 | | 29.60 | 2.96E-02 | | 2.42E-01 | | | | | 410.94 | | 11.10 | 8.81E-02 | · | 6.59E-01
1.53E-01 | | | + | TM-171 | 711.69
66.72 | | 54.10
0.14 | 3.14E-02
-5.21E+01 | 4.94E+01 | 4.94E+01 | | | + | HF-172 | 81.75 | | 4.52 | -2.72E-01 | 4.40E-01 | 1.29E+00 | | | ' | 111 172 | 125.81 | | 11.30 | -1.26E-01 | " | 4.40E-01 | | | + | LU-172 | 181.53 | | 20.60 | -6.23E-02 | 2.83E+00 | 4.65E+00 | | | | | 810.06 | | 16.63 | -1.13E+00 | | 8.89E+00 | | | | | 912.12 | | 15.25 | 3.10E+01 | | 1.76E+01 | | | | r rr 172 | 1093.66
100.72 | | 62.50
5.24 | 6,67E-01
5.67E-01 | 3.61E-01 | 2.83E+00
9.30E-01 | | | + | LU-173 | 272.11 | | 21.20 | 2.23E-02 | 3,015 0. | 3.61E-01 | | | + | HF-175 | 343.40 | | 84.00 | -1.40E-01 | 1,04E-01 | 1.04E-01 | | | + | LU-176 | 88.34 | | 13.30 | -6.30E-02 | 6.62E-02 | 5,01E-01 | | | | | 201.83 | | 86.00 | 1.43E-02 | | 7.23E-02 | • | | | | 306.78 | | 94.00 | -8.55E-03 | 1 000 01 | 6.62E-02 | | | + | TA-182 | 67.75 | | 41.20 | -5.45E-02 | 1.89E-01 | 1.89E-01
5.21E-01 | | | | | 1121.30
1189.05 | | 34.90
16.23 | 6.03E-01
4.30E-01 | | 8.08E-01 | | | | | 1221.41 | | 26.98 | 1.30E-01 | | 5.03E-01 | | | | | 1231.02 | | 11.44 | -5.43E-02 | | 1.06E+00 | | | + | IR-192 | 308.46 | | 29.68 | 1.77E-01 | 2.04E-01 | 2.84E-01 | | | | *** 000 | 468.07 | | 48.10
77.30 | -5.90E-02
4.85E-02 | 1.38E-01 | 2.04E-01
1.38E-01 | | | i . | HG-203 | 279.19
569.67 | | 97.72 | -2.96E-02 | 7.79E-02 | 7.79E-02 | | | + | BI-207 | 1063.62 | | 74.90 | 9.07E-02 | 7.752 02 | 1.48E-01 | | | + | TL-208 | 583.14 | * | 30.22 | 7.47E-01 | 4.67E-02 | 4.00E-01 | | | | | 860.37 | * | 4.48 | 2.05E+00 | | 2.02E+00 | | | | | 2614.66 | * | 35.85 | 6.22E-01 | | 4.67E-02 | | | + | BI-210M | | | 45.00 | 3.04E-03 | 1.43E-01 | 1.43E-01 | | | | DD 210 | 300.00 | * | 23.00
4.25 | 8.81E-02
2.84E+00 | 2,22E+00 | 3.11E-01
2.22E+00 | | | + | PB-210 | 46.50
404.84 | | 2.90 | 5.11E-01 | 2.60E+00 | 2.60E+00 | | | + | PB-211 | 831.96 | | 2.90 | -9.69E-01 | 2,000,00 | 2.93E+00 | | | + | BI-212 | 727,17 | * | 11.80 | 6.60E-01 | 8.83E-01 | 8.83E-01 | | | • | | 1620.62 | | 2.75 | 5.58E-01 | | 3.01E+00 | | | + | PB-212 | 238.63 | * | 44.60 | 9.74E-01 | 2.47E-01 | 2.47E-01 | | | | | 300.09 | | 3.41 | 5.94E-01 | 0.01- 0 | 2.10E+00 | | | + | BI-214 | 609.31 | * | 46.30 | 1.01E+00 | 8.31E-02 | | | | | | 1120.29 | * | 15.10 | 1.12E+00 | | 1.21E+00 | | 4/13/2016 10:12:33AM 1603102-05 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-------------|------------------|------------------|---|----------------|-------------------------|----------------------------|-------------------------|---| | | BI-214 | 1764.49 | * | 15.80 | 1.72E+00 | 8.31E-02 | 8.31E-02 | | | | D1-714 | 2204.22 | * | 4.98 | 1.26E+00 | 0.012 0.5 | 1.85E+00 | | | + | PB-214 | 295.21 | * | 19.19 | 1.03E+00 | 2.48E-01 | 4.90E-01 | | | | | 351.92 | * | 37.19 | 1.27E+00 | | 2.48E-01 | | | + | RN-219 | 401.80 | | 6.50 | -5.06E-01 | 1.08E+00 | 1.08E+00 | | | + | RA-223 | 323.87 | | 3.88 | -6.62E-01 | 1.75E+00 | 1.75E+00 | | | + | RA-224 | 240.98 | * | 3.95 | 3.26E+00 | 2.82E+00 | 2.82E+00 | | | + | RA-225 | 40.00 | | 31.00 | -1.22E-01 | 1.18E+00 | 1.18E+00 | | | + | RA-226 | 186.21 | * | 3.28 | 3.48E+00 | 2.68E+00 | 2.68E+00 | | | + | TH-227 | 50.10 | | 8.40 | 6.83E-02 | 8.49E-01 | 8.49E-01 | | | | | 236.00 | | 11.50 | 1.02E+00 | | 8.71E-01 | | | | | 256.20 | | 6.30 | 2.22E-01 | | 1.01E+00 | | | + | AC-228 | 338.32 | * | 11.40 | 1,23E+00 | 3.80E-01 | 7.15E-01 | | | | | 911.07 | * | 27.70 | 9.035-01 | | 3.80E-01 | | | | mr. 000 | 969.11 | * | 16.60 | 1.30E+00
-2.05E-02 | 4.96E-01 | 1.15E+00
4.96E-01 | | | + | TH-230 | 48.44 | | 16.90 | 2.04E+0C | 4.905 01 | 1,59E+00 | | | | | 62.85
67.67 | | 4.60
0.37 | -5.13E+00 | | 1.78E+01 | | | + | PA-231 | 283.67 | | 1.60 | 1.00E-01 | 2.82E+00 | 4.38E+00 | | | • | 171 25# | 302.67 | | 2.30 | 1.15E-00 | | 2.82E+00 | | | + | TH-231 | 25.64 | | 14.70 | -1.C7E+00 | 9.22E-01 | 3.03E+00 | • | | | | 84.21 | | 6.40 | -6.63E-01 | | 9.22E-01 | | | + | PA-233 | 311.98 | | 38.60 | 3.67E-02 | 3.39E-01 | 3.39E-01 | | | + | PA-234 | 131.20 | | 20.40 | 5.15E-02 | 2.44E-01 | 2.44E-01 | | | | | 733.99 | | 8.80 | -1.71E-01 | | 8.96E-01 | | | | | 946.00 | | 12.00 | -5.82E-01 | - 4000 | 6.93E-01 | | | ·†- | PA-234M | | | 0.92 | -4.37E-01 | 9.63E+00 | 9.63E+00 | | | + | TH-234 | 63.20 | | 3.80 | 1.09E+00 | 1.91E+00 | 1.91E+00 | | | + | ΰ−235 | 143.76 | | 10.50 | 3.64E-01 | 5.16E-01 | 5.16E-01 | | | | | 163.35 | | 4.70 | -1.11E-01 | | 1.05E+00
1.32E+00 | | | | 007 | 205.31 | | 4.70 | 1.12E-01
-2.25E-02 | 5.05E-01 | 5.05E-01 | | | + | NP-237 | 86.50 | | 12.60 | 5.05E+02 | 7.88E+02 | 7.88E+02 | | | + | NP-239 | 106.10 | | 22.70 | | 7.006702 | 2.11E+03 | | | | | 228.18
277.60 | | 10.70
14.10 | -2.94E+02
6.77E+02 | | 1.78E+03 | | | + | AM-241 | 59.54 | | 35.90 | -1.57E-01 | 1.82E-01 | | | | + | AM-241
AM-243 | 74.67 | * | 66.00 | 2.13E-01 | 1.57E-01 | | | | | AM-243
CM-243 | 209.75 | | 3.29 | 1.51E+00 | 4.98E-01 | | | | + | CM-742 | 209.73 | | 10.60 | -8.22E-02 | -, 5 0 L. 0 L | 5.90E-01 | | | | | 277.60 | | 14.00 | 1.89E-01 | | 4.98E-01 | | | | | 2, 7, 00 | | | | | | | ^{+ =} Nuclide identified during the nuclide identification ^{* =} Energy line found in the spectrum > = MDA value not calculated ^{@ =} Half-life too short to be able to perform the decay correction ^{? =} CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level Allalysis Report for 1000 for 50 SEDIMENT 2016-03-16B ### NUCLIDE MDA REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB | | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclice MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |---|-----------------|-----------------|----------|-------------------------|----------------------------|-------------------------|---------------------------| | + | BE-7 | 477.59 * | 10.42 | 1.25E+00 | 1.2EE+00 | 1.125+00 | 6.00E-01 | | | NA-22 | 1274.54 | 99.94 | 9.85E-02 | 9.85E-02 | 2.47E-02 | 4.40E-02 | | | NA-24 | 1368.53 | 99.99 | 2.49E+12 | 1.19E+12 | 4.71E+11 | 1.11E+12 | | | | 2754.09 | 99.86 | 1.19E+12 | | 1.61E+11 | 3.76E+11 | | | AL-26 | 1808.65 | 99.76 | 6.49E-02 | 6.49E-02 | -1.09E-02 | 2.58E-02 | | + | K-40 | 1460.81 * | 10.67 | 1.12E+00 | 1.12E+00 | 1.32E+01 | 5.04E-01 | | | @ AR-41 | 1293.64 | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | TI-44 | 67.88 | 94.40 | 6.97E-02 | 6.97E-02 | -2.01E-02 | 3.40E-02 | | | | 78.34 | 96.00 | 8.65E-02 | | 1.84E-01 | 4.24E-02 | | | SC-46 | 889.25 | 99.98 | 1.09E-01 | 1.09E-01 | 1.21E-02 | 4.99E-02 | | | - | 1120.5 | 99.99 | 1.92E-01 | | 2.55E-01 | 9.02E-02 | | | V-48 | 983.52 | 99.98 | 3.13E-01 | 3.13E-01 | 1.37E-01 | 1.43E-01 | | | | 1312.10 | 97.50 | 3.32E-01 | | -1.73E-01 | 1.48E-01 | | | CR-51 | 320.08 | 9.83 | 1.33E+00 | 1.33E+00 | -2.67E-01 | 6.31E-01 | | | MN-54 | 834.83 | 99.97 | 9.27E-02 | 9.27E-02 | -7.39E-04 | 4.25E-02 | | | CO-56 | 846.75 | 99.96 | 1.05E-01 | 1.05E-01 | -2.26E-02 | 4.79E-02 | | | | 1037.75 | 14.03 | 7.68E-01 | | -3.63E-01 | 3.45E-01 | | | | 1238.25 | 67.00 | 2.64E-C1 | | 1.64E-01 | 1.23E-01 | | | | 1771.40 | 15.51 | 4.82E-01 | | -2.36E-01 | 1.87E-01 | | | | 2598.48 | 16.90 | 3.43E-01 | | -1.71E-01 | 1.09E-01 | | | CO-57 | 122.06 | 85.51 | 5.97E-02 | 5.97E-02 | -1.83E-03 | 2.88E-02 | | | | 136.48 | 10.60 | 4.95E-01 | | 6.40E-03 | 2.39E-01 | | | CO-58 | 810.76 | 99.40 | 1.03E-01 | 1.03E-01 | -4.82E-02 | 4.70E-02 | | | FE-59 | 1099.22 | 56,50 | 2.72E-01 | 2.72E-01 | 5.48E-02 | 1.24E-01 | | | | 1291.56 | 43.20 | 3.54E-01 | | 1.53E-01 | 1.59E-01 | | | co-60 | 1173.22 | 100.00 | 9.43E-02 | 9.43E-02 | -1.41E-02 | 4.23E-02 | | | | 1332.49 | 100.00 | 9.71E-02 | | -2.91E-02 | 4.32E-02 | | | ZN-65 | 1115.52 | 50.75 | 1.88E-01 | 1.88E-01 | -6.24E-03 | 8.41E-02 | | + | GA-67 | 93.31 * | 35.70 | 8.35E+01 | 8.35E+01 | 1.67E+02 | 4.09E+01 | | | 011 07 | 208.95 | 2.24 | 1.12E+03 | | 7.93E+02 | 5.40E+02 | | | | 300.22 | 16.00 | 1.66E+02
| | 4.70E+01 | 7.96E+01 | | | SE-75 | 121.11 | 16.70 | 3.35E-01 | 9.67E-02 | -3.08E-02 | 1.62E-01 | | | <u> </u> | 136.00 | 59.20 | 9.67E-02 | | 1.72E-02 | 4.67E-02 | | | | 264.65 | 59.80 | 1.25E-01 | | 2.96E-02 | 5.96E-02 | | | | 279.53 | 25.20 | 3.33E-01 | | 1.19E-01 | 1.60E-01 | | | | 400.65 | 11 40 | 7.31E-01 | | -1.82E-01 | 3.46E-01 | | | RB-82 | 776.52 | 13.00 | 1.30E+00 | 1.30E+00 | 2.78E-01 | 5.92E-01 | for 1603102-05 | Nuclide
Name | Energy
(keV) | Yield(%) | Line MĐA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-------------------|-------------------|----------------|-------------------------|----------------------------|-------------------------|---------------------------| |
RB-83 | 520.41 | 46.00 | 1.73E-01 | 1.73E-01 | -2.49E-02 | 8.02E-02 | | | 529.64 | 30.30 | 2.88E-01 | • | -1,74E-01 | 1.34E-01 | | | 552.65 | 16.40 | 5.52E-01 | | -5.89E-02 | 2.57E-01 | | KR-85 | 513.99 | 0.43 | 2.35E+01 | 2.35E+01 | 3.34E+01 | 1.12E+01 | | SR-85 | 513.99 | 99.27 | 1.38E-01 | 1.38E-01 | 1.96E-01 | 6.57E-02 | | Y-88 | 898.02 | 93.40 | 1.23E-01 | 7.89E-02 | 2.41E-02 | 5.65E-02 | | | 1836.0ļ | 99.38 | 7.89E-02 | 0.047.01 | -1.40E-02 | 3.13E-02 | | NB-93M | 16.57 | 9.43 | 8.01E+01 | 8.01E+01 | -2.34E+01 | 3.89E+01
4.22E-02 | | NB-94 | 702.63 | 100.00 | 9.06E-02 | 9.06E-02 | -2.68E-03
1.33E-02 | 4.24E-02 | | | 871.10 | 100.00 | 9.23E-02 | 1.83E-01 | 3.61E-03 | 8.56E-02 | | NB-95 | 765.79 | 99.81 | 1.83E-01 | 8.38E+01 | 9.81E+01 | 4.09E+01 | | NB-95M | 235.69 | 25.00 | 8.38E+01
2.79E-01 | 1.87E-01 | 9.85E-03 | 1.30E-01 | | ZR-95 | 724.18 | 43.70
55.30 | 1.87E-01 | 1.010 01 | -6.74E-03 | 8.54E-02 | | MO 00 | 756.72 | 6.20 | 9.71E+02 | 6.51E+02 | 2.67E+01 | 4.68E+02 | | MO-99 | 181.06
739.58 | 12.80 | 6.51E+02 | 0.0111.02 | 3.48E+01 | 2.97E+02 | | | 778.00 | 4.50 | 1.84E+03 | | -5.81E+02 | 8.36E+02 | | RU-103 | 497.08 | 89.00 | 1.29E-01 | 1.29E-01 | 5.33E-02 | 6.03E-02 | | RU-105 | 621.84 | 9.80 | 8.15E-01 | 8.15E-01 | 8.84E-02 | 3.78E-01 | | AG-100
AG-108M | 433.93 | 89.90 | 8.19E-02 | 8.19E-02 | -1.02E-02 | 3.87E-02 | | 710 10011 | 614.37 | 90.40 | 9.97E-02 | | 2.10E-02 | 4.68E-02 | | | 722.95 | 90.50 | 9.22E-02 | | 6.35E-03 | 4.26E-02 | | CD-109 | 88.03 | 3.72 | 1.76E+00 | 1.76E+00 | -1.09E+00 | 8.61E-01 | | AG-110M | 657.75 | 93.14 | 8.99E-02 | 8.99E-02 | -4.92E-02 | 4.16E-02 | | | 677.61 | 10.53 | 6.96E-01 | | -4.21E-01 | 3.17E-01 | | | 706.67 | 16.46 | 5.22E-01 | | -4.41E-01 | 2.40E-01 | | | 763.93 | 21.98 | 4.42E-01 | | 1.69E-02 | 2.05E-01 | | | 884.67 | 71.63 | 1.27E-01 | | -4.41E-02 | 5.79E-02 | | | 1384.27 | 23.94 | 4.09E-01 | 0 818.00 | 1.01E-02 | 1.80E-01
1.30E+02 | | CD-113M | 263.70 | 0.02 | 2.71E+02 | 2.71E+02 | -1.67E+00 | 1.88E+00 | | SN-113 | 255.12 | 1.93 | 3.92E+00 | 1.22E-01 | 5.67E-02
-9.33E-02 | 5.74E-02 | | _ | 391.69 | 64.90 | 1.22E-01 | 7 215 02 | 1.11E-02 | 3.52E-02 | | TE123M | 159.00 | 84.10 | 7.31E-02 | 7.31E-02
1.05E-01 | -4.95E-02 | 4.86E-02 | | SB-124 | 602.71 | 97.87 | 1.05E-01
1.39E+00 | 1.005-01 | -4.26E-01 | 6.43E-01 | | | 645.85 | 7.26
11.10 | 1.03E+00 | | 7.13E-02 | 4.78E-01 | | | 722.78
1691.02 | 49.00 | 2.10E-01 | | -4.85E-02 | 8.71E-02 | | ተ 195 | 35.49 | 6.49 | 2.77E+00 | 2.77E+05 | -1.47E-01 | 1.33E+00 | | I-125
SB-125 | 176.33 | 6.89 | 7.29E-01 | 2.39E-01 | -2.98E-01 | 3.50E-01 | | 2D-TV2 | 427.89 | 29.33 | 2.39E-01 | _,, | -8.99E-02 | 1.13E-01 | | 1 | 463.38 | 10.35 | 8.20E-01 | | 2.29E-01 | 3.89E-01 | | E _q | 600.56 | 17.80 | 4.78E-01 | | 2.51E-01 | 2.24E-01 | | | 635.90 | 11.32 | 6.84E-01 | | -1.94E-01 | 3.16E-01 | | SB-126 | 414.70 | 83.30 | 3.99E-01 | 3.76E-01 | -4.71E-02 | 1.88E-01 | | | 666.33 | 99.60 | 3.76E-01 | \ | -2.89E-01 | 1.74E-01 | | | 695.00 | 99.60 | 3.80E-01 | • | 9.05E-02 | 1.75E-01 | | | 720.50 | 53.80 | 7.05E-01 | | -8.12E-02 | 3.25E-01 | | SN-126 | 87.57 | 37.00 | 1.70E-01 | 1.70E-01 | -1.05E-01 | 8.31E-02 | | SB-127 | 473.00 | 25.00 | 4.15E+01 | 3.41E+01 | -5.77E+01 | 1.94E+01 | | | 685.20 | 35.70 | 3.41E+01 | | 6.12E+00 | 1.58E+01 | | | 783.80 | 14.70 | 9.54E+01 | 5 0Em 02 | 6.41E+01
-1.04E+01 | 4.42E+01
1.90E-01 | | I-129 | 29.78 | 57.00 | 3.95E-01 | 3.95E-01 | 1.11E-01 | 5.58E-01 | | | 33.60 | 13.20 | 1.16E+00 | | T. T.T. O.T. | J.JUL UI | Analysis Report for 1603102-05 | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-----------------|------------------|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | I-129 | 39.58 | 7.52 | 1.36E+00 | 3.95E-01 | -1.40E-01 | 6.55E-01 | | I-131 | 284.30 | 6.05 | 1.28E+01 | 7.95E-01 | 2.93E-01 | 6.14E+00 | | - | 364.48 | 81.20 | 7.95E-01 | | -5.38E-02 | 3.74E-01 | | | 636.97 | 7.26 | 1.15E+01 | | -4.09E+00 | 5.34E+00 | | | 722.89 | 1.80 | 5.10E+01 | | 3.52E+00 | 2.36E+01 | | TE-132 | 49.72 | 13.10 | 2.05E+02 | 2.64E+01 | 1.65E+01 | 9.93E+01 | | | 228.16 | 88.00 | 2.64E+01 | | -3.68E+00 | 1.27E+01 | | BA-133 | 81.00 | 33.00 | 1.76E-01 | 1.66E-01 | -6.96E-02 | 8.57E-02 | | | 302.84 | 17.80 | 3.66E-01 | | 1.49E-01 | 1.75E-01 | | • | 356.01 | 60.00 | 1.66E-01 | 0 555.00 | -1.24E-03 | 8.00E-02
1.75E+08 | | I - 133 | 529.87 | 86.30 | 3.75E+08 | 3.75E+08 | -2.27E+08 | 2.94E+00 | | XE-133 | 81.00 | 38.00 | 6.03E+00 | 6.03E+00 | -2.38%+00
-3.69%-01 | 3.80E-01 | | CS-134 | 563.23 | 8.38 | 8.22E-01 | 8.60E-02 | -9.29E-02 | 2.30E-01 | | | 569.32 | 15.43 | 4.94E-01
§.60E-02 | | 9.39E-02 | 4.01E-02 | | | 604.70 | 97.60
85.40 | 1.18E-01 | | 8.70E-02 | 5.46E-02 | | | 795.84
801.93 | 8.73 | 8.49E-01 | | -6.47E-01 | 3.84E-01 | | CS-135 | 268.24 | 16.00 | 4.44E-01 | 4.44E-01 | 9.96E-03 | 2.14E-01 | | @ I-135 | 1131.51 | 22.50 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | 6
6 1-133 | 1260.41 | 28.60 | 1.00E+26 | 1,002,00 | 1.00E+26 | 1.00E+20 | | . @ | 1678.03 | 9.54 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | | CS-136 | 153.22 | 7.46 | 3.05E+00 | 3.33E-01 | 1.59E+00 | 1.47E+00 | | CD 130 | 163.89 | 4.61 | 4.63E+00 | | -4.93E-01 | 2.23E+00 | | | 176.55 | 13.56 | 1.61E+00 | | -3.61E-01 | 7.74E-01 | | | 273,45 | 12.66 | 2.38E+00 | | -1.69E+00 | 1.14E+00 | | | 340.57 | 48.50 | 7.59E-01 | | 1.38E+00 | 3.65E-01 | | | 818.50 | 99.70 | 3.33E-01 | | -5.58E-02 | 1.51E-01 | | | 1048.07 | 79.60 | 4.86E-01 | | 1.05E-01 | 2.19E-01 | | | 1235.34 | 19.70 | 2.94E+00 | | 1.43E+00 | 1.36E+00 | | CS-137 | 661.65 | 85.12 | 1.00E-01 | 1.00E-01 | 1.27E-02 | 4.68E-02 | | LA-138 | 788.74 | 34.00 | 2.57E-01 | 1.45E-01 | 8.61E-02 | 1.18E-01 | | | 1435.80 | 66.00 | 1.45E-01 | 9 115 00 | 3.31E-03 | 6.39E-02
3.42E-02 | | CE-139 | 165.85 | 80.35 | 7.11E-02 | 7.11E-02 | -4.97E-05
-1.60E+00 | 1.59E+00 | | BA-140 | 162.64 | 6.70 | .3.30E+00 | 1.36E+00 | -6.28E-01 | 2.96E+00 | | | 304.84 | 4.50 | 6.22E+00 | | 3.95E+00 | 4.78E+00 | | ! | 423.70 | 3.20
2.00 | 1.01E+01
1.68E+01 | | 5.82E+00 | 7.95E+00 | | | 437.55
537.32 | 25.00 | 1.36E+01 | | 2.17E-01 | 6.36E-01 | | LA-140 | 328.77 | 20.50 | 1.59E+00 | 4.42E-01 | -6.56E-02 | 7.61E-01 | | TW-'140 | 487.03 | 45.50 | 6.95E-01 | ., | -3.23E-02 | 3.26E-01 | | i . | 815.85 | 23.50 | 1.49E+00 | | -1.47E-01 | 6.78E-01 | | ì | 1596.49 | 95.49 | 4.42E-01 | | -3.91E-02 | 1.92E-01 | | CE-141 | 145.44 | 48.40 | 1.99E-01 | 1.99E-01 | 1.18E-01 | 9.63E-02 | | CE-143 | 57.36 | 11.80 | 7.01E+05 | 2.80E+05 | 1.28E+05 | 3.41E+05 | | | 293.26 | 42.00 | 2.80E+05 | | 2.16E+04 | 1.36E+05 | | | 664.55 | 5.20 | 2.12E+06 | | 1.12E+06 | 9.88E+05 | | CE-144 | 133.54 | 10.80 | 4.77E-01 | 4.77E-01 | -1.38E-01 | 2.30E-01 | | PM-144 | 476.78 | 42.00 | 2.11E-01 | 8.06E-02 | 1.63E-01 | 9.98E-02 | | | 618.03 | 98.60 | 8.06E-02 | | -1.71E-02 | 3.74E-02 | | | 696.49 | 99.49 | 9.02E-02 | 0 00= 01 | 2.40E-02 | 4.18E-02 | | PM-145 | 36.85 | 21.70 | 5.38E-01 | 2.98E-01 | -3.52E-01
1.77E-01 | 2.59E-01
1.44E-01 | | | 37.3€ | 39.70 | 2.98E-01 | | -1.47E-01 | 2.84E-01 | | | 42.30 | 15.10 | 5.88E-01 | | -T*41E-0T | 2.045 01 | 1603102-05 | Nuclide
Name | Energy
(keV) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |-----------------|------------------|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | PM-145 | 72.40 | 2.31 | 3.07E+00 | 2.98E-01 | -6.14E+00 | 1.50E+00 | | PM-146 | 453.90 | 39.94 | 1.83E-01 | 1.83E-01 | -4.72E-02 | 8.61E-02 | | | 735.90 | 14.01 | 5.87E-01 | | 2.74E-02 | 2.70E-01 | | | 747.13 | 13.10 | 5.83E-01 | | -1.81E-01 | 2.66E-01 | | ND-147 | 91.11 | 28.90 | 1.33E+00 | 1.33E+00 | -4.49E-01 | 6.52E-01 | | | 531.02 | 13.10 | 3.07E+00 | • | -1.91E+00 | 1.43E+00 | | PM-149 | 285.90 | 3.10 | 1.40E+04 | 1.40E+04 | 5.53E+03 | 6.72E+03 | | EU-152 | 121.78 | 20.50 | 2.33E-01 | 2.33E-01 | -7.12E-03 | 1.12E-01 | | | 244.69 | 5.40 | 1.50E+00 | | 1.73E-01 | 7.26E-01 | | | 344.27 | 19.13 | 3.33E-01 | | -6.68E-01 | 1.58E-01 | | | 778.89 | 9.20 | 7.80E-01 | | -4.90E-01 | 3.53E-01 | | | 964.01 | 10.40 | 1.10E+00 | | 2.39E-01 | 5.13E-01
5.97E-01 | | | 1085.78 | 7.22 | 1.32E+00 | | -1.23E-01
9.83E-02 | 4.58E-01 | | | 1112.02 | 9.60 | 1.01E+00 | | -2.24E-01 | 2.64E-01 | | | 1407.95 | 14.94 | 6.02E-01 | 1.65E-01 | -2.30E-01 | 7.98E-02 | | GD-153 | 97.43 | 31.30 | 1.65E-01 | 1.03E-01 | -2.04E-01 | 1.08E-01 | | | 103.18 | 22.20 | 2.23E-01 | 1.20E-01 | 2.10E-02 | 5.80E-02 | | EU-154 | 123.07 | 40.50 | 1.20E-01
4.26E-01 | 1.208-01 | 2.93E-02 | 1.97E-01 | | | 723.30 | 19.70 | 7.84E-01 | | -2.58E-01 | 3.59E-01 | | | 873.19 | 11.50
10.30 | 8.23E-01 | , | 2.49E-01 | 3.71E-01 | | | 996.32 | 17.90 | 5.35E-01 | | 4.65E-02 | 2.44E-01 | | • | 1004.76 | 35.50 | 2.73E-01 | | 6.87E-02 | 1.22E-01 | | DII 166 | 1274.45
86.50 | 30.90 | 2.08E-01 | 2.08E-01 | -9.26E-03 | 1.02E-01 | | EU-155 | 105.30 | 20.70 | 2.36E-01 | 2.000 | 1.42E-01 | 1.14E-01 | | EU-156
| 811.77 | 10.40 | 2.75E+00 | 2.75E+00 | 1.27E-01 | 1.25E+00 | | E0-120 | 1153.47 | 7.20 | 5.41E+00 | 20142141 | -6.80E-02 | 2.47E+00 | | | 1230.71 | 8.90 | 4.27E+00 | | 3.99E-01 | 1,94E+00 | | но-166М | 184.41 | 72.60 | 9.54E-02 | 9.54E-02 | 1.54E-01 | 4.63E-02 | | 110 10011 | 280.45 | 29.60 | 2.42E-01 | | 2.96E-02 | 1.16E-01 | | | 410.94 | 11.10 | 6.59E-01 | | 8.81E-02 | 3.12E-01 | | | 711.69 | 54.19 | 1.53E-01 | | 3.14E-02 | 7.10E-02 | | TM-171 | 66.72 | 0.14 | 4.94E+01 | 4.94E+01 | -5.21E+01 | 2.41E+01 | | HF-172 | 81,75 | 4.52 | 1.29E+00 | 4.40E-01 | -2.72E-01 | 6.29E-01 | | *** *** | 125.81 | 11.30 | 4.40E-01 | | -1.26E-01 | 2.12E-01 | | LU-172 | 181.53 | 20.60 | 4.65E+00 | 2.83E+00 | -6.23E-02 | 2.24E+00 | | | 810.06 | 16.63 | 8.89E+00 | | -1.13E+00 | 4.07E+00 | | | 912.12 | 15.25 | 1.76E+01 | | 3.10E+01 | 8.37E+00 | | | 1093.66 | 62.50 | 2.83E+00 | | 6.67E-01 | 1.29E+00 | | LU-173 | 100.72 | 5.24 | 9.30E-01 | 3.61E-01 | 5.67E-01 | 4.49E-01 | | | 272.11 | 21.20 | 3.61E-01 | | 2.23E-02 | 1.74E-01 | | HF-175 | 343.40 | 84.00 | 1.04E-01 | 1.04E-01 | -1.40E-01 | 4.95E-02
2.45E-01 | | LU-176 | 88.34 | 13.30 | 5.01E-01 | 6.62E-02 | -6.30E-02 | 3.49E-02 | | | 201.83 | 86.00 | 7.23E-02 | | 1.43E-02 | 3.49E-02 | | | 306.78 | 94.00 | 6.62E-02 | 1 00m 01 | -8.55E-03 | 9.21E-02 | | TA-182 | 67.75 | 41.20 | 1.29E-01 | 1.89E-01 | -5.45E-02
6.03E-01 | 2.45E-01 | | | 1121.30 | 34.90 | 5.21E-01 | | 4.30E-01 | 3.69E-01 | | | 1189.05 | 16.23 | 8.08E-01 | | 1.30E-01 | 2.30E-01 | | | 1221.41 | 26.98 | 5.03E-01 | | -5.43E-02 | 4.76E-01 | | | 1231.02 | 11.44 | 1.06E+00 | 2.04E-01 | 1.77E-01 | 1.36E-01 | | IR-192 | 308.46 | 29.68 | 2.84E-01 | Z.04E-01 | -5.90E-02 | 9.60E-02 | | | 468.07 | 48.10 | 2.04E-01 | 1.38E-01 | 4.85E-02 | 6.60E-02 | | HG-203 | 279.19 | 77.30 | 1.39E-01 | T.30E-0T | 3.00E 0Z | 0.000 02 | 1603102-05 | | Nuclide
Name | Energy
(keV) | | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pCi/grams) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----|------------------|-------------------|---|----------------|-------------------------|----------------------------|-------------------------|---------------------------| | | | | | 07.70 | 2 707 02 | 7 705 02 | -2.96E-02 | 3.63E-02 | | | BI-207 | 569.67 | | 97.72 | 7.79E-02 | 7.79E-02 | 9.07E-02 | 6.80E-02 | | | 000 | 1063.62 | | 74.90 | 1.48E-01 | 4 67E-02 | 7.47E-01 | 1.91E-01 | | 7 | TL-208 | 583.14 | * | 30.22 | 4.00E-01 | 4.67E-02 | 2.05E+00 | 9.27E-01 | | | | 860.37 | * | 4.48 | 2.02E+00 | | 6.22E-01 | 0.00E+00 | | | | 2614.66 | ^ | 35.85 | 4.67É-02
1.43E-01 | 1.43E-01 | 3.04E-03 | 6.84E-02 | | | BI-210M | 262.00 | | 45.00 | | 1.42E-01 | 8.81E-02 | 1.49E-01 | | | | 300.00 | | 23.00 | 3.11E-01 | 2.22E+00 | 2.84E+00 | 1.08E+00 | | + | PB-210 | 46.50 | * | 4.25 | 2.22E+00
2.60E+00 | 2.22E+00
2.60E+00 | 5.11E-01 | 1.23E+00 | | | PB-211 | 404.84 | | 2.90 | 2.93E+00 | 2.006+00 | -9.69E-01 | 1.34E+00 | | | 010 | 831.96 | * | 2.90
11.80 | 8.83E-01 | 8.83E-01 | 6,60E-01 | 4.15E-01 | | + | BI-212 | 727.17 | ~ | 2.75 | 3.01E+00 | 0.035 01 | 5.58E-01 | 1.28E+00 | | | DD 010 | 1620.62
238.63 | * | 44.60 | 2.47E-01 | 2.47E-01 | 9.74E-01 | 1.21E-01 | | + | PB-212 | 300.09 | | 3.41 | 2.10E+00 | 2.4711 01 | 5.946-01 | 1.01E+00 | | | DT 014 | 609.31 | * | 46.30 | 2.47E-01 | 8.31E-02 | 1.01E+00 | 1.18E-01 | | + | BI-214 | 1120.29 | * | 15.10 | 1.21E+00 | 0.515 02 | 1.12E+00 | 5.75E-01 | | | | 1764.49 | * | 15.80 | 8.31E-02 | • | 1.72E+00 | 0.00E+00 | | | | 2204.22 | * | 4.98 | 1.85E+00 | | 1.26E+00 | 7.74E-01 | | + | PB-214 | 295.21 | * | 19.19 | 4.90E-01 | 2.48E-01 | 1.03E+00 | 2.37E-01 | | 7. | PD-214 | 351.92 | * | 37.19 | 2.48E-01 | 2.102 02 | 1.27E+00 | 1.19E-01 | | | RN-219 | 401.80 | | 6.50 | 1,08E+00 | 1.08E+00 | -5.06E-01 | 5.10E-01 | | | RA-223 | 323.87 | | 3.88 | 1.75E+00 | 1.75E+00 | -6.62E-01 | 8.32E-01 | | + | RA-224 | 240.98 | * | 3.95 | 2.82E+00 | 2.82%+00 | 3.26E+00 | 1.38E+00 | | ' | RA-225 | 40.00 | | 31.00 | 1.18E+00 | 1.18E+00 | -1.22E-01 | 5.71E-01 | | + | RA-226 | 186.21 | * | 3.28 | 2.68E+00 | 2.68E+00 | 3.48E+00 | 1.31E+00 | | • | TH-227 | 50.10 | | 8.40 | 8.49E-01 | 8.49E-01 | 6.83E-02 | 4.11E-01 | | | | 236.00 | | 11.50 | 8.71E-01 | | 1.02E+00 | 4.25E-01 | | | | 256.20 | | 6.30 | 1.01E+00 | | 2.22E-01 | 4.85E-01 | | + | AC-228 | 338.32 | * | 11.40 | 7.15E-01 | 3.80E-01 | 1.23E+00 | 3.43E-01 | | | | 911.07 | * | 27.70 | 3.80E-01 | | 9.03E-01 | 1.76E-01 | | | | 969.11 | * | 16.60 | 1.15E+00 | | 1.30E+00 | 5.48E-01 | | | TH-230 | 48.44 | | 16.90 | 4.96E-01 | 4.96E-01 | -2.05E - 02 | 2.41E-01 | | | | 62.85 | | 4.60 | 1.59E+00 | | 2.04E+00 | 7.74E-01 | | | | 67.67 | | 0.37 | 1.78E+01 | | -5.13E+00 | 8.67E+00 | | | PA-231 | 283.67 | | 1.60 | 4.38E+00 | 2.82E+00 | 1.00E-01 | 2.10E+00 | | | | 302.67 | | 2.30 | 2.82E+00 | | 1.15E+00 | 1.35E+00 | | | TH-231 | 25.64 | | 14.70 | 3.03E+00 | 9.22E-01 | -1.27E+00 | 1.46E+00 | | | | 84.21 | | 6.40 | 9.22E-01 | | -6.63E-01 | 4.49E-01 | | | PA-233 | 311.98 | | 38.€0 | 3.39E-01 | 3.39E-01 | 3.67E-02 | 1.61E-01 | | | PA-234 | 131.20 | | 20.40 | 2.44E-01 | 2.44E-01 | 5.15E-02 | 1.18E-01 | | | | 733.99 | | 8.80 | 8.96E-01 | | -1.71E-01 | 4.11E-01 | | | | 946.00 | | 12.00 | 6.93E-01 | a .com . a a | -5.82E-01 | 3.13E-01 | | | PA-234M | 1001.03 | | 0.92 | 9.63E+00 | 9.63E+00 | -4.37E-01 | 4.36E+00 | | | TH-234 | 63.29 | | 3.80 | i 91E+00 | 1.91E+00 | 1.09E+00 | 9.30E-01
2.50E-01 | | | U-235 | 143.76 | | 10.50 | 5.16E-01 | 5.16E-01 | 3.64E-01 | 5.04E-01 | | | | 163.35 | | 4.70 | 1.05E+00 | | -1.11E-01
1.12E-01 | 6.35E-01 | | | 6.5- | 205.3% | | 4.70 | 1.32E+00 | 5.05E-01 | -2.25E-02 | 2.46E-01 | | | NP-237 | 86.50 | | 12.60 | 5.05E-01 | 7.88E+02 | 5.05E+02 | 3.82E+02 | | | NP-239 | 106.10 | | 22.70 | 7.88E+02 | 7.00ETUZ | -2.94E+02 | 1.01E+03 | | | | 228.18 | | 10.70 | 2.11E+03
1.78E+03 | | 6.77E+02 | 8.55E+02 | | | 7A N. J. O. A. S | 277.60 | | 14.10
35.90 | 1.82E-01 | 1.82E-01 | -1.57E-01 | 8.86E-02 | | | AM-241 | 59.54
74.67 | * | 66.00 | 1.57E-01 | 1.57E-01 | 2.13E-01 | 7.73E-02 | | + | AM-243 | 14.07 | | 00.00 | T. 2117-01 | 4.012 01 | UI | | 1603102-05 SEDIMENT 2046-03-168 | Nuclide | Energy | Yietd(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | |--------------|----------------------------|------------------------|----------------------------------|-------------|-----------------------------------|----------------------------------| | Nam <u>e</u> | (keV) | | _(pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | CM-243 | 209.75
228.14
277.60 | 3.29
10.60
14.00 | 2.06E+00
5.90E-01
4.98E-01 | 4.98E-01 | 1.51E+00
-8.22E-02
1.89E-01 | 9.95E-01
2.84E-01
2.39E-01 | - + = Nuclide identified during the nuclide identification - * = Energy line found in the spectrum - > = MDA value not calculated - @ = Half-life too short to be able to perform the decay correction No Action Level results available for reporting purposes. # DATA REVIEW COMMENTS REPORT **Creation Date** Comment User No Data Review Comments Entered. ************** Sample Title: SEDIMENT 2016-03-16B Elapsed Live time: 3600 Elapsed Real Time: 3612 3600 | Channel - | | | | | | | ! | | |--------------|----------|----------|----------|----------|----------|------------------|----------|-----------------| | 1: | 0 | 0 | 0 | 0 | 0 | 0 | 0
73 | 0
86 | | 9: | 2 | 140 | 151 | 119 | 90
50 | 96 | | 54 | | 17: | 84 | 69 | 60 | 70 | 58 | 59 | 90 | | | 25: | 68 | 65 | 54 | 44 | 48 | 56 | 46 | 56 | | 33: | 54 | 58 | 36 | 55 | 53 | 58 | 52 | 63 | | 41: | 54 | 51 | 60 | 61 | 53 | 72 | 147 | 103 | | 49: | 48 | 48 | 64 | 62 | 60 | 63 | 73 | 77 | | 57 : | 79 | 69 | 80 | 92 | 78 | 91 | 113 | 174 | | 65 : | 105 | 76 | 112 | 120 | 103 | 92 | 108 | 85 | | 73: | 87 | 126 | 218 | 232 | 253 | 387 | 108 | 85 | | 81: | 80 | 99 | 72 | 94 | 129 | 74 | 98 | 154 | | 89: | 95 | 119 | 141 | 74 | 177 | 172 | 91 | 75
64 | | 97: | 33 | 47 | 82 | 66 | 53 | 46 | 43 | 64 | | 105: | 67 | 75 | 56 | 57 | 47 | 69 | 46 | 44 | | 113: | 55 | 53 | 56 | 69 | 52 | 64 | 50 | 53 | | 121: | 54 | 55 | 59 | 48 | 60 | 45 | 61 | 57 | | 129: | 55 | 65 | 56 | 53 | 49 | 48 | 48 | . 57 | | 137: | 47 | 57 | 48 | 46 | 60 | 44 | 61 | 74 | | 145: | 73 | 50 | 40 | 51 | 43 | 48 | 48 | 58. | | 153: | 45 | 53 | 60 | 48 | 40 | 59 | 61
47 | 43
40 | | 161: | 47 | 43 | 44 | 42 | 36 | 48 | 47
42 | 37 | | 169: | 46 | 38 | 36 | 39 | 48 | 36 | 57 | 41 | | 177: | 42 | 36 | 45 | 44 | 45 | 36 | 35 | 41 | | 185: | 52 | 114 | 103 | 53 | 41 | 39
44 | 40 | 38 | | 193: | 48 | 45 | 49 | 39 | 35 | 4 4
37 | 39 | 33 | | 201: | 40 | 44 | 32 | 35 | 29
36 | 32 | 33 | 43 | | 209: | 51 | 52 | 40 | 38
29 | 31 | 32
36 | 28 | 49 | | 217: | 35 | 36 | 37
32 | 29
29 | 26 | 31 | 31 | 34 | | 225: | 29 | 37 | | 42 | 30 | 90 | 297 | 175 | | 233: | 21 | 25 | 36
72 | 34 | 29 | 25 | 35 | 29 | | 241: | 54 | 102 | 22 | 27 | 24 | 20 | 28 | 26 | | 249: | 25 | 29
30 | 24 | 32 | 17 | 27
27 | 28 | 27 | | 257: | 34 | 21 | 21 | 23 | 22 | 49 | 53 | 33 | | 265: | 27 | 21
25 | 25 | 18 | 25 | 46 | 35 | 24 | | 273: | 20 | 25
27 | 24 | 25 | 31 | 32 | 30 | 27 | | 281: | 22
23 | 25 | 21 | 21 | 15 | 23 | 85 | 148 | | 289: | 45 | 25
14 | 22 | 27 | 27 | 25 | 21 | 18 | | 297: | 12 | 15 | 20 | 19 | 18 | 28 | 26 | 15 | | 305:
313: | 17 | 13 | 17 | 1.9 | 16 | 24 | 14 | 19 | | 313: | 13 | 20 | 26 | 25 | 20 | 20 | 17 | 27 | | 329: | 30 | 27 | 19 | 17 | 26 | 20 | 19 | 12 | | 337: | 22 | 31 | 72 | 28 | 20 | 30 | 15 | $\overline{11}$ | | 345: | 10 | 8 | 1.6 | 18 | 22 | 10 | 42 | 178 | | 353 : | 170 | 25 | 11 | 13 | 14 | 13 | 17 | 19 | | 361: | 13 | 11 | 16 | 12 | 11 | 73 | 12 | 9 | | J () ± • | 10 | حلب بلت | | | | | | | 369: 10 10 17 17 21 14 21 15 Sample Title: SEDIMENT 2016-03-16B | | Sample | Title: | SEDIMENT | 2016-03 | 3-16B | | | | |------------------------------|------------------------|---|----------------------------------
--|---|------------------|-------------|--| | Channel | l | | | !_ | | | | | | 377: | 17 | 16 | 6 ' | 11 | 16 | 11 | 12 | 12 | | 385: | 16 | 21 | 15 | 21 | 13 | 16 | 18 | 11 | | 393: | 13 | 14 | 12 | 21 | 19 | 16 | 17 | 10 | | 401: | 9 | 18 | 22 | 14 | 13 | 16 | 21 | 14 | | 409: | 15 | 24 | 1.4 | 6 | 20 | 1.5 | 1.3 | 10 | | 417: | 15 | 1.8 | 9 | 1.3 | 8 | 15 | 16 | 21 | | 425: | 13 | 13 | 12 | 13 | 1.0 | 15 | 12 | 15 | | 433: | 10 | 1.9 | 15 | 14 | 14 | 16 | 18 | 12 | | 441: | 11 | 10 | 10 | 12 | 16 | 10 | 7 | 9 | | 449: | 14 | 13 | 7 | 12 | 11 | 14 | 11 | 22 | | 457: | 11 | 16 | 14 | 4 | 18 | 17
10 | 23
13 | 23
7 | | 465:
473: | 17
12 | 12
6 | 12
13 | 15
13 | 12
15 | 32 | 13
19 | 12 | | 473:
481: | 12 | 9 | 9 | 8 | 1 3 | 10 | 16 | 14 | | 489: | 7 | . 13 | 15 | 9 | 5 | 9 | 11 | 8 | | 497: | 7 | 13 | 8 | 14 | 5 | 10 | 11 | 9 | | 505: | 9 | 5 | 9 | 13 | 23 | 24 | 48 | 36 | | 513: | 15 | 15 | 11 | 8 | 10 | 6 | 1 | 7 | | 521: | 7 | 12 | 9 | 5
6 | 12 | 18 | 10 | 11 | | 529: | 5 | 11 | . 7 | | 11 | 9 | 11 | 10 | | 537 : | 5 | 12 | 12 | 11 | 11 | 8 | 10 | 11_{-} | | 545 : | 4 | 6 | 8 | 10 | 8 | 20 | 6 | 8 | | 553: | 2 | 7 | 10 | 8 | 7 | 10 | 11 | 6 | | 561: | 6 | 8 | 6 | Ó | 10 | 8 | 9
15 | 8 ·
5 · | | 569: | 12
7 | 10
7 | 9
13 | 6
5
6 | 11
7 | 11
19 | 48 | 61 | | 577 :
585 : | 20 | 15 | 13
11 | 7 | | 6 | 6 | Q I | | 593: | 7 | 15 | 11 | 8 | 86868575 | 13 | 17 | 9
5 | | 601: | 9 | 8 | 11 | 8 | Š | 6 | 10 | 16 | | 609: | 89 | 130 | 30 | | 6 | 8 | 9 | 7 | | 617: | 14 | 5 | 4 | 6
7 | 8 | 10 | 8 | 7 | | 625: | 10 | 3 | 7 | 3. | .5 | 5 | 4 | 8 | | 633 : | 12 | 7 | 5
8 | 3.
3
6 | 7 | 9 | 9 | 12 | | 641: | 10 | 7 | 8 | | 5 | 8 | 2 | 9 | | 649: | 9 | 11
8
10 | 5 | 7 | 7 | 9 | 4 | 9 | | 657: | 6 | 8 | 6 | 7 | 11 | 17 | 7 | 1 | | 665: | 1 7 | 10 | 8 | 7 | 6 | 9 | 10 | 6
7 | | 673: | 7
5
7 | 10
7 | 6
8
6
9
3
12
7 | 6 | 11
6
3
9
13
5
6
6
8
5
6 | 9
3
9
5 | 8
6 | 7
6
7
5
2
11
7
7 | | 681:
689: | | 9 | 3 | ,
5 | 13 | 5 | 4 | 2 | | 697: | ; 6
, 6 | 14 | 12 | 9 | 5 | 14 | 11 | 11 | | 705: | ; 7 | 6 | 7 | 6 | 6 | 4 | 13 | 7 | | 713: | ; 7
; 3
; 5 | 5 | 13 | 5 | 6 | 6 | 7 | 7 | | 721: | 5 | 9 | 13
6 | 6 | 8 | 9 | 16 | 13 | | 729: | 10 | 9 | 4 | 3 | 5 | 9
12 | 9
6 | 8 | | 737 : | 10
2
5
4
3 | 6 | 4
4
10
4
7 | 2 | 6 | 10
3 | 6 | 5 | | 745: | 5 | 5 | 10 | 4 | 6 | 3 | 7 | 5 | | 753: | 4 | 5 | 4 | 3 | 7 | 8 | 8 | 3 | | 761: | 3 | 10 | 7 | 9 | 8 | 8
7 | 8 | 13 | | 769: | 12 | 9
14
6
5
9
6
5
5
10
9
6 | 6 | 5 | Ю
'7 | <i>!</i>
6 | 9
6 | ے
د | | 777:
785: | 15
3
7 | 18 | 6
6
5 | 7
5
9
6
5
6
3
2
4
3
9
5
1
4 | 8
6
7
6
6 | 4 | 9
6
6 | 13
8
5
3
19
2
6
4 | | 785: | 9 | 1.8
1.0 | 11 | 12 | 5
6 | 3 | 3 | 4 | | 1733 | , , | ⊒. ∪ | با. بلد | 上之 | U | J | 5 | 1 | | | Sampre | TILLE; | SEDIMEN: | 2010-0 |)T()D | | | | |-------------------------|---------------------------------|---|--|---|--------------------|--|----------------------------|--| | Channel | | <u>-</u> - | | | | | | | | 809: | 5 | 5 | 5 | 3
5 | 8
7 | 5
5 | 6 | 3
6
6 | | 817: | 4 | 1 | 4 | 3 | | 11 | 4 | 6 | | 825: | 11 | 9 | 6 | | 4 | 11 | 4 | | | 833: | 6 | .5 | 4 | 14 | <i>4</i> | | 4
7 | 3 | | 841: | 8 | 9 | 9 | 4 | 4
7 | ?
Э | 2 | 3 | | 849: | 6 | 5
5 | 6
8 | 8
9 | 18 | 3
7 | 7 | 5 | | 857:
865: | 8
2 | 4 | 2 | 13 | <u>4</u> | 6 | 6 | 6
3
2
5
6 | | 873: | 4 | 5 | 7 | 7 | 5 | . 8 | 4 | 4 | | 881: | 6 | 3 | 5 | ĺ | 11 | · 8
5 | 4 | 9 | | 889: | 8 | 4 | 1 | 6 | 4 | 4 | 7 | 9 | | 897: | 4 | 6 | | 7 | 4 | 5 | 8 | 6 | | 905: | 7 | 4 | 9
3 | | 7 | 13 | 47 | 28 | | 913: | 7 | 9 | 5 | 2 . | 5 | 2 | 5 | 8 | | 921: | 6 | 10 | 12 | 3
2
2
8 | 7 | 4 | 6 | 4 | | 929: | 4 | 3 | 3 | | 14 | 11 | 5 | 4 | | 937: | 5 | 9 | 1 | 6 | 9 | 2 | 8 | . 2 | | 945: | 5
5
5 | 3 | 6 | 1 | 5
2
9 | 11 | 7 | 7
3 | | 953 : | | 5
10 | 3
7 | 6
12 | 2 | 3
7 | ე
ი | 11 | | 961:
969: | 4
31 | 21 | 3 | 7 <u>.</u>
7 | 10 | 3 | 3 | | | 977 : | 3 7 7 | 3 | 0 | 4 | 7 | 7 | 3 | 5 | | 985: | 3
3
4 | 7 | 4 | 5 | 4 | 2 | 5
9
3
3
2 | 3 | | 993: | $\overset{\circ}{4}$ | 6 | $\overline{4}$ | 5
5 | -
4 | 4 | | 3 | | 1001: | 3
1 | 5 | 8 | 7 | 5 | 2 | 1
3
2 | 6 | | 1009: | 1 | 5 | 7 | 3 | 452960225426 | 2 | | 8
5
3
6
4
3 | | 1017: | 4 | Ĺ | 7 | 3
3
5
%
a | 9 | 6
3 | 6 | 3 | | 1925: | 3 | 4 | 4 | 5 | 6 | | 5 | 4
3
2 | | 1033: | 9 | 2 | 4 | 3 | C | 4
5
3
5
6 | 8 | 3 | | 1041: | 4 | 7 | 4 | 2.
F | 2 | 5 | 7 | 7 | | 1049:
1057: | 6 | 4 | 3, | 5
7 | Z.
E. | ა
ნ | 6
6 | 7 | | 1057: | 4
8 | 4
7 | 4
4 | 2 | | 5 | 4 | | | 1073: | 7 | 3 | 8 | 6 | 2 | 3 | 5 | 2
3
5 | | 1081: | 4 | 5 | 5 | 6 | 6 | 3
1 | 6 | 5 | | 1089: | | 4 | | 4 | | | | | | 1089:
1097: | 8 | 8 | 5 | 6 | 1 | 3 | 5
3
4 | 5 | | 1105: | 2
8
6 | 5 | 4 | 6
4 | 5 | 5 | | 2 | | 1113: | 3 | 8
5
6 | 6
5
4
6
5
4 | 1 | 1 | 3
3
5
6
8
5
4
3
7
4 | 17 | 33 | | 1121: | 14 | 6 | 5 | 2 | 4 | 8 | 4 | 2 | | 1129: | 3 7 | 4 | 4 | 0 | 6 | 5 | 0 | 5 | | 1137: | 7 | 7 | 5 | 8 | 2 | 4 | 6 | 2 | | 1145: | 1 1 | Ü | 11 | 7 | 5 | 3 | 7 | 4 | | 1153: | . 5
8 | 3 | 9 | 3 | ن
د | .1 | 6 | 2 | | 1161:
1169: | 6 | 5 | 3 | 2 | 1 | | 3 | 4 | | 1177: | 5 | 4 | 3 | 5 | 6 | 2 | 6
6
3
7 | 1 | | 1185: | 6 | 6 | 5 | 4 | 5 | 6 | | 4 | | 1185:
1193: | 3 | $\tilde{2}$ | 5 | 6 | 7 | 5 | 5 | 3 | | 1201• | 6
5
6
3
4
2
1 | 8 | 8 | 2 | 3 | 8
2
6
5
7 | 9 | 6 | | 1209: | 2 | 4 | 3 | 6 | 5 | | 2 | 7 | | 1209:
1217:
1225: | 1 | 0
3
3
5
4
6
2
8
4
8
5 | 9
1
3
3
5
5
8
3
2
7 | 1
2
0
8
7
7
3
2
5
4
6
2
6
5
3 | 915146253616573524 | 7 | 7
5
9
2
6
5 | 3
5
2
3
2
5
2
4
4
2
4
1
4
3
6
7
8
8 | | 1225: | 4 | 5 | 7 | 3 | 4 | 2 | 5 | 8 | Sample Title: SEDIMENT 2016-03-16B | | o carrier and | | | | | 1 | | 1 | |--|---|--|---|---|---------------------------------|--|---|-----------------------| | Channel 1241: 1249: 1257: 1265: 1273: 12897: 131321: 13297: 133453: 13453: 134697: 13467: 14475: 14475: 14477: 14467: 14477: 14467: 14477: 14477: 14477: 14477: 1457: 15537:
15537: 15 | | 6
25626322225243133351242104012201020012011 | 53353562616013434133512222129132000132110 | 361515022303213333311201
120110020012001 | | 3
4
4
4
1
5
4
2
4
5
1
3
2
2
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | | | 1465:
1473:
1481:
1489:
1497:
1505:
1513:
1521:
1529:
1537: | 0
0
1
4
1
2
0
2
1 | 2
0
1
0
2
0 | 3
2
0
0 | 1
0
0
2
0 | 0
0
1
0
3
0
4 | 0
2
0
2
5
1
1
1 | 0
1
3
0
1
1
1
4
4
2
1
0
3
0
1
2
1
2
0
3
0
0
1 | 2
2
3
2
0 | | | Sample | Title: | SEDIMENT | 2015~03 | T 0R | | | | |----------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------|--------------------|------------------| | Channel | | | | | | | | | | 1673: | . 3 | 1 | 1 | 0 | 0 | 0 | 1 | 3 | | 1681: | 0 | 1 | . 0 | 1 | i | 1 | 0 | 0 | | 1689: | 2 | 0 | 2 | 1 | 0 | 1 | 2 | 2 | | 1697: | 3 | 0 | 2 | 1 | 2 | 1 | 0 | 2 | | 1705: | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | 1713: | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | | 1721: | 1 | 1 | 1 | 2
2 | 2 | 1 | 0 | 2 | | 1729: | 3 | 2 | 1 | | 1 | 0 | 2
0 | 0
1 | | 1737: | 0 | 0 | 0 | 0 | 1
0 | 0
2 | 0 | 0 | | 1745: | 0 | 0 | 1 | 1
0 | 0 | 2
1 | 1. | 1 | | 1753: | 0 | 2 | 0
10 | 20 | 16 | . <u>.</u>
4 | 0 | 0 | | 1761: | 1 | 2
1 | 0 | 0 | 0 | . 0 | 1 | 5 | | 1769: | 2
0 | 0 | 1 | 0 | 0 | 0 | 0 | Õ | | 1777:
1785: | 0 | 0 | 0 | 0 | 0 | ŏ | Ö | Ö | | 1793: | . 0 | 1 | Ő | 0 - | ĭ | ĺ | Ö | ĺ | | 1801: | 0 | Ō | , 4 | Ö | ī | ō | ĺ | 1 | | 1809: | $\overset{\circ}{1}$ | Ö | Ō | 1 | 1 | 0 | 0 | 1 | | 1817: | 2 | Õ | 2 | 1 | 1. | 0 | 0 | 0 | | 1825: | 2 | 1 | 1 | O | 2 | 1 | 0 | 1 | | 1833: | 0 | 0 | 2 | ₩ . | 1 | 0 | 0 | 0 | | 1841: | 1 | 1 | 2 | 0 | Ü | 3 | 4 | 2 | | 1849: | 0 | 1 | 7. | 2 | C | 7 | 1 | 0 | | 1857: | 1 | 2 | 0 | 1 | 1 | 2 | 0 | 1 | | 1865: | 1 | 3 | 0 | 2 | 0 | 2 | 1. | 1 | | 1873: | 0 | 1 | 0 | 1 | 2 | 0 | 0
0 | 0
0 | | 1881: | 1 | 1 | 3 | 1
1 | | 0
0 | 1 | 0 | | 1889: | 0
1 | 0
1 | 2 | 0 | 1
2
3 | 1 | $\overset{ au}{1}$ | 0 | | 1897:
1905: | 1 | 0 | 1 | 1 | 1 | 0 | Õ | Ö | | 1903: | 0 | 0 | 3 | Ō | 1 | ő | ž | ĺ | | 1921: | 0 | Č | 1 | 1 | Ĉ | Ö | Ō | 0 | | 1929: | Õ | ĭ | <u>ī</u> | 1 | 0 | 1 | 1 | 0 | | 1937: | Ō | Ō | 1 | 1 | 0 | 0 | 2 | 2 | | 1945: | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | | 1953: | 0 | 0 | 0
1 | 3 | 0 | 2
1. | 0 | 0 | | 1961: | 1 | 0 | | 3
0
2
0 | 0
2
0 | 1. | 0 | 3 | | 1969: | 0 | 1 | 0 | 2 | 2 | 0 | 2 | 1. | | 1977: | 0
2
3
2
1
3 | 1
1
2
2
1 | 0
1
0 | | 0 | 0 | 0 | 1 | | 1985: | 3 | 2 | 0 | 0 | 0 | 1
2
0 | 0 | 1
2 | | 1993: | 2 | 2 | 0
1 | 0 | 0
3
0 | <u>ر</u>
م | 1
0 | 1 | | 2001: | Ţ | 0 | 0 | 1
0 | 0 | 1 | | 0 | | 2009: | 0 | 1 | | 0 | Ö | 1 | 1
2
0 | 0 | | 2017:
2025: | . 0 | . 0 | 2 | 1 | 0 | Õ | Ō | Ö | | 2023: | 0 | 1 | 0
2
1
2
0 | 0
1
1 | Ö | Ö | i | 0
2
0 | | 2041: | Ö | 0 | 2 | Õ | Ö | Ö | 0 | 0 | | 2049: | ĭ | 3 | _
0 | 1 | 0 | 1 | 1 | 1 | | 2057: | ī | 3
2
0 | 0 | 1 | е | 0 | 0 | 1 | | 2065: | 0 | | 0 | 0
1
1
0
1 | 3 | 0 | 0 | 1
1
1
1 | | 2073: | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | 2081: | 0 | 0 | i
0 | 1 | 0
3
1
1
0 | 0 | 0 | 0 2 | | 2089: | 0 | 0 | 0 | 0 | O | 0 | 0 | 2 | | Channel | Data | Repor | ct | | 4/13/2016 | 10:12: | 41 AM | | Page | 7 | |--|------|---|---|--------------------------------------|--|--------|---|---|---|---| | 2529: | | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | | | | Samp | ole Ti | itle: | SEDIMEN | T 2016-03- | ·16B | | 4 | | | | Channel 253453:::::::::::::::::::::::::::::::::: | | -0000100000000002100010100000000010000000 | 101000000000100010000000000000000000000 | 000000000000000000000000000000000000 | 010000010201021000001011000000000011000000 | | 000000000000000000000000000000000000000 | 100100001400000000000011000000000000000 | 000020000201110000100000000000000000000 | | | Channel | Data Repo | rt | 4/ | 13/2016 | 10:12:4 | 11 AM | | Page { | |--|----------------------------|--------------------------------------|--|---------------------------------|---|---|---|---------------------------------| | 2361: | 0 | 0 | 0 | 0 | 0 | О | 0 | 0 | | | Sample T | itle: | SEDIMENT | 2016-03- | -16B | | | | | Channel 2969: 2977: 2985: 29019: 29977: 29985: 29017: 29985: 30025:
30025: 30 | | 000000000000000000000000000000000000 | SEDIMENT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2015-03-
 | 010001100001100000000000000000000000000 | 010001000000001100000000000000000000000 | 000000130010000000000011001000000000000 | | | 3297:
3305:
3313:
3321:
3329:
3337:
3345:
3353:
3361: | 0
0
1
0
0
0 | 1
2
0
0
0
0
0 | 0
0
0
0
0
0
2
0
0 | 1
0
1
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0
1
0
0 | 0
0
0
0
0
0
1
0 | 0
0
0
0
0
0
0 | 8..... | Channel | Data | Rep | ort | | 4/13/2016 | 10:12 | :41 AM | | Page | |--|------|---|--|--|--|-------|---|---|---| | 3393: | | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | | Samp | ole | Title: | SEDIME | NT 2016-03 | 3-16B | | | | | Channel: 3401: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 344275: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 34427755: 3442775: 3442775: 3442775: 3442775: 3442775: 3442775: 344277 | Samp | e 00000000000000000000000000000000000 | 01000000000000000000000000000000000000 | 00000100000000000000000000000000000000 | 01000010000000000000000000000000000000 | | 010000000100000000000000000000000000000 | | 100000000000000000000000000000000000000 | | Channel Dat | a Repor | :t | 4 | /13/2016 | 10:12: | 41 AM | | Page 10 | |--|----------|---|----------|----------|---|-------|--|---------| | 3825: | 0 | 0 | 0 | 0 | 0 | ì | 0 | 1 | | Sa | ample Ti | tle: | SEDIMENT | 2016-03- | -16B | | | | | Channel 3833: 3841: 3849: 3857: 3865: 3873: 3881: 38897: 3905: 3913: 3929: 3929: 3937: 3945: 3969: 3969: 3977: 3985: 3969: 3977: 4009: 4017: 4025: 4033: 4041: 4049: 4049: 4057: 4065: 4073: 4081: | | 100000000000000000000000000000000000000 | | | 000000010001000000000000000000000000000 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 0000035701.CNF Live Time :3600.000 sec Real Time :3611.770 sec Start: 1: 0.7(keV) Stop : 4096:4097.0(keV) Acq. Start :Wed Apr 13 09:12:11 2016 104-Counts-log scale Channel ROI Type: 1 ROI Type: 2 1603102-06 SEDIMENT 2016-03-16B DUP #### GAMMA SPECTRUM ANALYSIS Sample Identification : 1603102-06 Sample Description : SEDIMENT 2016-03-16B DUP Sample Type : S : SOIL Sample Size Facility : 5.360E+02 grams : Countroom Sample Taken On Acquisition Started : 3/16/2016 1:45:59PM : 4/13/2016 10:13:02AM Procedure : GAS-1402 pCi Operator : Administrator Detector Name : GE3 Geometry : GAS-1402 Detector Name : GE3 Geometry : GAS-1402 Live Time : 3600.0 seconds Real Time : 3611.4 seconds Dead Time . 0.32 % Peak Locate Threshold : 2.50 Peak Locate Range (in channels) : 1 - 4096 Peak Area Range (in channels) : 9 - 4096 Identification Energy Tolerance : 1.000 keV Energy Calibration Used Done On : 10/25/2014 Efficiency Calibration Used Done On : 10/25/2014 Efficiency Calibration Description : Sample Number : 35710 #### PEAK-TO-TOTAL CALIBRATION REPORT #### Peak-to-Total Efficiency Calibration Equation K4 4/13/16 SEDIMENT 2016-03-16B DUP ## PEAK LOCATE REPORT Peak Locate Performed on : 4/13/2016 11:13:14AM Peak Locate From Channel : 1 Peak Locate To Channel : 4096 Peak Search Sensitivity : 2.50 Peak Search Sensitivity | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| | 1 | 24.22 | 24.46 | 0.0000 | 0.00 | | 2 | 46.63 | 46.86 | 0.0000 | 0.00 | | 3 | 62.99 | 63.21 | 0.0000 | 0.00 | | 4 | 74.94 | 75.15 | 0.0000 | 0.00 | | 5 | 77.78 | 77.99 | 0.0000 | 0.00 | | 6 | 88.34 | 88.54 | 0.0000 | 0.00 | | 7 | 128.04 | 128.22 | 0.0000 | 0.00 | | 8 | 167.33 | 167.50 | 0.0000 | 0.00 | | 9 | 185.96 | 186.11 | 0.0000 | 0.00 | | . 10 | 198.58 | 198.83 | 0.0000 | 0.00 | | 11 | 238.98 | 239.10 | 0.0000 | 0.00 | | 12 | 242.23 | 242.36 | 0.0000 | 0.00 | | 13 | 270.34 | 270.45 | 0.0000 | 0.00 | | 14 | 277.96 | 278.07 | 0.0000 | 0.00 | | 15 | 295.69 | 295.79 | 0.0000 | 0.00 | | 16 | 300.61 | 300.70 | 0.0000 | 0.00 | | 17 | 338.68 | 338.75 | 0.0000 | 0.00 | | 18 | 352.38 | 352.45 | 0.0000 | 0.00 | | 19 | 459.17 | 459.19 | 0.0000 | 0.00 | | 20 | 462.85 | 462.87 | 0.0000 | 0.00 | | 21 | 478.18 | 478.18 | 0.0000 | 0.00 | | . 22 | 511.55 | 511.54 | 0.0000 | 0.00 | | 23 | 583.15 | 583.10 | 0.0000 | 0.00 | | 24 | 609.54 | 609.49 | 0.0000 | 0.00 | | 25 | 728.02 | 727.90 | 0.0000 | 0.00 | | 26 | 768.53 | 768.40 | 0.0000 | 0.00 | | 27 | 786.12 | 785.98 | 0.0000 | 0.00 | | 28 | 794.79 | 794.64 | 0.0000 | 0.00
0.00 | | : 29 | 865.00 | 864.83 | 0.0000 | 0.00 | | 30 | 911.39 | 911.19 | 0.0000 | 0.00 | | . 31 | 969.23 | 969.01 | 0.0000 | 0.00 | | 32 | 1091.59 | 1091.32 | 0.0000 | 0.00 | | 33 | 1121.04 | 1120.75 | 0.0000 | 0.00 | | 34 | 1218.18 | 1217.85 | 0.0000 | 0.00 | | 35 | 1432.50 | 1432.09 | 0.0000 | 0.00 | | 36 | 1460.89 | 1460.46 | 0.0000
0.0000 | 0.00 | | 37 | 1531.64 | 1531.19 | 0.0000 | 0.00 | | 38 | 1593.29 |
1592.82 | | 0.00 | | 39 | 1626.69 | 1626.21 | 0.0000
0.0000 | 0.00 | | 40 | 1630.34 | 1629.85 | 0.0000 | 0.00 | | 41 | 1659.46 | 1658.97 | 0.0000 | 0.00 | | 42 | 1730.78 | 1730.26 | 5.0000 | 0.00 | Page 3 of 28 Analysis Report for 1603102-06 | Peak No. | Energy (keV) | Centroid Channel | Centroid Uncertainty | Peak Significance | |----------|--------------|------------------|----------------------|-------------------| |
43 | 1764.27 | 1763.74 | 0.0000 | 0.00 | | 44 | 1874.00 | 1873.43 | 0.0000 | 0.00 | | 45 | 1973.17 | 1972.57 | 0.0000 | 0.00 | | 46 | 2103.87 | 2103.23 | 0.000 | 0.00 | | 47 | 2614.39 | 2613.61 | 0.0000 | 0.00 | ^{? =} Adjacent peak noted Errors quoted at 2.000sigma 1603102-06 SEDIMENT 2016-03-16B DUP ## PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 11:13:14AM Peak Analysis From Channel Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI RO
start en | | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |---|-------------|-----------------|--------------------|-----------|------------------|-------------------------|---------------------|---------------| | | 1 | 24.22 | 21 - 2 | 9 24.46 | 8.05E+01 | 81.10 | 9.51E+02 | 6.38 | | | 2 | 46.63 | 44 - 5 | | 1.03E+02 | 71.93 | 8.68E+02 | 1.08 | | | 3 | 62.99 | 59 - 6 | | 1.72E+02 | 100.94 | 1.47E+03 | 1.71 | | M | 4 | 74.94 | 71 - 8 | 2 75.15 | 2.49E+02 | 78.06 | 9.46E+02 | 1.66 | | m | 5 | 77.78 | 71 - 8 | | 4.76E+02 | 84.70 | 8.87E+02 | 1.67 | | | 6 | 88.34 | 86 - 9 | 1 88.54 | 8.59E+01 | 79.81 | 1.20E+03 | 1.09 | | | 7 | 128.04 | 125 - 13 | 1 128.22 | 5.71E+01 | 64.33 | 7.12E+02 | 2.36 | | | 8 | 167.33 | 165 - 17 | 0 167.50 | 5.96E+01 | 47,48 | 4.05E+02 | 2.60 | | | 9. | 185.96 | 182 - 19 | 0 186.11 | 1.56E+02 | 72.24 | 7.09E+02 | 1.89 | | | 10 | 198.68 | 195 - 20 | 3 198.83 | 6.80E+01 | 66.75 | 6.44E+02 | 6.22 | | M | 11 | 238.98 | 233 - 24 | 6 239.10 | 5.33E+02 | 56.63 | 2.88E+02 | 1.75 | | m | 12 | 242.23 | 233 - 24 | 6 242.36 | 1,67E+02 | 62.99 | 2,82E+02 | 2.08 | | М | 13 | 270.34 | 267 - 28 | 3 270.45 | 5.41E+01 | 43.24 | 3.24E+02 | 2.24 | | m | 14 | 277.96 | 267 - 28 | 3 278.07 | 3.49E+01 | 47.54 | 3.31E+02 | 2.82 | | М | 15 | 295.69 | 291 - 30 | 6 295.79 | 2.52E+02 | 42.11 | 1.81E+02 | 1.75 | | m | 1.6 | 300.61 | 291 - 30 | 6 300.70 | 6.79E+01 | 41.54 | 2.30E+02 | 2.36 | | | 17 | 338.68 | 335 - 34 | 3 338.75 | 8.44E+01 | 49.25 | 3.15E+02 | 2.09 | | | 18 | 352.38 | 348 - 35 | 6 352.45 | 3.94E+02 | 58.20 | 2.77E+02 | 1.97 | | М | 19 | 459.17 | 458 - 46 | 7 459.19 | 1.56E+01 | 12.45 | 4.11E+01 | 2.09 | | m | 20 | 462.85 | 458 - 46 | 7 462.87 | 2.90E+01 | 26.59 | 1.15E+02 | 2.09 | | | 21 | 478.18 | 474 - 48 | 2 478.18 | 8.56E+01 | 41.81 | 2.17E+02 | 1.35 | | - | 22 | 511.55 | 507 - 51 | 6 511.54 | 1.10E+02 | 40.17 | 1.63E+02 | 1.86 | | | 23 | 583.15 | 578 - 58 | 7 583.10 | 1.21E+02 | 42.59 | 1.90E+02 | 1.89 | | | 24 | 609.54 | 60 - 61 | 4 609.49 | 3.00E+02 | 46.80 | 1.32E+02 | 2.07 | | | 25 | 728.02 | 723 - 73 | 2 727.90 | 3.50E+01 | 30.64 | 1.12E+02 | 1.72 | | | 26 | 768.53 | 764 - 77 | | 3.95E+01 | 29.22 | 1.05E+02 | 2.90 | | | 27 | 786.12 | 783 - 78 | | 1.775+01 | 18.86 | 5.06E+01 | 3.04 | | | 28 | 794.79 | 790 - 79 | | 2.69E+01 | 25.20 | 7.61E+01 | 2.22 | | | 29 | 865.00 | 858 - 87 | | 4.22E+01 | 35.04 | 1.08E+02 | 11.27 | | | 30 | 911.39 | 907 - 91 | | 9.25E+01 | 33,62 | 1.05E+02 | 2.42 | | | 31 | 969.23 | 966 - 97 | 3 969.01 | 4.99E+01 | 24.00 | 6.02E+01 | 1.75 | | | 32 | 1091.59 | 1086 - 109 | | 2.32E+01 | 19.29 | 3.95E+01 | 4.29 | | | 33 | 1121.04 | 1116 - 112 | | 6.35E+01 | 27.95 | 6.69E+01 | 2.14 | | | 34 | 1218.18 | 1212 - 122 | 2 1217.85 | 2.24E+01 | 27.35 | 8.71E+01 | 2.76 | | | 35 | 1432.50 | 1427 - 143 | | 1.50E+01 | 11.40 | 1.00E+01 | 4.62 | | | 36 | 1460.89 | 1456 - 146 | | 3.60E+02 | 38,32 | 4.53E+00 | 2.49 | | | 37 | 1531.64 | 1529 - 153 | | 8.15E+00 | 7.00 | 3.70E+00 | 2.36 | | | 38 | 1593.29 | 1590 - 159 | | 1.03E+01 | 13.42 | 2.14E+01 | 2.48 | | Μ | 39 | 1626.69 | 1625 - 163 | | 6.94E+00 | 3.74 | 2.00E+00 | 4.60 | | m | 40 | 1630.34 | 1625 - 163 | 1629.85 | 1.08E+01 | 10.00 | 8.00E+00 | 4.14 | 1603102-06 SEDIMENT 2016-03-16B DUP | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | FWHM
(keV) | |-------------|-----------------|--------------|------------|------------------|------------------|-------------------------|---------------------|---------------| | 41 | 1659.46 | 1655 - | 1664 | 1658.97 | 1.15E+01 | 10.86 | 1.11E+01 | 5.43 | | 42 | 1730.78 | 1726 - | | 1730,26 | 1.02E+01 | 9.38 | 7.57E+00 | 1.99 | | 43 | 1764.27 | 1759 - | 1768 | 1763.74 | 4.14E+01 | 18.47 | 2.52E+01 | 1.63 | | 44 | 1874.00 | 1869 - | 1876 | 1873.43 | 7.00E+00 | 5.29 | 0.00E+00 | 3.00 | | 45 | 1973.17 | 1969 - | | 1972.57 | 7.00E+00 | 5.29 | 0.00E+00 | 2.22 | | 46 | 2103.87 | 2099 - | | 2103.23 | 9.50E+00 | 9.82 | 9.00E+00 | 1.19 | | 47 | 2614.39 | 2609 - | | 2613.61 | 4.10E+01 | 12.81 | 0.00E+00 | 2.25 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ## PEAK ANALYSIS REPORT Peak Analysis Performed on : 4/13/2016 11:13:14AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |---|-------------|-----------------|--------------|------------|------------------|-------------------------|---------------------|-------------------| | | 1 | 24.22 | 21 - | 29 | 8.05E+01 | 81.10 | 9.51E+02 | 6.50E+01 | | | 2 | 46.63 | 44 - | 50 | 1.03E+02 | 71.93 | 8.68E+02 | 5.67E+01 | | | 3 | 62.99 | 59 - | 67 | 1.72E+02 | 100.94 | 1.47E+03 | 8.01E+01 | | M | 4 | 74.94 | 71 - | 82 | 2.49E+02 | 78.06 | 9.46E+02 | 5.06E+01 | | m | 5 | 77.78 | 71 - | 82 | 4.76E+02 | 84.70 | 8.87E+02 | 4.90E+01 | | | 6 | 88.34 | 86 - | 91 | 8.59E+01 | 79.81 | 1.20E+03 | 6.38E+01 | | | 7 | 128.04 | 125 - | 131 | 5.71E+01 | 64.33 | 7.12E+02 | 5.14E+01 | | | 8 | 167.33 | 165 - | 170 | 5.96E÷01 | 47.48 | 4.05E+02 | 3.69E+01 | | | 9 | 185.96 | 182 - | 190 | 1.56E+02 | 72.24 | 7.09E+02 | 2.48E+01 | | | 10 | 198.68 | 195 - | 203 | 6.80E+01 | 66.75 | 6.44E+02 | 5.32E+01 | | М | 11 | 238.98 | 233 - | 246 | 5.33E+02 | 56.63 | 2.88E+02 | 2.79E+01 | | m | 12 | 242.23 | 233 - | 246 | 1.67E+02 | 62.99 | 2.82E+02 | 2.76E+01 | | M | 13 | 270.34 | 267 - | 283 | 5.41E+01 | 43.24 | 3.24E+02 | 2.96E+01 | | m | 14 | 277.96 | 267 - | 283 | 3.49E+01 | 47.54 | 3.31E+02 | 2.99E+01 | | М | 15 | 295.69 | 291 - | 306 | 2.52E+02 | 42.11 | 1.81E+02 | 2.21E+01 | | m | 16 | 300.61 | 291 - | 306 | 6.79E+01 | 41.54 | 2.30E+02 | 2.49E+01 | | | 17 | 338.68 | 335 - | 343 | 8.44E+01 | 49.25 | 3.15E+02 | 3.76E+01 | | | 18 | 352.38 | 348 - | 356 | 3.94E+02 | 58.20 | 2.77E+02 | 3.50E+01 | | М | 19 | 459.17 | 458 - | 467 | 1.56E+01 | 12.45 | 4.11E+01 | 1.05E+01 | | m | 20 | 462.85 | 458 ~ | 467 | 2.90E+01 | 26.59 | 1.15E+02 | 1.77E+01 | 1603102-06 SEDIMENT 2016-03-16B DUP | 1 | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts | Critical
Level | |---|-------------|-----------------|---------------|------------|------------------|-------------------------|---------------------|-------------------| | | 21 | 478.18 | 474 - | 482 | 8.56E+01 | 41.81 | 2.17E+02 | 3.08E+01 | | | 22 | 511.55 | 507 - | 516 | 1.10E+02 | 40.17 | 1.63E+02 | 2.82E+01 | | | 23 | 583.15 | 578 - | 587 | 1.21E+02 | 42.59 | 1.90E+02 | 3.00E+01 | | | 24 | 609.54 | 604 - | 614 | 3.00E+02 | 46.80 | 1.32E+02 | 2.59E+01 | | | 25 | 728.02 | 723 - | 732 | 3.50E+01 | 30.64 | 1.12E+02 | 2.32E+01 | | | 26 | 768.53 | ·764 - | 772 | 3.95E+01 | 29.22 | 1.05E+02 | 2.17E+01 | | | 27 | 786.12 | 783 - | 789 | 1.77E+01 | 18.86 | 5.06E+01 | 1.39E+01 | | , | 28 | 794.79 | 790 - | 799 | 2.69E+01 | 25.20 | 7.61E+01 | 1.89E+01 | | | 29 | 865,00 | 858 - | 872 | 4,22E+01 | 35.04 | 1.08E+02 | 2.67E+01 | | | 30 | 911.39 | 9 07 – | 916 | 9.25E+01 | 33.62 | 1.05E+02 | 2.27E+01 | | | 31 | 969.23 | 966 - | 973 | 4.99E+01 | 24.00 | 6.02E+01 | 1.59E+01 | | | 32 | 1091.59 | 1086 - | 1095 | 2.32E+01 | 19.29 | 3.95E÷01 | 1.37E+01 | | | 33 | 1121.04 | 1116 - | 1126 | 6.35E+01 | 27.95 | 6.69E+01 | 1.89E+01 | | | 34 | 1218.18 | 1212 - | 1222 | 2.24E+01 | 27.35 | 8.71E+01 | 2.11E+01 | | | 35 | 1432.50 | 1427 - | 1436 | 1.50E+01 | 11.40 | 1.00E+01 | 6.88E+00 | | | 36 | 1460.89 | 1456 - | 1464 | 3.60E+02 | 38.32 | 4.53E+00 | 4.45E+00 | | | 37 | 1531.64 | 1529 - | 1534 | 8.15E+00 | 7.00 | 3.70E+00 | 3.33E+00 | | | 38 | 1593.29 | 1590 - | 1597 | 1.03E+01 | 13,42 | 2.14E+01 | 9.69E+00 | | М | 39 | 1626.69 | 1625 - | 1633 | 6.94E+00 | 3.74 | 2.00E+00 | 2.33E+00 | | m | 40 | 1630.34 | 1625 - | 1633 | 1.08E+01 | 10.00 | 8.00E+00 | 4.65E+00 | | | 41 | 1659.46 | 1655 - | 1664 | 1.15E+01 | 10.86 | 1.11E+01 | 6.98E+00 | | | 42 | 1730.78 | 1726 - | 1733 | 1.02E+01 | 9.38 | 7.57E+00 | 5.64E+00 | | | 43 | 1764.27 | 1759 - | 1768 | 4.14E+01 | 18.47 | 2.52E+01 | 1.09E+01 | | | 44 | 1874.00 | 1869 - | 1876 | 7.00E+00 | 5.29 | 0.00E+00 | 0.00E+00 | | | 45 | 1973.17 | 1969 - | 1975 | 7.00E+00 | 5.29 | 0.00E+00 | 0.00E+00 | | | 46 | 2103.87 | 2099 - | 2107 | 9.50E+00 | 9.82 | 9.00E+00 | 6.29E+00 | | | 47 | 2614.39 | 2609 - | 2617 | 4.10E+01 | 12.81 | 0.00E+00 | 0.00E+00 | | | | | | | | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK WITH NID REPORT Peak Analysis Performed on : 4/13/2016 11:13:14AM Peak Analysis From Channel : 1 Peak Analysis To Channel : 4096 Tentative NID Library : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB Peak Match Tolerance : 1.000 keV 1603102-06 | | Peak
No. | Energy
(keV) | ROI
start | ROI
end | Peak
Centroid | Net Peak
Area | Net Area
Uncertainty | Continuum
Counts |
Tentative
Nuclide | |---|-------------|--------------------|------------------|--------------|--------------------|----------------------|-------------------------|----------------------|----------------------| | | 1 | 24.22 | 21 - | 29 | 24.46 | 8.05E+01 | 81.10 | 9.51E+02 | | | | 2 | 46.63 | 44 - | 50 | 46.86 | 1.03E+02 | 71.93 | 8.68E+02 | PB-210 | | | 3 | 62.99 | 59 - | 67 | 63.21 | 1.72E+02 | 100.94 | 1.47E+03 | TH-230
TH-234 | | М | 4 | 74.94 | 71 - | 82 | 75.15 | 2.49E+02 | 78.06 | 9.46E+02 | AM-243 | | m | 5 | 77.78 | 71 - | 82 | 77.99 | 4.76E+02 | 84.70 | 8.87E+02 | TI-44 | | | 6 | 88.34 | 86 - | 91 | 88.54 | 8.59E+01 | 79.81 | 1.20E+03 | LU-176 | | | - | | | | | | | | CD-109
SN-126 | | | 7 | 128.04 | 125 - | 131 | 128.22 | 5.71E+01 | 64.33 | 7.12E+02 | • • • • • | | | 8 | 167.33 | 165 - | 170 | 167.50 | | 47.48 | 4.05E+02 | • • • • • | | | 9 | 185.96 | 182 - | 190 | 186.11 | 1.56E+02 | 72.24 | 7.09E+02 | RA-226 | | | 10 | 198.68 | 195 - | 203 | 198.83 | 6.80E+01 | 66.75 | 6,44E+02 | | | М | 11 | 238.98 | 233 - | 246 | 239.10 | 5.33E+02 | 56.63 | 2.88E+02 | PB-212 | | m | 12 | 242.23 | 233 - | 246 | 242.36 | 1.67E+02 | 62.99 | 2.82E+02 | | | M | 13 | 270.34 | 267 - | 283 | 270.45 | 5.41E+01 | 43.24 | 3.24E+02 | 015 040 | | m | 14 | 277.96 | 267 - | 283 | 278.07 | 3.49E+01 | 67.54 | 3.31E+02 | CM-243
NP-239 | | M | 15 | 295.69 | 291 - | 306 | 295.79 | 2.52E+02 | 42.11 | 1.81E+02 | PB-214 | | m | 16 | 300.61 | 291 - | 306 | 300.70 | 6.79E+01 | 41.54 | 2.30E+02 | GA-67
PB-212 | | | | | | 2.42 | 222 75 | 0 445 01 | 40.05 | 3.15E+02 | BI-210M
AC-228 | | | 17 | 338.68 | 335 - | 343 | 338.75 | 8.44E+01 | 49.25
58.20 | 2.77E+02 | PB-214 | | | 18 | 352.38 | 348 - | 356 | 352.45 | 3.94E+02
1.56E+01 | 12.45 | 4.11E+01 | FD-214 | | M | 19 | 459.17 | 458 - | 467 | 459.19
462.87 | 2.90E+01 | 26.59 | 1.15E+02 | SB-125 | | m | 20 | 462.85 | 453 -
474 - | 467
482 | 478.18 | 8.56E+01 | 41.81 | 2.17E+02 | BE-7 | | | 21 | 478.18
511.55 | 474 -
507 - | 516 | 511.54 | 1.10E+02 | 40.17 | 1.63E+02 | | | | 22
23 | 583.15 | 578 - | 587 | 583.10 | 1.21E+02 | 42.59 | 1.90E+02 | TL-208 | | | 23
24 | 609.54 | 578 -
604 - | 614 | 609.49 | 3.00E+02 | 46.80 | 1.32E+02 | BI-214 | | | 25 | 728.02 | 723 - | 732 | 727.90 | 3.50E+01 | 30.64 | 1.12E+02 | BI-212 | | | 26 | 768.53 | 764 - | 772 | 768.40 | 3.95E+01 | 29.22 | 1.05E+02 | | | | 27 | 786.12 | 783 - | 789 | 785.98 | 1.775+01 | 18.86 | 5.06E+01 | | | | 28 | 794.79 | 790 – | 799 | 794.64 | 2.69E+01 | 25.20 | 7.61E+01 | | | | 29 | 865.00 | 858 - | 872 | 864.83 | 4.22E+01 | 35.04 | 1.08E+02 | | | | 30 | 911.39 | 907 - | 916 | 911.19 | 9.25E+01 | 33.62 | 1.05E+02 | AC-228 | | | | | | | | | | | LU-172 | | | 31 | 969.23 | 966 - | 973 | 969.01 | 4.99E+01 | 24.00 | 6.02E+01 | AC-228 | | | 32 | 1091.59 | 1086- | 1095 | 1091.32 | 2.32E+01 | 19.29 | 3.95E+01 | | | | 33 | 1121.04 | 1116 - | 1126 | 1120.75 | 6.35E+01 | 27.95 | 6.69E+01 | TA-182
SC-46 | | | | | | | 404- 0- | 0.04=:04 | 02 55 | 0 718:01 | BI-214 | | | 34 | 1218.18 | 1212 - | 1222 | 1217.85 | 2.24E+01 | 27.35 | 8.71E+01 | • • • • | | | 35 | 1432.50 | 1427 - | 1436 | 1432.09 | 1.50E+01 | 11.40 | 1.00E+01 | · · · · · · | | | 36 | 1460.89 | 1456 - | 1464 | 1460.46 | 3.60E+02 | 38.32 | 4.53E+00 | K-40 | | | 37 | 1531.64 | 1529 - | 1534 | 1531.19 | 8.15E+00 | 7.00 | 3.70E+00
2.14E+01 | | | | 38 | 1593.29 | 1590 - | 1597 | 1592.82 | 1.03E+01 | 13.42
3.74 | 2.14E+01
2.00E+00 | | | M | 39 | 1626.69 | 1625 - | 1633 | 1626.21 | 6.94E+00 | 10.00 | 8.00E+00 | | | m | 40 | 1630.34 | 1625 - | 1633 | 1629.85 | 1.08E+01
1.15E+01 | 10.86 | 1.11E+01 | | | | 41 | 1659.46 | 1655 - | 1664 | 1658.97
1730.26 | 1.13E+01
1.02E+01 | 9.38 | 7.57E+00 | | | | 42 | 1730.78 | 1726 - | 1733 | 1763.74 | 4.14E+01 | 18.47 | 2.52E+01 | BI-214 | | | 43 | 1764.27 | 1759 -
1869 - | 1768
1876 | 1873.43 | 7.00E+00 | 5.29 | 0.00E+00 | | | | 44
45 | 1874.00
1973.17 | 1969 - | 1975 | 1972.57 | 7.00E+00 | 5.29 | 0.00E+00 | | | | 45 | 13/3.1/ | 1303 | 19/3 | 1712.01 | ,.001100 | J+2J | _ , , , , , | | 1603102-06 SEDIMENT 2016-03-16B DUP | Peak
No. | Energy
(keV) | Rù
start | ROI
end | Peak
Centroid | Net Peak
Area | Continuum
Counts | | |-------------|--------------------|--------------------------------|------------|--------------------|----------------------|--------------------------|--| | 46
47 | 2103.87
2614.39 | 2099 -
2609 - | | 2103.23
2613.61 | 9.50E+00
4.10E+01 |
9.00E+00
0.00E+00 | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ### PEAK EFFICIENCY REPORT Peak Analysis Performed on : 4/13/2016 11:13:14AM | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | |----------|-------------|-----------------|------------------|-------------------------|--------------------|---------------------------| | | 1 | 24,22 | 8.05E+01 | 81.10 | 1.93E-03 | 1.58E-03 | | | 2 | 46.63 | 1.03E+02 | 71.93 | 1.51E-02 | 1.58E-03 | | | 3 | 62.99 | 1,72E+02 | 100.94 | 2.15E-02 | 1.70E-03 | | М | 4 | 74.94 | 2.49E+02 | 78.06 | 2.36E-02 | 2.09E-03 | | m | 5 | 77.78 | 4.76E+02 | 84.70 | 2.39E-02 | 2.19E-03 | | | 6 | 88.34 | 8.59E+01 | 79.81 | 2.44E-02 | 2.52E-03 | | | 6
7 | 128.04 | 5.71E+01 | 64.33 | 2.26E-02 | 1.70E-03 | | | 8 | 167.33 | 5.96E+01 | 47.48 | 1,96E-02 | 1.50E-03 | | | 9 | 185.96 | 1.56E+02 | 72.24 | 1.83E-02 | 1.42E-03 | | | 10 | 198.68 | 6.80E+01 | 66.75 | 1.75E-02 | 1.36E-03 | | 4 | 11 | 238.98 | 5.33E+02 | 56.63 | 1.52E-02 | 1.18E-03 | | n | 12 | 242.23 | 1.67E+02 | 62.99 | 1.50E-02 | 1.16E-03 | | vi | 13 | 270.34 | 5.41E+01 | 43.24 | 1.38E-02 | 1.04E-03 | | n | 14 | 277.96 | 3.49E+01 | 47.54 | 1.35E-02 | 1.00E-03 | | M | 15 | 295.69 | 2.52E+02 | 42.11 | 1.28E-02 | 9.73E-04 | | m | 16 | 300.61 | 6.79E+01 | 41.54 | 1.26E-02 | 9.66E-04 | | ••• | 17 | 338.68 | 8.44E+01 | 49.25 | 1.14E-02 | 9.12E-04 | | | 18 | 352.38 | 3.94E+02 | 58.20 | 1.105-02 | 8.93E-04 | | M | 19 | 459.17 | 1.56E+01 | 12.45 | 8.79E-03 | 7.70E-04 | | m | 20 | 462.85 | 2.90E+01 | 26.59 | 8.73E-03 | 7.66E-04 | | •• | 21 | 478.18 | 8.56E+01 | 41.81 | 8.49E-03 | 7.51E-04 | | | 22 | 511.55 | 1.10E+02 | 40.17 | 8.00E-03 | 7.18E-04 | | | 23 | 583.15 | 1.21E+02 | 42.59 | 7.14E-03 | 6.46E-04 | | | 24 | 609.54 | 3.00E+02 | 46.80 | 6.87E-03 | 6.20E-04 | | | 25 | 728.02 | 3.50E+01 | 30.64 | 5.89E-03 | 5.14E-04 | | | 26 | 768.53 | 3.95E+01 | 29.22 | 5.62E-03 | 4.80E-04 | | | 27 | 786.12 | 1.77C+01 | 13.86 | 5.51E-03 | 4.66E-04 | | | 28 | 794.79 | 2.69E+01 | 25.20 | 5.46E-03 | 4.59E-04 | eport for 1603102-06 SEDIMENT 2016-03-16B DUP | | Peak
No. | Energy
(keV) | Net Peak
Area | Net Area
Uncertainty | Peak
Efficiency | Efficiency
Uncertainty | | |-----|-------------|-----------------|------------------|-------------------------|--------------------|---------------------------|--| | | 29 | 865.00 | 4.22E+01 | 35.04 | 5.07E-03 | 4.02E-04 | | | | | 911.39 | 9.25E+01 | 33.62 | 4.85E-03 | 3.72E-04 | | | | 30
31 | 969.23 | 4.99E+01 | 24.00 | 4.60E-03 | 3.61E-04 | | | | | 1091.59 | 2.32E+01 | 19.29 | 4.17E-03 | 3.39E-04 | | | | 32 | 1121.04 | 6.35E+01 | 27.95 | 4.07E~03 | 3.33E-04 | | | | 33 | 1218.18 | 2.24E+01 | 27.35 | 3.81E-03 | 3.14E-04 | | | | 34 | 1432.50 | 1.50E+01 | 11.40 | 3.84E-03 | 2.74E-04 | | | | 35 | | 3.60E+02 | 38.32 | 3.29E-03 | 2.69E-04 | | | | 36 | 1460.89 | 8.15E+00 | 7.00 | 3.17E-03 | 2.59E-04 | | | | 37 | 1531.64 | 1.03E+01 | 13.42 | 3.08E-03 | 2.50E-04 | | | 3.6 | 38 | 1593.29 | 6.94E+00 | 3.74 | 3.03E-03 | 2.44E-04 | | | M | 39 | 1626.69 | 1.08E+01 | 10.00 | 3.03E-03 | 2.44E-04 | | | m | 40 | 1630.34 | | 10.86 | 2.99E-03 | 2.40E-04 | | | | 41 | 1659.46 | 1.15E+01 | 9.38 | 2.90E-03 | 2.29E-04 | | | | 42 | 1730.78 | 1.02E+01 | 18.47 | 2.86E-03 | 2.24E-04 | | | | 43 | 1764.27 | 4.14E+01 | 5.29 | 2.74E-03 | 2.13E-04 | | | | 44 | 1874.00 | 7.00E+00 | 5.29 | 2.64E-03 | 2.13E-04
2.13E-04 | | | | 45 | 1973.17 | 7.00E+00 | | | 2.13E-04
2.13E-04 | | | | 46 | 2103.87 | 9.50E+00 | 9.82 | 2.54E-03 | 2.13E-04
2.13E-04 | | | | 47 | 2614.39 | 4.10E+01 | 12.81 | 2.24E-03 | Z.IJE-04 | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000 sigma # BACKGROUND SUBTRACT REPORT Peak Analysis Performed on : 4/13/2016 11:13:14AM Env. Background File : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF | | Peak
No. | Energy
(keV) | C⊴gìnal
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |---|--------------|------------------|----------------------|---------------------------|-----------------------|----------------------|----------------------|-----------------------| | _ | 1 2 | 24.22
46.63 | 8.05E+01
1.03E+02 | 81.10
71.93 | 3.04E+01 | 2.01E+01 | 8.05E+01
7.27E+01 | 8.11E+01
7.47E+01 | | М | 3 | 62.99
74.94 | 1.72E+02
2.49E+02 | 100.94
78.06 | 5.41E+01 | .5.13E+00 | 1.17E+02
2.49E+02 | 1.01E+02
7.81E+01 | | m | 5 | 77.78
88.34 | 4.76E+02
8.59E+01 | 84.70
79.81 | 3.05E+00 | 2.15E+00 | 4.76E+02
8.28E+01 | 8.47E+01
7.98E+01 | | | 6
7 | 128.04
167.33 | 5.71E+01
5.96E+01 | 64.33
47.48 | 31.0311.00 | 2.202.00 | 5.71E+01
5.96E+01 | 6.43E+01
4.75E+01 | | | 8
9
10 | 185.96
198.68 | 1.56E+01
6.80E+01 | 72.24
66.75 | 3.82E+01
1.24E+01 | 5.87E+00
6.03E+00 | 1.17E+02
5.56E+01 | 7.25E+01
6.70E+01 | | M | 11 | 238.98 | 5.33E+02 | 56.63 | 1.06E+01 | 5.71E+00 | 5.23E+02 | 5.69E+01 | 1603102-06 | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Subtracted
Area | Subtracted
Uncert. | |--------|-------------|-----------------|------------------|---------------------------
-----------------------|--------------------|--------------------|-----------------------| | —
т | 12 | 242.23 | 1.67E+02 | 62.99 | , | | 1.67E+02 | 6.30E+01 | | Μ | 13 | 270.34 | 5.41E+01 | 43.24 | | | 5.41E+01 | 4.32E+01 | | m | 14 | 277.96 | 3.49E+01 | 47.54 | | · | 3.49E+01 | 4.75E+01 | | М | 15 | 295.69 | 2.52E+02 | 42.11 | | 2 2 2 | 2.52E+02 | 4.21E+01 | | m | 16 | 300.61 | 6.79E+01 | 41.54 | | | 6.79E+01 | 4.15E+01 | | | 17 | 338.68 | 8.44E+01 | 49.25 | | | 8.44E+01 | 4.93E+01 | | | 18 | 352.38 | 3.94E+02 | 58.20 | 0.00E+00 | 0.00E+00 | 3.94E+02 | 5.82E+01 | | Μ | 19 | 459.17 | 1.56E+01 | 12.45 | | | 1.56E+01 | 1.24E+01 | | m | 20 | 462.85 | 2.90E+01 | 26.59 | | | 2.90E+01 | 2.66E+01 | | | 21 | 478.18 | 8.56E+01 | 41.81 | | | 8.56E+01 | 4.18E+01 | | | 22 | 511.55 | 1.10E+02 | 40.17 | 5.95E+01 | 4.92E+00 | 5.01E+01 | 4.05E+01 | | | 23 | 583.15 | 1.21E+02 | 42.59 | 5.06E+00 | 2.98E+00 | 1.16E+02 | 4.27E+01 | | | 24 | 609.54 | 3.00E+02 | 46.80 | 2.01E+00 | 3.84E+00 | 2.98E+02 | 4.70E+01 | | | 25 | 728.02 | 3.50E+01 | 30.64 | | | 3.50E+01 | 3.06E+01 | | | 26 | 768.53 | 3.95E+01 | 29.22 | | | 3.95E+01 | 2.92E+01 | | | 27 | 786.12 | 1.77E+01 | 18.86 | | | 1.77E+01 | 1.89E+01 | | | 28 | 794.79 | 2.69E+01 | 25.20 | | | 2.69E+01 | 2.52E+01 | | | 29 | 865.00 | 4.22E+01 | 35.04 | | | 4.22E+01 | 3.50E+01 | | | 30 | 911.39 | 9.25E+01 | 33.62 | 2.99E+00 | 2.93E+00 | 8.95E+01 | 3.37E+01 | | | 31 | 969.23 | 4.99E+01 | 24.00 | | | 4.99E+01 | 2.40E+01 | | | 32 | 1091.59 | 2.32E+01 | 19.29 | _ | | 2.32E+01 | 1.93E+01 | | | 33 | 1121.04 | 6.35E+01 | 27.95 | | | 6.35E+01 | 2.80E+01 | | | 34 | 1218.18 | 2.24E+01 | 27.35 | • | | 2.24E+01 | 2.73E+01 | | | 35 | 1432.50 | 1.50E+01 | 11.40 | | | 1.50E+01 | 1.14E+01 | | | 36 | 1460.89 | 3.60E+02 | 38.32 | | | 3.60E+02 | 3.83E+01 | | | 37 | 1531.64 | 8.15E+00 | 7.00 | | | 8.15E+00 | 7.00E+00 | | | 38 | 1593.29 | 1.03E+01 | 13.42 | | | 1.03E+01 | 1.34E+01 | | М | 39 | 1626.69 | 6.94E+00 | 3.74 | | | 6.94E+00 | 3.74E+00 | | m | 40 | 1630.34 | 1.08E+01 | 10.00 | | | 1.08E+01 | 1.00E+01 | | | 41 | 1659.46 | 1.15E+01 | 10.86 | | • | 1.15E+01 | 1.09E+01 | | | 42 | 1730.78 | 1.02E+01 | 9.38 | | • | 1.02E+01 | 9.38E+00 | | | 43 | 1764.27 | 4.14E+01 | 18.47 | | | 4.14E+01 | 1.85E+01 | | | 44 | 1874.00 | 7.00E+00 | 5.29 | | | 7.00E+00 | 5.29E+00 | | | 45 | 1973.17 | 7.00E+00 | 5.29 | | | 7.00E+00 | 5.29E+00 | | | 46 | 2103.87 | 9.50E+00 | 9.82 | | | 9.50E+00 | 9.82E+00 | | | 47 | 2614.39 | 4.10E+01 | 12.81 | , | | 4.10E+01 | 1.28E+01 | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma 1603102-06 SEDIMENT 2016-03-16B DUP ## AREA CORRECTION REPORT REFERENCE PEAK / BKG. SUBTRACT Peak Analysis Performed on : 4/13/2016 11:13:14AM Ref. Peak Energy : 0.00 Reference Date Peak Ratio Uncertainty : 0.00 Background File : 0.00 : \\OR-GAMMA1\ApexRoot\Countroom\Data\0000035178.CNF Corrected Area is: Original * Peak Ratio - Background | | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |---|-------------|-----------------|-------------------|---------------------------|-----------------------|--------------------|-------------------|----------------------| | | 1 | 24.22 | 8.05E+01 | 81.10 | | | 8.05E+01 | 8.11E+01 | | | 2 | 46.63 | 1.03E+02 | 71.93 | 3.04E+01 | 2.01E+01 | 7.27E+01 | 7.47E+01 | | | 3 | 62.99 | 1.72E+02 | 100.94 | 5.41E+01 | 5.13E+00 | 1.17E+02 | 1.01E+02 | | М | 4 | 74.94 | 2.49E+02 | 78.06 | | ÷ | 2.49E+02 | 7.81E+01 | | m | 5 | 77.78 | 4.76E+02 | 84.70 | | | 4.76E+02 | 8.47E+01 | | | 6 | 88.34 | 8.59E+01 | 79.81 | 3.05E+00 | 2.15E+00 | 8.28E+01 | 7.98E+01 | | | 7 | 128.04 | 5.71E+01 | 64.33 | | | 5.71E+01 | 6.43E+01 | | | 8 | 167.33 | 5.96E+01 | 47.48 | * | | 5.96E+01 | 4.75E+01 | | | 9 | 185.96 | 1.56E+02 | 72.24 | 3.82E+01 | 5.87E+00 | 1.17E+02 | 7.25E+01 | | | 10 | 198.68 | 6.80E+01 | 66.75 | 1.24E+01 | 6.03E÷00 | 5.56E+01 | 6.70E+01 | | M | 11 | 238.98 | 5.33E+02 | 56.63 | 1.06E+01 | 5,710+00 | 5.23E+02 | 5.69E+01 | | m | 12 | 242.23 | 1.67E+02 | 62.99 | | | 1.67E+02 | 6.30E+01 | | M | 13. | 270.34 | 5.41E+01 | 43.24 | | | 5.41E+01 | 4.32E+01 | | m | 14 | 277.96 | 3.49E+01 | 47.54 | | | 3.49E+01 | 4.75E+01 | | M | 15 | 295.69 | 2.52E+02 | 42.11 | | | 2.52E+02 | 4.21E+01 | | m | 16 | 300.61 | 6.79E+01 | 41.54 | | | 6.79E+01 | 4.15E+01 | | | 17 | 338.68 | 8.44E+01 | 49.25 | | | 8.44E+01 | 4.93E+01 | | | 18 | 352.38 | 3.94E+02 | 58.20 | 0.00E+00 | 0.00E+00 | 3.94E+02 | 5.82E+01 | | M | 19 | | 1.56E+01 | 12.45 | | • | 1.56E+01 | 1.24E+01 | | m | 20 | 462.85 | 2.905+01 | 26.59 | | | 2.90E+01 | 2.66E+01 | | | 21 | 478.18 | 8.56E+01 | 41.81 | | | 8.56E+01 | 4.18E+01 | | | 22 | 511.55 | 1.10E+02 | 40.17 | 5.95E+01 | 4.92E+00 | 5.01E+01 | 4.05E+01 | | | 23 | 583.15 | 1.21E+ 0 2 | 42.59 | 5.06E+00 | 2.98E+00 | 1.16E+02 | 4.27E+01 | | | 24 | 609.54 | 3.00E+02 | 46.80 | 2.01E+00 | 3.84E+00 | 2.98E+02 | 4.70E+01 | | | 25 | 728.02 | 3.50E+01 | 30.64 | | | 3.50E+01 | 3.06E+01 | | | 26 | 768.53 | 3.95E+01 | 29.22 | | | 3.95E+01 | 2.92E+01 | | | 27 | 786.12 | 1.77E+01 | 18.86 | | | 1.77E+01 | 1.89E+01 | | | 28 | 794.79 | 2.69E+01 | 25.20 | | | 2.69E+01 | 2.52E+01 | | | 29 | 865.00 | 4.22E+01 | 35.04 | | | 4.22E+01 | 3.50E+01 | | | 30 | 911.39 | 9.25E+01 | 33.62 | 2.99E+00 | 2.93E+00 | 8.95E+01 | 3.37E+01 | | | 31 | 969.23 | 4.99E+01 | 24.00 | | | 4.99E+01 | 2.40E+01 | | | | 1091.59 | 2.32E+01 | 19.29 | | | 2.32E+01 | 1.93E+01 | | | | 1121.04 | 6.35E+01 | 27.95 | | | 6.35E+01 | 2.80E+01 | | | | 1218.18 | 2.24E+01 | 27.35 | | | 2.24E+01 | 2.73E+01 | | | | 1432.50 | 1.50E+01 | 11.40 | | | 1.50E+01 | 1.14E+01 | | | | 1460.89 | 3.60E+02 | 38.32 | | | 3.60E+02 | 3.83E+01 | | | | 1531.64 | 8.15E+00 | 7.00 | | | 8.15E+00 | 7.00E+00 | | | | 1593.29 | 1.03E+01 | 13.42 | | | 1.03E+01 | 1.34E+01 | | M | | 1626.69 | 6.94E+00 | 3.74 | | | 6.94E+00 | 3.74E+00 | | m | | 1630.34 | i.08E+01 | 10.00 | | | 1.08E+01 | 1.00E+01 | | | 41 | 1659.46 | 1.15E+01 | 10.86 | | | 1.15E+01 | 1.09E+01 | 1603102-06 SEDIMENT 2016-03-16B DUP | Peak
No. | Energy
(keV) | Original
Area | Orig. Area
Uncertainty | Ambient
Background | Backgr.
Uncert. | Corrected
Area | Corrected
Uncert. | |----------------------|--|--|--|-----------------------|--------------------|--|--| | 43
44
45
46 | 1730.78
1764.27
1874.00
1973.17
2103.87
2614.39 | 1.02E+01
4.14E+01
7.00E+00
7.00E+00
9.50E+00
4.10E+01 | 9.38
18.47
5.29
5.29
9.82
12.81 | · | | 1.02E+01
4.14E+01
7.00E+00
7.00E+00
9.50E+00
4.10E+01 | 9.38E+00
1.85E+01
5.29E+00
5.29E+00
9.82E+00
1.28E+01 | | | | | | | | | | M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma ## NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide Name | ld Confidence | Energy (keV) | | ¥ield(%) | Activity
(pCi/grams) | Activity
Uncertainty | |--------------|---------------|--------------|-----|----------|-------------------------|-------------------------| | BE-7 | 0.945 | 477.59 | * | 10.42 | 1.95E+00 | 9.66E-01 | | K-40 | 0.999 | 1460.81 | * | 10.67 | 1.43E+01 | 1.95E+00 | | CD-109 | 0.985 | 88.03 | * | 3.72 | 1.33E+00 | 1.29E+00 | | SN-126 | 0.910 | 87.57 | * | 37.00 | 1.28E-01 | 1.25E-01 | | TL-208 | 0.882 | 583.14 | * | 30.22 | 7.54E-01 | 2.85E-01 | | 111 1100 | | 860.37 | | 4.48 | | | | | | 2614.66 | ş'- | 35.85 | 7.15E-01 | 2.34E-01 | | PB-210 | 0.997 | 46.50 | × | 4.25 | 1.59E+00 | 1.64E+00 | | BI-212 | 0.682 | 727,17 | * | 11.80 | 7.06E-01 | 6.21E-01 | | DI 212 | • • • • • | 1620.62 | | 2.75 | | | | PB-212 | 0.979 | 238.63 | * | 44.60 | 1.08E+00 | 1.44E-01 | | | * | 300.09 | * | 3.41 | 2.21E+00 | 1.36E+00 | | BI-214 | 0.910 | 609.31 | * | 46.30 | 1.31E+00 | 2.38E-01 | | D1 21. | | 1120.29 | * | 15.10 | 1.45E+00 | 6.47E-01 | | | | 1764.49 | * | 15.80 | 1.28E+00 | 5.82E-01 | | | | 2204.22 | | 4.98 | | | | PB-214 | 0.966 | 295.21 | * | 19.19 | 1.43E+00 | 2.64E-01 | | ID ZXI | ***** | 351.92 | * | 37.19 | 1.34E+00 | 2.26E-01 | | RA-226 | 0.990 | 186,21 | * | 3.28 | 2.74E+00 | 5.29E+00 | | AC-228 | 0.987 | 338.32 | * | 11.40 | 9.08E-01 | 5.35E-01 | | 710 220 | | 911.07 | × | 27.70 | 9.33E-01 | 3,59E-01 | | | • | 969.11 | * | 16.60 | 9.15E-01 | 4.46E-01 | | TH-234 | 0.986 | 63.23 | *, | 3.80 | 2.01E+00 | 1.74E+00 | | AM-243 | 0.989 | 74.67 | * | 66.00 | 2.24E-01 | 7.28E-02 | 1603102-06 SEDIMENT 2016-03-168 DUP * = Energy line found in the spectrum. - = Manually added nuclide. ? = Manually edited nuclide. Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 11:13:14AM Peak Locate From Channel : 1 Peak Locate To Channel : 4096 | Pe | ak No. | Energy (ke\/) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | ₽eak
Type | Tolerance
Nuclide | |----|--------|---------------|-----------------|-----------------------------|--------------|----------------------| | | 1 | 24.22 | 2.23501E-02 | 50.39 | | 37 | | m | 5
7 | 77.78 | 1.32158E-01 | 8.90 | Tol. | TI-44 | | | 7 | 128.04 | 1.58646E-02 | 56.32 | | ·, | | | 8 | 167.33 | 1.65564E-02 | 39.83 | | . | | | 10 | 198.68 | 1.54428E-02 | 60.28 | | | | m. | 12 | 242.23 | 4.64577E-02 | 18.83 | | | | М | 13 | 270.34 | 1.50316E-02 | 39.95 | | | | m | 1.4 | 277.96 | 9.69117E-03 | 68.13 | Tol. | NP-239
CM-243 | | М | 19 | 459.17 | 4.331655-03 | 39.92 | | | | m | 20 | 462.85 | 8.04785E-03 | 45.89 | Tol.
 SB-125 | | | 22 | 511.55 | 1.39259E-02 | 40.37 | | | | | 26 | 768.53 | 1.09813E-02 | 36.96 | Sum | | | | 27 | 786.12 | 4.91925E-03 | 53.25 | | • | | | 28 | 794.79 | 7.48504E-03 | 46.76 | Sum | | | | 29 (| 865.00 | 1.17289E-02 | 41.49 | | | | | 32 | 1091.59 | 6.45349E-03 | 41.51 | | | | | 34 | 1218.18 | 6.23317E-03 | 60.94 | Sum | | | | 35 | 1432,50 | 4.16667E-03 | 38.01 | | | | | 37 | 1531.64 | 2.26389E-03 | 42.94 | | | | | 38 : | 1593.23 | 2.85714E-03 | 65.22 | D-Esc | | | M | 39 | 1626.69 | 1.92765E-03 | 26.96 | | | | m | 40 | 1630.34 | 2,99520E-03 | 46.37 | | | | | 41 | 1659.46 | 3.18627E-03 | 47.35 | | | | | 42 | 1730.78 | 2.83730E-03 | 45.92 | Sum | | | | 44 | 1874.00 | 1.94444E-03 | 37.80 | | | | | 45 | 1973.17 | 1.9444F-03 | 37.80 | | | | | 46 | 2103.87 | 2.63889E-03 | 51.70 | S-Esc | | 1603102-06 SEDIMENT 2016-03-16B DUP M = First peak in a multiplet region m = Other peak in a multiplet region F = Fitted singlet Errors quoted at 2.000sigma # NUCLIDE IDENTIFICATION REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRoot\Countroom\Library\TMA2.NLB #### **IDENTIFIED NUCLIDES** | Nuclide
Name | ld
Confidence | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Activity
Uncertainty | | |-----------------|---|-----------------|---|----------|-------------------------|-------------------------|--| | BE-7 | 0.94 | 477.59 | * | 10.42 | 1.95E+00 | 9.66E-01 | | | K-40 | 0.99 | 1460.81 | * | 10.67 | 1.43E+01 | 1.95E+00 | | | CD-109 | 0.98 | 88.03 | * | 3.72 | 1.33E+00 | 1.29E+00 | | | SN-126 | 0.91 | 87.57 | * | 37.00 | 1.28E-01 | 1.25E-01 | | | TL-208 | 0.88 | 583.14 | * | 30.22 | 7.54E-01 | 2.85E-01 | | | 1.5 200 | | 860.37 | | 4.48 | | | | | | | 2614.66 | * | 35.85 | 7.15E-01 | 2.34E-01 | | | PB-210 | 0.99 | 46.50 | * | 4.25 | 1.59E+00 | 1.64E+00 | | | BI-212 | 0.68 | 727.17 | * | 11.80 | 7.06E-01 | 6.21E-01 | | | DI 212 | **** | 1620.62 | | 2.75 | | | | | PB-212 | 0.97 | 238.63 | ب | 44.60 | 1.08E+00 | 1.44E-01 | | | | | 300.09 | * | 3.41 | 2.21E+00 | 1.36E+00 | | | BI-214 | 0.91 | 609.31 | * | 46.30 | 1.31E+00 | 2.38E-01 | | | D1 211 | , | 1120.29 | * | 15,10 | 1.45E+00 | 6,47E-01 | | | | | 1764.49 | * | 15.80 | 1.28E+00 | 5.82E-01 | | | | | 2204.22 | | 4.98 | • | | | | PB-214 | 0.96 | 295.21 | * | 19.19 | 1.43E+00 | 2.64E-01 | | | 115 211 | • | 351.92 | * | 37.19 | 1.34E+00 | 2.26E-01 | | | RA-226 | 0.99 | 186.21 | * | 3.28 | 2.74E+00 | 5.29E+00 | | | AC-228 | 0.98 | 338.32 | * | 11.40 | 9.08E-01 | 5.35E-01 | | | 110 220 | | 911.07 | * | 27.70 | 9.33E-01 | 3.59E-01 | | | | | 969.11 | * | 16.60 | 9.15E-01 | 4.46E-01 | | | TH-234 | 0.98 | 63.29 | * | 3 80 | 2.01E+00 | 1.74E+00 | | | AM-243 | 0.98 | 74.67 | * | 66.00 | 2.24E-01 | 7.28E-02 | | 1603102-06 SEDIMENT 2016-03-16B DUP - * = Energy line found in the spectrum. - = Manually added nucilde. - ? = Manually edited nuclide. - @ = Energy line not used for Weighted Mean Activity Energy Tolerance: 1.000 keV Nuclide confidence index threshold = 0.30 Errors quoted at 2.000sigma ### INTERFERENCE CORRECTED REPORT | | Nuclide
Name | Nuclide
id
Confidence | Wt mean
Activity
(pCi/grams) | Wt mean
Activity
Uncertainty | Comments | |---|-----------------|-----------------------------|------------------------------------|------------------------------------|----------| | | BE-7 | 0.945 | 1.95E+00 | 9.66E-01 | | | | K-40 | 0.999 | 1.43E+01 | 1.95E+00 | | | ? | CD-109 | 0.985 | 1.33E+00 | 1.29E+00 | | | ? | SN-126 | 0.910 | 1.28E-01 | 1.25E-01 | | | | TL-208 | 0.882 | 7.31E-01 | 1.81E-01 | | | - | PB-210 | 0.297 | 1.59E+00 | 1.64E+00 | | | | BI-212 | 0.682 | 7.06E-01 | 6.21E-01 | | | | PB-212 | 0.9 79 | 1.09E+00 | 1.44E-01 | | | | BI-214 | 0.910 | 1.32E+00 | 2.09E-01 | | | | PB-214 | 0.966 | 1.38E+00 | 1.72E-01 | | | | RA-226 | 0.990 | 2.74E+00 | 5.29E+00 | | | | AC-228 | 0.987 | 9.22E-01 | 2.48E-01 | | | | TH-234 | 0.986 | 2.01E+00 | 1.74E+00 | | | | AM-243 | 0.989 | 2.24E-01 | 7.28E-02 | | - ? = nuclide is part of an undetermined solution - X = nuclide rejected by the interference analysis - @ = nuclide contains energy lines not used in Weighted Mean Activity Errors quoted at 2.000sigma 1603102-06 SEDIMENT 2016-03-16B DUP #### UNIDENTIFIED PEAKS Peak Locate Performed on : 4/13/2016 11:13:14AM Peak Locate From Channel Peak Locate To Channel : 1 : 4096 | Pe | ak No. | Energy (keV) | Peak Size (CPS) | Peak CPS (%)
Uncertainty | Peak
Type | Tolerance
Nuclide | | |----|--------|----------------|-----------------|-----------------------------|--------------|----------------------|---| | i | 1 | 24.22 | 2.23561E-02 | 50.39 | | | | | m | 5 | 77.78 | 1.32158E-01 | 8.90 | Tol. | TI-44 | | | | 7 | 128.04 | 1.58646E-02 | 56.32 | | | | | | 8 | 167.33 | 1.65564E-02 | 39.83 | | | | | | 10 | 198.68 | 1.54428E-02 | 60.28 | | | | | m | 12 | 242.23 | 4.64577E-02 | 18.83 | | | | | Mi | 13 | 270.34 | 1.50316E-02 | 39.95 | | | - | | m. | 14 | 277.96 | 9.69117E-03 | 68.13 | Tol. | NP-239 | | | | | | | • | | CM-243 | | | M | 19 | 459.17 | 4.33165E-03 | 39.92 | | | | | m | 20 | 462.85 | 8.04785E-03 | 45.89 | Tol. | SB-125 | | | | 22 | 511.5 5 | 1.39259E-02 | 40.37 | | | | | | 26 | 768.53 | 1.09813E-02 | 36.96 | Sum | | | | | 27 | 786.12 | 4.91925E-03 | 53.25 | | | | | | 28 | 794.79 | 7.48504E-03 | 46.76 | Sum | | | | | 29 | 865.00 | 1.17289E-02 | 41.49 | | | | | | 32 | 1091.59 | 6.45349E-03 | 41.51 | | | | | | 34 | 1218.18 | 6.23317E-03 | 60.94 | Sum | | | | | 35 | 1432.50 | 4.16667E-03 | 33.01 | | | | | | 37 | 1531.64 | 2.26389E-03 | 42.94 | | | | | | 38 | 1593.29 | 2.85714E-03 | 65.22 | D-Esc | | | | M | 39 | 1626.69 | 1.92765E-03 | 26.96 | | | | | m | 40 | 1630.34 | 2.99520E-03 | 46.37 | | | | | | 41 | 1659.46 | 3.18627E-03 | 47.35 | | | | | | 42 | 1730.78 | 2.83730E-03 | 45.92 | Sum | | | | | 44 | 1874.00 | 1.94444E-03 | 37.80 | | | | | | 45 | 1973.17 | 1.94444E-03 | 37.80 | | | | | | 46 | 2103.87 | 2.63839E-03 | 51.70 | 3-Esc | | | | | | | | | | | | M = First peak in a multiplet region m = Other peak in a multiple! region F = Fitted singlet Errors quoted at 2.000sigma 1603102-06 SEDIMENT 2016-03-16B DUP ## NUCLIDE MDA REPORT | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | | |---------------|-----------------|------------------|---|----------------|-------------------------|----------------------------|-------------------------|----|---| | | | (vev) | | | | · | | | | | | BE-7 | 477.59 | * | 10.42 | 1.95E+00 | 1.46E+00 | 1.46E+00 | | | | | NA-22 | 1274.54 | | 99.94 | 4.35E-03 | 1.24E-01 | 1.24E-01 | | | | - | NA-24 | 1368.53 | | 99.99 | -2.45E+11 | 4.62E+11 | 2.41E+12 | | | | | | 2754.09 | | 99.86 | 0.00E+00 | | 4.62E+11 | | | | | AL-26 | 1808.65 | | 99.76 | 1.94E-02 | 7.93E-02 | 7.93E-02 | | | | | K-40 | 1460.81 | * | 10.67 | 1.43E+01 | 4.63E-01 | 4.63E-01 | | | | | @ AR-41 | 1293.64 | | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | | | | , | TI-44 | 67.88 | | 94.40 | 1.14E-02 | 7.00E-02 | 7.00E-02 | | | | | 17 11 | 78.34 | | 96.00 | 2.04E-01 | | 8.90E-02 | ٠. | , | | - | SC-46 | 889.25 | | 99.98 | -1.75E-02 | 1.13E-01 | 1.13E-01 | | | | | 33 | 1120.51 | | 99.99 | 2.52E-01 | | 1.96E-01 | | | | | V-48 | 983.52 | | 99.98 | -3.58E-02 | 2.82E-01 | 2.82E-01 | | | | | | 1312.10 | | 97.50 | 6.05E-02 | | 3.61E-01 | | | | | CR-51 | 320.08 | | 9.83 | 4.60E-01 | 1.35E+00 | 1.35E+00 | 54 | | | | MN-54 | 834.83 | | 99.97 | -2.98E-02 | 8.84E-02 | 8.84E-02 | | | | | °CO-56 | 846.75 | • | 99.96 | 3.76E-02 | 1.03E-01 | 1.03E-01 | | | | | ** | 1037.75 | | 14.03 | 2.35E-01 | | 8.40E-01 | | | | | | 1238.25 | | 67.00 | 1.38E-01 | • | 2.74E-01 | | | | | | 1771.40 | | 15.51 | -1.39E-01 | | 5.71E-01 | | | | | | 2598.48 | | 16.90 | -4.71E-02 | | 4.38E-01 | | | | • | CO-57 | 122.06 | | 85.51 | 5.71E-03 | 6.08E-02 | 6.08E-02 | | | | | | 136.48 | | 10.60 | -2.95E-01 | | 4.84E-01 | | | | - | CO-58 | 810.76 | | 99.40 | -5.51E-02 | 9.88E-02 | 9.88E-02 | | | | - | FE-59 | 1099.22 | | 56.50 | -1.97E-02 | 2.60E-01 | 2.60E-01 | | | | | | 1291.56 | | 43.20 | 6.20E-02 | | 3.94E-01 | | | | - | CO-60 | 1173.22 | | 100.00 | 5.77E-02 | 8.75E-02 | 1.12E-01 | | | | | | 1332.49 | | 100.00 | -6.85E-02 | | 8.75E-02 | | | | - | ZN-65 | 1115.52 | | 50.75 | 2.83E-02 | 2.37E-01 | 2.37E-01 | | | | - | GA-67 | 93.31 | | 35.70 | 8.18E+01 | 6.66E+01 | 6.66E+01 | | | | | | 208.95 | | 2.24 | 1.43E+03 | | 1.23E+03 | | | | | | 300.22 | | 16.00 | -5.56E+02 | | 1.85E+02 | | | | - | SE-75 | 121.11 | | 16.70 | 1.66E-01 | 9.56E-02 | 3.48E-01 | | | | | | 136.00 | | 59.20 | -3.60E-02 | | 9.56E-02 | | | | | | 264.65 | | 59.80 | 2.13E-02 | | 1.25E-01
3.25E-01 | | | | | | 279.53 | | 25.20 | 2.66E-01
-3.43E-01 | | 7.32E-01 | | | | | RB-82 | 400.65
776.52 | | 11.40
13.00 | -3.43E-01 | 1.37E+00 | 1.37E+00 | | | | ├
' | RB-83 | 520.41 | | 46.00 | -5.77E-02 | 1.72E-01 | 1.72E-01 | | | | + | KB-03 | | | 30.30 | 8.83E-02 | 1.725.71 | 2.95E-01 | | | | | | 529.64
552.65 | | 16.40 | -1,84E-01 | | 5.22E-01 | | | 1603102-06 | | Nuclide
Name | Energ _y
(keV) | | Yield(%) | Asűvíty
(pGi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | · | |-----|-----------------|-----------------------------|---|----------------|------------------------|----------------------------|-------------------------|-----|---| | | | E40.00 | | 0.42 | 0 257101 | 2 21 5 1 0 3 | 2.31E+01 | | | | + | KR-85 | 513.99 | | 0.43 | 2.35E+01 | 2.31E+01
1.35E-01 | 1.35E-01 | | | | + | SR-85 | 513.99 | | 99.27 | 1.38E-01 | | 1.16E-01 | | | | + | X-88 | 898.02 | | 93.40 | -2.91E-02 | 1.14E-01 | 1.14E-01 | | | | | 0.314 | 1836.01 | | 99.38 | 3.04E-02 | 7.85E+01 | 7.85E+01 | | | | + | NB-93M | 16.57 | | 9.43 | -3.13E+01 | 8.59E-02 | 8.59E-02 | | | | + | NB-94 | 702.63 | | 100.00 | 1.03E-02 | 0.596-02 | 9.13E-02 | | | | | 1772 O.F | 871.10 | | 100.00 | 1.18E-02
1.63E-01 | 1.94E-01 | 1.94E-01 | | | | + | NB-95 | 765.79 | | 99.81 | |
8.74E+01 | 8.74E+01 | | | | + | NB-95M | 235.69 | | 25.00 | 1.35E+02 | 2.08E-01 | 2.63E-01 | | | | + | ZR-95 | 724.18 | | 43.70 | 1.30E-02 | Z.08E-01 | | | | | | | 756.72 | | 55.30
6.20 | 7.47E-02
1.92E+01 | 6.48E+02 | 2.08E-01
9.77E+02 | | | | + | MO-99 | 181.06 | | | -3.49E+02 | 0.406102 | 6.48E+02 | | | | | | 739.58
778.00 | | 12.80
4.50 | 3.11E+02 | | 2.09E+03 | | | | + | RU-103 | 497.08 | | 89.00 | -1.15E-01 | 1.09E-01 | 1.09E-01 | | | | + | RU-106 | 621.84 | | 9.80 | 1.06E-01 | 8.37E-01 | 8.37E-01 | | | | | AG-108M | 433.93 | | 89.90 | 2.03E-03 | 8.11E-02 | 3.11E-02 | ÿ- | | | -i- | AG-100M | | | 90.40 | -1.02E-02 | 5.410 02 | 1.02E-01 | | | | | | 614.37
722.95 | | 90.40 | 1.16E-02 | | 8.59E-02 | e e | | | + | CD-109 | 88.03 | k | 3.72 | 1.33E+00 | 2.10E+00 | 2.10E+00 | j. | | | + | AG-110M | 657.75 | | 93.14 | -8.26E-02 | 9.00E-02 | 9.00E-02 | • | | | | 110 44011 | 677.61 | - | 10.53 | -1.63E-01 | | 7.94E-01 | | | | | | 706.67 | | 16.46 | -4.31E-02 | | 5.32E-01 | | | | | | 763.93 | | 21.98 | 1.73E-02 | | 4.50E-01 | | | | | | 884.67 | | 71.63 | 4.81E-02 | | 1.40E-01 | | | | | | 1384.27 | | 23.94 | -1.10E-01 | 0 77m 100 | 4.42E-01 | | | | + | CD-113M | 263.70 | | 0.02 | 1.82E+01 | 2.77E+02 | 2.77E+02 | | | | + | SN-113 | 255.12 | | 1.93 | -1.20E+00 | 1.38E-01 | 3.89E+00 | | | | | | 391.69 | | 64.90 | 3.80E-02 | 7 050 02 | 1.38E-01
7.05E-02 | | | | + | TE123M | 159.00 | | 84.10 | -1.11E-02 | 7.05E-02
1.16E-01 | 1.16E-01 | | | | + | SB-124 | 602.71 | | 97.87 | -1.94E-02 | 1.10E-01 | | | | | | | 645.85 | | 7.26
11.10 | -2.00E-02
1.31E-01 | | 1.52E+00
9.65E-01 | | | | | | 722.78
1691.02 | | 49.00 | 8.02E-02 | | 2.33E-01 | | | | + | I-125 | 35.49 | | 6.49 | -3.09E-02 | 2.77E+00 | 2.77E+00 | | | | + | SB-125 | 176.33 | | 6.89 | -1.63E-01 | 2.31E-01 | 7.74E-01 | | | | • | 05 120 | 427.89 | | 29.33 | -8.85E-03 | | 2.31E-01 | | | | | | 463.38 | | 10.35 | 3.14E-01 | | 7.75E-01 | | | | | | 600.56 | | 17.80 | -3.87E-02 | | 4.67E-01 | • | | | | • | 635.90 | | 11.32 | 5.28E-02 | | 6.97E-01 | | | | + | SB-126 | 414.70 | | 83.30 | 1.59E-01 | 3.73E-01 | | | | | | | 666.33 | | 99.60 | -9.07E-02 | | 4.04E-01 | | | | | | 695.00 | | 99.60 | -6.07E-02
-2.14E-02 | | 3.73E-01
7.13E-01 | | | | ı | SN-126 | 720.50
87.57 | * | 53.80
37.00 | 1.28E-01 | 2.02E-01 | | | | | + | | | | 25.00 | -5.37E+00 | 3.56E+01 | | | | | + | SB-127 | 473.00 | | | 1.43E+01 | J.J01101 | 3.56E+01 | | | | | | 685.20
783.80 | | 35.70
14.70 | -3.56E-01 | | 8.94E+01 | | | | | | 103.00 | | 14.70 | J.JOE-OI | | 0.010.01 | | | 1603102-06 | | Nuclide
Name | Energy
(keV) | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |-----|-----------------|-------------------|----------------|-------------------------|--|-------------------------|---| | + | I-129 | 29.78 | 57.00 | 1.81E-01 | 4.21E-01 | 4.21E-01 | | | ' | 1 125 | 33.60 | 13.20 | 4.13E-01 | | 1.21E+00 | | | | | 39.58 | 7.52 | 4.21E-01 | • | 1.36E+00 | | | + | I-131 | 284.30 | 6.05 | 7.08E-02 | 9.31E-01 | 1.15E+01 | | | | | 364.48 | 81.20 | 2.84E-01 | ************************************** | 9.31E-01 | | | | | 636.97 | 7.26 | 6.23E+00 | | 1.21E+01 | | | | | 722.89 | 1.80 | 6.46E+00 | 0 600.01 | 4.77E+01 | | | + | TE-132 | 49.72 | 13.10 | -3.82E+01 | 2.68E+01 | 2.10E+02 | | | | | 228.16 | 88.00 | -4.83E+00 | 1 71501 | 2.68E+01
1.84E-01 | | | + | BA-133 | 81.00 | 33.00 | -7.92E-01 | 1.71E-01 | 4.08E-01 | | | | | 302.84 | 17.80 | 1.41E-01
-5.84E-04 | | 1.71E-01 | | | | I-133 | 356.01
529.87 | 60.00
86.30 | 1.19E+08 | 3.98E+08 | 3.98E+08 | | | + | XE-133 | 81.00 | 38.00 | -2.73E+01 | 6.33E+00 | 6.33E+00 | | | +- | | 563.23 | 8.38 | -2,92E-01 | 9.32E-02 | 9.44E-01 | | | + . | CS-134 | 569.32 | 15.43 | 1.21E-01 | 7.525 02 | 5.63E-01 | | | | | 604.70 | 97.60 | -1.70E-02 | | 9.32E-02 | | | | | 795.84 | 85.40 | 4.16E-02 | | 1.11E-01 | | | | 44 | 801.93 | 8.73 | 1.30E-01 | | 9.88E-01 | | | + | CS-135 | 268.24 | 16.00 | -1.06E-02 | 4,35E-01 | 4.35E-01 | · | | + | @ I-135 | 1131.51 | 22.50 | 1.001+26 | 1.00E+26 | 1.00E+26 | | | | @ | 1260.41 | 28.60 | 1.00E+26 | | 1.00E+26 | | | | @ | 1678.03 | 9.54 | 1.00E+26 | • | 1.00E+26 | | | + | CS-136 | 153.22 | 7.46 | 8.51E-01 | 3.60E-01 | 3.05E+00 | | | | | 163.89 | 4.61 | -1.49E-01 | | 4.53E+00 | | | | | 176.55 | 13.56 | -2.66E-01 | | 1.68E+00 | | | | | 273.65 | 12.66 | -9.82E-01 | | 2.39E+00 | | | | | 340.57 | 48.50
99.70 | 8.33E-01
-4.59E-02 | | 7.57E-01
3.60E-01 | | | | | 818.50
1048.07 | 79.60 | 1.13E-01 | | 5.63E-01 | | | | | 1235.34 | 19.70 | 6.21E-01 | | 3.10E+00 | | | + | CS-137 | 661.65 | 85.12 | 1.25E-02 | 1.04E-01 | 1.04E-01 | | | + | LA-138 | 788.74 | 34.00 | -7.64E-02 | 1.50E-01 | 2.35E-01 | | | | 1 | 1435.80 | 66.00 | -3.18E-03 | | 1.50E-01 | | | + | CE-139 | 165.85 | 80.35 | 6.44E-03 | 7.20E-02 | 7.20E-02 | | | + | BA-140 | 162.64 | 6.70 | -2.44E-01 | 1.25E+00 | 3.22E+00 | | | | ŧ | 304.84 | 4.50 | -1.49E-01 | | 6.57E+00 | | | | | 423.70 | 3.20 | -3.91E+00 | | 8.99E+00 | | | | | 437.55 | 2.00 | -2.06E+00 | | 1.62E+01 | | | | | 537.32 | 25.00 | -3.15E-01 | 4 600 01 | 1.25E+00
1.45E+00 | | | + | LA-140 | 328.77 | 20.50 | -3.44E-02 | 4.60E-01 | | | | | | 487.03 | 45.50 | -7.51E-02
1.01E-01 | | 6.81E-01
1.59E+00 | | | | | 815.85
1596.49 | 23.50
95.49 | -2.16E-02 | | 4.60E-01 | | | + | CE-141 | 145.44 | 48.40 | 8.74E-02 | 2.00E-01 | | | | + | CE-141 | 57.36 | 11.80 | 5.50E+04 | 2.93E+05 | | | | т | CE-142 | 293.26 | 42.00 | 5.85E+05 | | 2.93E+05 | | | | | 664.55 | 5.20 | 9.34E+05 | | 2.26E+06 | | | + | CE-144 | 133.54 | 10.80 | -1.61E-01 | | 4.73E-01 | | | • | | | | • | • | | | 1603102-06 | | Nuclide | Energy | Yield(%) | Activity | Nuclide MDA | Line MDA | | |-----|---------|---------|-------------------|-------------|-------------|------------------|----| | | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | | | (1.00) | | | | | | | | | 10.5.30 | 40.00 | 0 077 01 | 0.00= 00 | 2.54E-01 | | | + | PM-144 | 476.78 | 42.00 | 2.27E-01 | 8.00E-02 | | | | | | 618.01 | 98.60 | -2.02E-02 | • | 8.00E-02 | | | | | 696.49 | 99.49 | -1.48E-02 | 2 005 01 | 8.40E-02 | | | + | PM-145 | 36.85 | 21.70 | 1.07E-01 | 3.02E-01 | 5.56E-01 | | | | | 37.36 | 39.70 | 9.10E-02 | | 3.02E-01 | | | | | 42.30 | 15.10 | -1.65E-01 | | 6.08E-01 | | | | | 72.40 | 2.31 | -6.30E+00 | 1 077 01 | 3.19E+00 | | | + | PM-146 | 453.90 | 39.94 | -2.09E-02 | 1.87E-01 | 1.87E-01 | | | | | 735.90 | 14.01 | 3.48E-01 | | 5.81E-01 | | | | | 747.13 | 13.10 | 4.50E-01 | | 7.32E-01 | | | + | ND-147 | 91.11 | 28.90 | 2.27E-01 | 1,31E+00 | 1.31E+00 | • | | | | 531.02 | 13.10 | 3.97E-01 | | 3.11E+00 | | | + | PM-149 | 285.90 | 3.10 | 2.48E+02 | 1.22E+04 | 1.22E+04 | | | + | EU-152 | 121.78 | 20.50 | 2.23E-02 | 2.37E-01 | 2.37E-01 | | | | | 244.69 | 5.40 | -9.22E-02 | | 1.45E+00 | | | | | 344.27 | 19.13 | 1.76E-02 | | 3.51E-01 | • | | | | 778.89 | 9.20 | 2.48玉-01 | | 9.24E-01 | | | | | 964.01 | 10.40 | 3.34E-01 | | 9.81E-01 | N. | | | | 1085.78 | 7.22 | -1.63E-01 | | 9.65E-01 | | | | | 1112.02 | 9.60 | 1.09E-01 | | i.12E+00 | | | | | 1407.95 | 14.94 | -3.08E-01 | | 6.39E-01 | | | + | GD-153 | 97.43 | 31.30 | -1.44E-01 | 1.71E-01 | 1.71E-01 | | | | | 103.18 | 22.20 | -3.16E-02 | | 2.28E-01 | | | + | EU-154 | 123.07 | 40.50 | -1.20E-03 | 1.20E-01 | 1.20E-01 | | | | | 723.30 | 19.70 | 5.38E-02 | | 3.97E-01 | | | | | 873.19 | 11.50 | 2.44E-02 | | 7.55E-01 | | | | | 996.32 | 10.30 | -3.30E-01 | | 9.07E-01 | | | | | 1004.76 | 17.90 | 3.42E-02 | | 5.26E-01 | | | | | 1274.45 | 35.50 | 1.21E-02 | | 3.44E-01 | | | į. | EU-155 | 86.50 | 30.90 | 1.34E-01 | 2.16E-01 | 2.16E-01 | | | | | 105.30 | 20.70 | -4.39E-03 | | 2.29E-01 | | | + | EU-156 | 811.77 | 10.40 | -5.72E-01 | 2.60E+00 | 2.60E+00 | | | | | 1153.47 | 7.20 | 6.75E-01 | | 4.99E+00 | | | | | 1230.71 | 8.90 | -2.19E+00 | | 4.67E+00 | | | 4. | HO-166M | 184.41 | 72.60 | 1.65E-01 | 9.45E-02 | 9.45E-02 | | | | | 280.45 | 29.60 | 1.27E-01 | | 2.29E-01 | | | | | 410.94 | 11.10 | 4.56E-02 | • | 6.77E-01 | | | | | 711.69 | 54.10 | -1.29E-02 | | 1.48E-01 | | | + | TM-171 | 66.72 | 0.14 | -3.97E-01 | 4.90E+01 | 4.90E+01 | | | + | HF-172 | 81.75 | _~ 4.52 | -3.62E-01 | 4.44E-01 | 1.35E+00 | | | | | 125.81 | 11.30 | -2.63E-01 | | 4.44E-01 | | | + | LU-172 | 181.53 | 20.60 | -4.43E-01 | 2.91E+00 | | | | • | | 810.06 | 16.63 | -4.79E+00 | | 8.03E+00 | | | | | 912.12 | 15.25 | 3.15E+01 | €" | 1.87E+01 | | | | | 1093.66 | 62.50 | -5.20E-01 | | 2.91E+00 | | | -+- | LU-173 | 100.72 | 5.24 | -1.40E-01 | 3.52E-01 | | | | • | | 272.11 | 21.20 | 2.13E-01 | | 3.52E-01 | | | + | HF-175 | 343.40 | 84.00 | 6.81E-03 | 1.10E-01 | | | | | LU-176 | 88.34 | 13.30 | 1.39E-01 | 7.00E-02 | | | | + | TO-110 | 00.34 | 10.00 | 7.050.07 | 7.000 02 | 0,00 <u>D</u> 01 | | 1603102-06 | | Nuclide
Name | Energy
(keV) | | Yīeld(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |---|----------------------|--------------------|---|----------------|-------------------------|----------------------------|-------------------------|----| | | LU-176 | 201.83 | | 86.00 | -9.11E-03 | 7.00E-02 | 7.77E-02 | | | | ПО-170 | 306.78 | | 94.00 | 2.06E-02 | | 7.00E-02 | | | + | TA-182 | 67.75 | | 41.20 | 3.09E-02 | 1.90E-01 | 1.90E-01 | | | | | 1121.30 | | 34.90 | 5.37E-01 | | 5.11E-01 | | | | | 1189.05 | | 16.23 | -1.91E-02 | | 7.31E-01
5.32E-01 | | | | | 1221.41
1231.02 | | 26.98
11.44 | -1.23E-01
5.95E-02 | | 1.23E+00 | | | + | IR-192 | 308.46 | | 29.68 | 2.09E-02 | 1.82E-01 | 2.78E-01 | | | | IN 132 | 468.07 | | 48.10 | 5.81E-03 | • | 1.82E-01 | | | + | HG-203 | 279.19 | | 77.30 | 7.54E-02 | 1.37E-01 | 1.37E-01 | | | + | BI-207 | 569.67 | | 97.72 | -3.55E-03 | 8.47E-02 | 8.47E-02 | | | | | 1063.62 | | 74.90 | -8.62E-03 | | 1.12E-01 | | | + | TL-208 | 583.14 | * | 30.22 | 7.54E-01 | 4.72E-02 | 4.11E-01 | | | | | 860.37 | | 4.48 | 6.28E-01 | | 2.22E+90 | | | | 77 C 2 C 14 | 2614.66 | * |
35.85 | 7.15E-01
2.00E-02 | 1,44E-01 | 4.72E-02
1.44E-01 | | | + | BI-210M | 262.00
300.00 | | 45.00
23.00 | -1.03E+00 | I,44D Or | 3.43E-01 | | | + | PB-210 | 46.50 | * | 4.25 | 1.59E+00 | 2.68E+C0 | 2.68E+00 | | | + | PB-211 | 404.84 | | 2.90 | -2.65E-01 | 2.51E+00 | 2.51E+00 | i. | | ' | 117 211 | 831.96 | | 2.90 | -5.74E-01 | | 2.89E+00 | | | + | BI-212 | 727.17 | * | 11.80 | 7.06E-01 | 9.92E-01 | 9.92E-01 | • | | | | 1620.62 | | 2.75 | 8.37E-02 | | 3.37E+00 | | | + | PB-212 | 238.63 | * | 44.60 | 1.08E+00 | 2.68E-01 | 2.68E-01 | | | | | 300.09 | * | 3.41 | 2.21E+00 | G 513 - 01 | 3.85E+00 | | | ۲ | BI-214 | 609.31 | * | 46.30 | 1.31E+00 | 2.42E-01 | 2.42E-01 | | | | | 1120.29 | * | 15.10 | 1.45E+00
1.28E+00 | | 9.21E-01
7.60E-01 | | | | | 1764.49
2204.22 | ^ | 15.80
4.98 | 4.57E-01 | | 2.22E+00 | | | + | PB-214 | 295.21 | * | 19.19 | 1.43E+00 | 2.48E-01 | 6.68E-01 | | | | | 351.92 | * | 37.19 | 1.34E+00 | | 2.48E-01 | | | + | RN-219 | 401.80 | | 6.50 | -6.04E-02 | 1.12E+00 | 1.12E+00 | | | + | RA-223 | 323.87 | | 3.88 | -8.66E-01 | 1.59E+00 | 1.59E+00 | | | + | RA-224 | 240.98 | | 3.95 | 1.55E+01 | 3,21E+00 | 3.21E+00 | | | + | ra ⁱ -225 | 40.00 | | 31.00 | 3.67E-01 | 1.19E+00 | 1.19E+00 | | | + | RA-226 | 186.21 | * | 3.28 | 2.74E+00 | 2.72E+00 | 2,72E+00 | | | + | TH-227 | 50.10 | | 8.40 | -1.57E-01 | 8.62E-01 | 8.62E-01 | | | | | 236.00 | | 11.50 | 1.39E+00 | | 9.01E-01
9.98E-01 | | | | 70.000 | 256.20 | * | 6.30
11.40 | -4.29E-01
9.08E-01 | 5.07E-01 | | | | + | AC-228 | 338.32
911.07 | * | 27.70 | 9.33E-01 | 3.075 01 | 5.07E-01 | | | | | 969.11 | * | 16.60 | 9.35E-01
9.15E-01 | | 6.35E-01 | | | + | TH-230 | 48.44 | | 16.90 | 4.19E-01 | 5.03E-01 | | | | • | | 62.85 | | 4.60 | 1.14E+00 | | 1.59E+00 | | | | | 67.57 | | 0.37 | 2.91%+00 | | 1.79E+01 | | | + | PA-231 | 283.67 | | 1.60 | 2.42E-02 | | | | | | | 302.67 | | 2.30 | 1.09E+00 | | 3.14E+00
3.20E+00 | | | + | TH-231 | 25.64 | | 14.70 | 1.55±+00 | | 9.29E-01 | | | | | 84.21 | | 6.40 | -4.50E-02 | | 3. Z 7E-UI | | 1603102-06 SEDIMENT 2016-03-16B DUP | | Nuclide
Name | Energy
(keV) | | Yield(%) | Activity
(pCi/grams) | Nuclide MDA
(pCi/grams) | Line MDA
(pCi/grams) | | |----|-----------------|-------------------|---|----------------|-------------------------|----------------------------|-------------------------|--| | | PA-233 | 311.98 | | 38.60 | 5.77E-02 | 3.5:E-01 | 3.51E-01 | | | + | PA-233 | 131.20 | | 20.40 | 2.16E-02 | 2.52E-01 | 2.52E-01 | | | + | PA-234 | 733.99
946.00 | | 8.80
12.00 | 2.34E-01
-5.55E-01 | | 8.85E-01
6.68E-01 | | | + | PA-234M | 1001.03 | | 0.92 | -8.85E-01 | 1.07E+01 | 1.07E+01 | | | + | TH-234 | 63.29 | * | 3.80 | 2.01E+00 | 2.83E+00 | 2.83E+00 | | | 4. | U-235 | 143.76 | | 10.50 | -2.19E-01 | 4.82E-01 | 4.82E-01 | | | | | 163.35
205.31 | | 4.70
4.70 | -3.37E-02
2.78E-01 | | 1.02E+00
1.49E+00 | | | + | NP-237 | 86.50 | | 12.60 | 3.25E-01 | 5.24E-01 | 5.24E-01 | | | + | NP-239 | 106.10 | | 22.70 | 1.65E+02 | 7.60E+02 | 7.60E+02 | | | | | 228.18
277.60 | | 10.70
14.10 | -3.86E+02
9.78E+02 | 1 000 0 | 2.14E+03
1.80E+03 | | | + | AM-241 | 59.54 | | 35.90 | -1.87E-01 | 1.82E-0i | L.82E-01 | | | + | AM-243 | 74.67 | * | 66.00 | 2.24E-01 | 1.84E-01 | 1.84E-01 | | | + | CM-243 | 209.75 | | 3.29 | 1.69E+00 | 4.98E-01 | 2.17E+00 | | | | | 228.14
277,.60 | | 10.60
14.00 | -1.07E-01
2.70E-01 | | 5.92E-01
4.98E-01 | | ^{+ =} Nuclide identified during the nuclide identification # NUCLIDE MDA REPORT Nuclide Library Used : \\OR-GAMMA1\ApexRcot\Countroom\Library\TMA2.NLB | 5. | Nuclide
Name | Energy
(⊱∘V) | Yield(%) | Line MDA
(pCi/grams) | Nuclide MDA
(pC:/gr∌ms) | Activity
(pCi/grams) | Dec. Level
(pCi/grams) | |----|------------------------|----------------------------------|----------------------------------|--|----------------------------------|---|--| | +. | BE-7
NA-22
NA-24 | 477.59 * 1274.54 1368.53 2754.09 | 10.42
99.94
99.99
99.86 | 1.46E+00
1.24E-01
2.41E+12
4.62E+11 | 1.46E+00
1.24E-01
4.62E+11 | 1.95E+00
4.35E-03
-2.45E+11
0.00E+00 | 7.01E-01
5.66E-02
1.06E+12
0.00E+00 | ^{* =} Energy line found in the spectrum > = MDA value not calculate:: ^{@ =} Half-life too short to be able to perform the decay correction ⁼ CAUTION: MDA value is inconsistent with Currie MDA at 95% confidence level 1603102-06 | | Nuclide | Energy | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | |---|---------|-----------|----------|-------------|-------------|-------------|-------------| | | Name | (ke∀) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | AL-26 | 1808,65 | 99.76 | 7.93E-02 | 7.93E-02 | 1.94E-02 | 3.29E-02 | | ÷ | K-40 | 1460.81 * | | 4.63E-01 | 4.63E-01 | 1.43E+01 | 1.78E-01 | | | AR-41 | 1293.64 | 99.16 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | TI-44 | 67.88 | 94.40 | 7.00E-02 | 7.00E-02 | 1.14E-02 | 3.41E-02 | | | 11 44 | 78.34 | 96.00 | 8.90E-02 | • | 2.04E-01 | 4.37E-02 | | • | SC-46 | 889.25 | 99.98 | 1.13E-01 | 1.13E-01 | -1.75E-02 | 5.17E-02 | | | DC 40 | 1120.51 | 99.99 | 1.96E-01 | N | 2.52E-01 | 9.23E-02 | | | V-48 | 983.52 | 99.98 | 2.82E-01 | 2.82E-01 | -3.58E-02 | 1.27E-01 | | | A = 4.0 | 1312.10 | 97.50 | 3.61E-01 | | 6.05E-02 | 1.62E-01 | | | CR-51 | 320.08 | 9.83 | 1.35E+00 | 1.35E+00 | 4.60E-01 | 6.43E-01 | | | MN-54 | 834.83 | 99.97 | 8.84E-02 | 8.84E-02 | -2.98E-02 | 4.03E-02 | | | CO-56 | 846.75 | 99.96 | 1.03E-01 | 1.03E-01 | 3.76E-02 | 4.70E-02 | | | CO-36 | 1037.75 | 14.03 | 8.40E-01 | | 2.35E-01 | 3.80E-01 | | | | 1238.25 | 67.00 | 2.74E-01 | | 1.38E-01 | 1.27E-01 | | | | 1771.40 | 15.51 | 5.71E-01 | | -1.39E-01 | 2.31E-01 | | | | 2598.48 | 16.90 | 4.38E-01 | | -4.71E-02 | 1.55E-01 | | | GO 57 | 122.06 | 85.51 | 6.08E-02 | 6.08E-02 | 5.71E-03 | 2.93E-02 | | | CO-57 | | | 4.84E-01 | 0.005.02 | -2.95E-01 | 2.33E-01 | | | go 50 | 136.48 | 10.60 | 9.88E-01 | 9,88E-02 | -5.51E-02 | 4.47E-02 | | | CO-58 | 810.76 | 99.40 | 2.60E-01 | 2.60E-01 | -1.97E-02 | 1.18E-01 | | | FE-59 | 1099.22 | 56.50 | 3.94E-01 | 2.005-01 | 6.20E-02 | 1.78E-01 | | | | 1291.56 | 43.20 | 1.12E-01 | 8.755-02 | 5.77E-02 | 5.10E-02 | | | CO-60 | 1173.22 | 100.00 | | 0.70E;=02 | -6.85E-02 | 3.83E-02 | | | | 1332.45 | 100.00 | 8.75E-02 | 2.37E-01 | 2.83E-02 | 1.09E-01 | | | ZN-65 | 1115.52 | 50.75 | 2.37E-01 | · · | 8.18E+01 | 3.25E+01 | | | GA-67 | 93.31 | 35.70 | 6.66E+01 | 6.66E+01 | 1.43E+03 | 5.97E+02 | | | | 208.95 | 2.24 | 1.23E+03 | | -5.56E+02 | 8.88E+01 | | | | 300.22 | 16.00 | 1.85E+02 | 0 565 03 | 1.66E-01 | 1.68E-01 | | | SE-75 | 121.11 | 16.70 | 3.48E-01 | 9.56E-02 | -3.60E-01 | 4.61E-02 | | | | 136.00 | 59.20 | 9.56E-02 | | 2.13E-02 | 5.97E-02 | | | • | 264.65 | 59.80 | 1.25E-01 | | 2.66E-01 | 1.56E-01 | | | | 279.53 | 25.20 | 3.25E-01 | | -3.43E-01 | 3.46E-01 | | | | 400.65 | 11.40 | 7.32E-01 | 1 075100 | -3.79E-02 | 6.29E-01 | | | RB-82 | 776.52 | 13.00 | 1.37E+00 | 1.37E+00 | | 7.95E-02 | | | RB-83 | 520.41 | 46.00 | 1.72E-01 | 1.72E-01 | -5.77E-02 | 1.38E-01 | | | | 529.64 | 30.30 | 2.95E-01 | | 8.83E-02 | 2.42E-01 | | | | 552.65 | 16.40 | 5.22E-01 | 0.015.03 | -1.84E-01 | | | | KR-85 | 513.99 | 0.43 | 2.3TE+01 | 2.31E+01 | 2.35E+01 | 1.10E+01 | | | SR-85 | 513.99 | 99.27 | 1.35E-01 | 1.35E-01 | 1.38E-01 | 6.45E-02 | | | Y-88 | 898.02 | 93.40 | 1.16E-01 | 1.14E-01 | -2.91E-02 | 5.32E-02 | | | | 1836.01 | 99.38 | 1.14E-01 | | 3.04E-02 | 4.90E-02 | | | NB-93M | 16.57 | 9.43 | 7.85E+01 | 7.85E+01 | -3.13E+01 | 3.81E+01 | | | NB-94 | 702.63 | 100.00 | 8.59E-02 | 8.59E-02 | 1.03E-02 | 3.98E-02 | | | | 871.10 | 100.00 | 9.13E-02 | | 1.18E-02 | 4.19E-02 | | | NB-95 | 765.79 | 99.81 | 1.94E-01 | 1.94E-01 | 1.63E-01 | 9.11E-02 | | | NB-95M | 235.69 | 25.00 | 8.74E+01 | 8.74E+01 | 1.35E+02 | 4.26E+01 | | | ZR-95 | 724.13 | 43.70 | 2.63E-01 | 2.08E-01 | 1.30E-02 | 1.22E-01 | | | | 756.72 | 55.30 | 2.08E-01 | | 7.47E-02 | 9.60E-02 | | | MO-99 | 181.06 | 6 20 | 9.77E+02 | 6.48E+02 | 1.92E+01 | 4.70E+02 | | | | 739.58 | 12.80 | 6.48E+02 | | -3.49E+02 | 2.95E+02 | | | | 778.00 | 4.50 | 2.09E+03 | | 3.11E+02 | 9.59E+02 | | | RU-103 | 497.08 | 89.00 | 1.09E-01 | 1.09E-01 | -1.15E-01 | 5.05E-02 | | | RU-106 | 621.84 | 9.80 | 8.37E-01 | 8.37E-01 | 1.06E-01 | 3.88E-01 | | | AG-108M | 433.93 | 89.90 | 8.11E-02 | 8.11E-02 | 2.03E-03 | 3.83E-02 | 1603102-06 | | | | | • | | | | |---|----------------|---------|----------|-------------|-------------|--------------------|-------------| | | Nuclide | Energy | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | | | Name | (keV) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | | AG-108M | 614.37 | 90.40 | 1.02E-01 | 8.11E-02 | -1.02E-02 | 4.79E-02 | | | | 722.95 | 90.50 | 8.59E-02 | | 1.16E-02 | 3.94E-02 | | + | CD-109 | 88.03 * | 3.72 | 2.10E+00 | 2.10E+00 | 1.33E+00 | 1.03E+00 | | | AG-110M | 657.75 | 93.14 | 9.00E-02 | 9.00E-02 | -8.26E-02 | 4.16E-02 | | | | 677.61 | 10.53 | 7.94E-01 | | -1.63E - 01 | 3.66E-01 | | | | 706.67 | 16.46 | 5.32E-01 | | -4.31E-02 | 2.45E-01 | | | | 763.93 | 21.98 | 4.50E-01 | | 1.73E-02 | 2.08E-01 | | | | 884.67 | 71.63 | 1.40E-01 | | 4.81E-02 | 6.40E-02 | | | | 1384.27 | 23.94 | 4.42E-01 | | -1.10E-01 | 1.96E-01 | | | CD-113M | 263.70 | 0.02 | 2.77E+02 | 2.77E+02 | 1.82E+01 | 1.33E+02 | | | SN-113 | 255.12 | 1.93 | 3.89E+00 | 1.38E-01 | -1.20E+00 | 1.87E+00 | | | | 391.69 | 64.90 | 1.38E-01 | | 3.80E-02 | 6.58E-02 | | | TE123M | 159.00 | 84.10 | 7.05E-02 | 7.05E-02 | -1.11E-02 | 3.39E-02 | | | SB-124 | 602.71 | 97.87 | 1.16E-01 | 1.16E-01 | -1.94E-02 | 5.42E-02 | | | | 645.85 | 7.26 | 1.52E+00 | | -2.00E-02 | 7.02E-01 | | | | 722.78 | 11.10 | 9.65E-C1 | | 1.31E-01 | 4.43E-01 | | | | 1691.02 | 49.00 | 2.33E-01 | | 8.02E-02 | 9.84E-02 | | | I-125 | 35.49 | 6.49 | 2.77E+00 | 2.77FH00 | -3.09E - 02 | 1.34E+00 | | | SB-125
 176.33 | 6.89 | 7.74E-01 | 2.31E-01 | -1.63E-01 | 3.72E-01 | | | | 427.89 | 29.33 | 2.31E-01 | | -8.85E-03 | 1.08E-01 | | | | 463.38 | 10.35 | 7.75E-01 | | 3.14E-01 | 3.66E-01 | | | | 600.56 | 17.80 | 4.67E-01 | | -3.87E-02 | 2.18E-01 | | | | 635.90 | 11.32 | 6.97E-01 | | 5.28E-02 | 3.23E-01 | | | SB-126 | 414.70 | 83.30 | 4.17E-01 | 3.73E-01 | 1.59E-01 | 1.97E-01 | | | | 666.33 | 99.60 | 4.04E-01 | | -9.07E-02 | 1.88E-01 | | | | 695.00 | 99.60 | 3.73E-01 | | -6.07E-02 | 1.72E-01 | | | | 720.5 | 53.80 | 7.13E-01 | | -2.14E-02 | 3.29E-01 | | + | SN-126 | 87.57 * | 37.400 | 2.02E-01 | 2.02E-01 | 1.28E-01 | 9.91E-02 | | | SB-127 | 473.00 | 25.00 | 4.60E+01 | 3.56E+01 | -5.37E+00 | 2.17E+01 | | | | 685.20 | 35.70 | 3.56E+01 | • | 1.43E+01 | 1.65E+01 | | | | 783.80 | 14.70 | 8.94E+01 | | -3.56E-01 | 4.12E+01 | | | I - 129 | 29.78 | 57.00 | 4.21E-01 | 4.21E-01 | 1.81E-01 | 2.04E-01 | | | | 33.60 | 13.20 | 1.21E+00 | | 4.13E-01 | 5.84E-01 | | | | 39.58 | 7.52 | 1.36E+00 | | 4.21E-01 | 6.57E-01 | | | I-131 | 284.30 | 6.05 | 1.15E+01 | 9.31E-01 | 7.08E-02 | 5.50E+00 | | | | 364.48 | 81.20 | 9.31E-01 | | 2.84E-01 | 4.41E-01 | | | i | 636.97 | 7.26 | 1.21E+01 | | 6.23E+00 | 5.62E+00 | | | | 722.89 | 1.80 | 4.77E+01 | | 6.46E+00 | 2.19E+01 | | | TE-132 | 49.72 | 13.10 | 2.10E+02 | 2.68E+01 | -3.82E+01 | 1.02E+02 | | | | 228.16 | 88,00 | 2.68E+01 | | -4.83E+00 | 1.29E+01 | | | BA-133 | 81.00 | 33.00 | 1.84E-01 | 1.71E-01 | -7.92E-01 | 8.96E-02 | | | | 302.84 | 17.80 | 4.08E-01 | | 1.41E-01 | 1.96E-01 | | | | 356.01 | 60.00 | 1.71E-01 | 0.0000 | -5.84E-04 | 8.28E-02 | | | 1-133 | 529.87 | 86.30 | 3.98E+08 | 3.98E+08 | 1.19E+08 | 1.85E+08 | | | XE-133 | 81.00 | 38.00 | 6.33E+00 | 6.33E+00 | -2.73E+01 | 3.08E+00 | | | CS-134 | 563.23 | 8.38 | 9.44E-01 | 9.32E-02 | -2.92E-01 | 4.40E-01 | | | | 5€9.32 | 15.43 | 5.63E-01 | | 1.21E-01 | 2.64E-01 | | | | 604.70 | 97.50 | 9.32E-02 | | -1.70E-02 | 4.37E-02 | | | | 795.34 | 85.40 | 1.11E-01 | | 4.16E-02 | 5.13E-02 | | | | 801.93 | 8.73 | 9.88E-01 | 4 00- 0- | 1.30E-01 | 4.53E-01 | | | CS-135 | 268.23 | 16.00 | 4.35E-01 | 4.35E-01 | -1.06E-02 | 2.09E-01 | | | @ I-135 | 1131.51 | 22 50 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | | @ " | 1260.41 | 28.60 | 1.00E+26 | | 1.00E+26 | 1.00E+20 | Analysis Report for 1603102-06 | Nuclide | Energy | Yielď(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | |------------|------------------|----------------|----------------------|----------------------|------------------------|----------------------| | Name | (ke\/) | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | @ I-135 | 1678.03 | 9.54 | 1.00E+26 | 1.00E+26 | 1.00E+26 | 1.00E+20 | | CS-136 | 153.22 | 7.46 | 3.05E+00 | 3.60E-01 | 8.51E-01 | 1.47E+00 | | | 163.89 | 4.61 | 4.53E+00 | | -1.49E-01 | 2.17E+00 | | | 176.55 | 13.56 | 1.68E+00 | | -2.66E-01 | 8.10E-01 | | | 273.65 | 12.66 | 2.39E+00 | | -9.82E-01 | 1.15E+00 | | | 340.57 | 48.50 | 7.57E-01 | | 8.33E-01 | 3.64E-01 | | | 818.50 | 99.70 | 3.60E-01 | | -4.59E-02 | 1.64E-01 | | | 1048.07 | 79.60 | 5.63E-01 | | 1.13E-01 | 2.57E-01 | | | 1235.34 | 19.70 | 3.10E+00 | 1 047 03 | 6.21E-01 | 1.44E+00 | | CS-137 | 661.65 | 85.12 | 1.04E-01 | 1.04E-01 | 1.25E-02 | 4.87E-02
1.08E-01 | | LA-138 | 788.74 | 34.00 | 2.35E-01 | 1.50E-01 | -7.64E-02
-3.18E-03 | 6.62E-02 | | | 1435.80 | 66.00 | 1.50E-01 | 7 000 00 | 6.44E-03 | 3.46E-02 | | CE-139 | 165.85 | 80.35 | 7.20E-02 | 7.20E-02
1.25E+00 | -2.44E-01 | 1.55E+00 | | BA-140 | 162.64 | 6.70 | 3.22E+00 | 1.25E+00 | -1.49E-01 | 3.13E+00 | | | 304.84 | 4.50 | 6.57E+00
8.99E+00 | | -3.91E+00 | 4.21E+00 | | | 423.70 | 3.20 | 1.62E+01 | | -2.06E+00 | 7.64E+00 | | | 437.55 | 2.00 | 1.02E+01
1.25E+00 | | -3.15E-01 | 5.81E-01 | | T. N. 1.40 | 537.32 | 25.00 | 1.45E+00 | 4.60E-01 | -3.44E-02 | 6.87E-01 | | LA-140 | 328.77 | 20.50
45.50 | 6.81E-01 | 4.00E 01 | -7.51E-02 | 3.18E-01 | | | 467.03
815.85 | 23.50 | 1.59E+00 | | 1.01E-01 | 7.26E-01 | | • | 1596.49 | 95.49 | 4.60E-01 | | -2.16E-02 | 2.01E-01 | | CE-141 | 145.4 | 48.40 | 2.00E-01 | 2.00E-01 | 8.74E-02 | 9.67E-02 | | CE-143 | 57.36 | 11.80 | 7.21E+05 | 2.93E+05 | 5.50E+04 | 3.50E+05 | | CE-140 | 293.26 | 42.00 | 2.93E+05 | | 5.85E+05 | 1.42E+05 | | | 664.55 | 5.20 | 2.26E+06 | | 9.34E+05 | 1.06E+06 | | CE-144 | 133.54 | 10.80 | 4.73E-01 | 4.73E-01 | -1.61E-01 | 2.28E-01 | | PM-144 | 476.78 | 42.00 | 2.54E-01 | 8.00E-02 | 2.27E-01 | 1.21E-01 | | *** *** | 618.01 | 98.60 | 8.00E-02 | | -2.02E-02 | 3.70E-02 | | | 696.49 | 99.49 | 8.40E-02 | | -1.48E-02 | 3.87E-02 | | PM-145 | 36.85 | 21.70 | 5.56E-01 | 3.02E-01 | 1.07E-01 | 2.69E-01 | | | 37.36 | 39.70 | 3.02E-01 | | 9.10E-02 | 1.46E-01 | | | 42.30 | 15.10 | 6.08E-01 | | -1.65E-01 | 2.94E-01 | | | 72.40 | 2.31 | 3.19E+00 | | -6.30E+00 | 1.56E+00 | | PM-146 | 453.90 | 39.94 | 1.87E-01 | 1.87E-01 | -2.09E-02 | 8.80E-02 | | | 735.90 | 14.01 | 5.81E-01 | | 3.48E-01 | 2.67E-01 | | | 747.13 | 13.10 | 7.32E-01 | | 4.50E-01 | 3.41E-01 | | ND-147 | 91.11 | 28.90 | 1.31E+00 | 1.31E+00 | 2.27E-01 | 6.38E-01 | | :
 | 531.02 | 13.10 | 3.11E+00 | | 3.97E-01 | 1.44E+00 | | PM-149 | 285.90 | 3.10 | 1.22E+04 | 1.22E+04 | 2.48E+02 | 5.83E+03 | | EU-152 | 121.78 | 20.50 | 2.37E-01 | 2.37E-01 | 2.23E-02 | 1.14E-01 | | | 244.69 | 5.40 | 1.45E+00 | | -9.22E-02 | 7.02E-01 | | : | 344.27 | 19.13 | 3.51E-01 | | 1.76E-02 | 1.67E-01 | | | 778.89 | 9.20 | 9.24E-01 | | 2.48E-01 | 4.25E-01 | | | 964.01 | 10.40 | 9.81E-01 | | 3.34E-01 | 4.51E-01 | | | 1085.78 | . 7.22 | 9.65E-01 | | -1.63E-01 | 4.19E-01
5.12E-01 | | | 1112.02 | 9.60 | 1.12E+00 | | 1.09E-01
-3.08E-01 | 2.82E-01 | | | 1407.95 | 14.94 | 6.39E-01 | 1 715 01 | | 8.28E-02 | | GD-153 | 97.43 | 31.30 | 1.71E-01 | 1.71E-01 | -1.44E-01
-3.16E-02 | 1.10E-01 | | | 103.18 | 22.20 | 2.28E-01 | 1 000 01 | -3.16E-02
-1.20E-03 | 5.80E-02 | | EU-154 | 123.07 | 40.50 | 1.20E-01 | 1.20E-01 | 5.38E-02 | 1.82E-01 | | | 723.30 | 19.70 | 3.97E-01 | | 2.44E-02 | 3.45E-01 | | | 873.19 | 11.50 | 7.55E-01 | | Z.44E-UZ | O. JOH OI | Analysis Report for 1603102-06 | | _ | DIMENT 2010 0 | 0 101 | | | | | | |------------------|------------|---------------|-------|----------|-------------|--------------------|--------------------|-------------| | | Nuclide | Energy | | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level | | | Name | (keV) | | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pCi/grams) | | w-^ - | EU-154 | 996.32 | | 10.30 | 9.07E-01 | 1,20E-01 | -3.30E-01 | 4.13E-01 | | | F0-T24 | 1004.76 | | 17.90 | 5.26E-01 | | 3.42E-02 | 2.39E-01 | | | | 1274.45 | | 35.50 | 3.44E-01 | | 1.21E-02 | 1.57E-01 | | | EU-155 | 86.50 | | 30.90 | 2.16E-01 | 2.16E-01 | 1.34E-01 | 1.05E-01 | | | E0-133 | 105.30 | | 20.70 | 2.29E-01 | | -4.39E-03 | 1.10E-01 | | | EU-156 | 811.77 | | 10.40 | 2.60E+00 | 2.60E+00 | -5.72E-01 | 1.18E+00 | | | F0-120 | 1153.47 | | 7.20 | 4.99E+00 | | 6.75E-01 | 2.26E+00 | | | | 1230.71 | | 8.90 | 4.67E+00 | • | -2.19E+00 | 2.13E+00 | | | 110 1 C CM | 184.41 | | 72.60 | 9.45E-02 | 9.45E-02 | 1.65E-01 | 4.58E-02 | | | HO-166M | 280.45 | | 29.60 | 2.29E-01 | 3.10 <u>,</u> 2 02 | 1.27E-01 | 1.09E-01 | | | | 410.94 | | 11.10 | 6.77E-01 | r" | 4.56E-02 | 3.21E-01 | | | | | | 54.10 | 1.48E-01 | | -1.29E-02 | 6.81E-02 | | | mr. 171 | 711.69 | | 0.14 | 4.90E+01 | 4.90E+01 | -3.97E-01 | 2.39E+01 | | | TM-171 | 66.72 | | 4.52 | 1.35E+00 | 4.44E-01 | -3.62E-01 | 6.57E-01 | | | HF-172 | 81.75 | | 11.30 | 4.44E-01 | T. TT. OT | -2.63E-01 | 2.14E-01 | | | 450 | 125.81 | | | 4.51E+00 | 2.91E+00 | -4.43E-01 | 2.17E+00 | | | LU-172 | 181.53 | | 20.60 | | 2.916100 | -4.79E+00 | 3.63E+00 | | | | 810.06 | | 16.63 | 8.03E+00 | | 3.15E+01 | 8.88E+00 | | | | 912.12 | | 15.25 | 1.87E+01 | | -5.20E-01 | 1.33E+00 | | | | 1093.66 | | 62.50 | 2.91E+00 | 2 500 01 | -1.40E-01 | 4.52E-01 | | | LU-173 | 100.72 | | 5.24 | 9.36E-01 | 3.52E-01 | 2.13E-01 | 1.69E-01 | | | | 272.11 | | 21.20 | 3.52E-01 | 1 100 01 | 6.81E-03 | 5.22E-02 | | | HF-175 | 343.40 | | 84.00 | 1.10E-01 | 1.10E-01 | | 2.46E-01 | | | LU-176 | 88.34 | | 13.30 | 5.05E-01 | 7.005-02 | 1.39E-01 | 3.76E-02 | | | | 201.83 | | 86.00 | 7.77E-02 | • | -9.11E-03 | 3.76E-02 | | | | 306.78 | | 94.00 | 7.00E-02 | 4 00- 01 | 2.06E-02 | 9.26E-02 | | | TA-182 | 67.75 | | 41.20 | 1.90E-01 | 1.90E-01 | 3.09E-02 | | | | | 1121.30 | | 34.90 | 5.11E-01 | | 5.37E-01 | 2.40E-01 | | | | 1189.05 | | 16.23 | 7.31E-01 | | -1.91E-02 | 3.30E-01 | | | | 1221.41 | | 26.98 | 5.32E-01 | | -1.23E-01 | 2.44E-01 | | | | 1231.02 | | 11.44 | 1.23E+00 | | 5.95E-02 | 5.65E-01 | | | IR-192 | 308.46 | | 29.68 | 2.78E-01 | 1.82E-01 | 2.09E-02 | 1.32E-01 | | | | 468.07 | | 48.10 | 1.82E-01 | | 5.81E-03 | 8.51E-02 | | | HG-203 | 279.19 | | 77.30 | 1.37E-01 | 1.37E-01 | 7.54E-02 | 6.57E-02 | | | BI-207 | 569.67 | | 97.72 | 8.47E-02 | 8.47E-02 | -3.55E-03 | 3.97E-02 | | | | 1063.62 | | 74.90 | 1.12E-01 | | -8.62E-03 | 5.01E-02 | | + | TL-208 | 583.14 | * | 30.22 | 4.11E-01 | 4.72E-02 | 7.54E-01 | 1.97E-01 | | | | 860.37 | | 4.48 | 2.22E+00 | | 6.28E-01 | 1.03E+00 | | | | 2614.66 | * | 35.85 | 4.72E-02 | | 7.15E-01 | 0.00E+00 | | | BI-210M | 262.00 | | 45.00 | 1.44E-01 | 1.44E-01 | 2.00E-02 | 6.91E-02 | | | | 300.00 | | 23.00 | 3.43E-01 | | -1.03E+00 | 1.65E-01 | | + | PB-210 | 46.50 | * | 4.25 | 2.68E+00 | 2.68E+00 | 1.59E+00 | 1.31E+00 | | | PB-211 | 404.84 | | 2.90 | 2.51E+00 | 2.51E+00 | -2.65E - 01 | 1.19E+00 | | | | 831.96 | | 2.90 | 2.89E+00 | | -5.74E-01 | 1.32E+00 | | + | BI-212 | 727.17 | * | 11.80 | 9.92E-01 | 9.92E-01 | 7.06E-01 | 4.69E-01 | | | | 1620.62 | | 2.75 | 3.37E+00 | | 8.37E-02 | 1.46E+00 | | + | PB-212 | 238.63 | × | 44.60 | 2.68E-01 | 2.68E-01 | 1.08E+00 | 1.31E-01 | | • | 1 | 300.09 | * | 3.41 | 3.85E+00 | ∵. | 2.21E+00 | 1.88E+00 | | + | BI-214 | 609.31 | * | 46.30 | 2.42E-01 | 2.42E-01 | 1.31E+00 | 1.15E-01 | | r | 2. 2 | 1120.29 | * | 15.10 | 9.21E-01 | | 1.45E+00 | 4.30E-01 | | | | 1764.49 | * | 15.80 | 7.60E-01 | | 1.28E+00 | 3.38E-01 | | | | 2204.22 | | 4.98 | 2.22E+00 | | 4.57E-01 |
9.58E-01 | | + | PB-214 | 295.21 | * | 19.19 | 6.68E-01 | 2.48E-01 | 1.43E+00 | 3.26E-01 | | Т | ID CII | 351.92 | * | 37.19 | 2.48E-01 | | 1.34E+00 | 1.19E-01 | | | | J J 4 . J Z | | | _ , | | | | 1603102-06 SEDIMENT 2016-03-16B DUP | • | Nuclide | Energy | | Yield(%) | Line MDA | Nuclide MDA | Activity | Dec. Level
(pCi/grams) | |-----|------------------|---------|---|----------|-------------|-------------|-------------|---------------------------| | | Name | (keV) | | | (pCi/grams) | (pCi/grams) | (pCi/grams) | (pc//grams) | | | RN-219 | 401.80 | | 6.50 | 1.12E+00 | 1.12E+00 | -6.04E-02 | 5.30E-01 | | | RA-223 | 323.87 | | 3.88 | 1.59E+00 | 1.59E+00 | -8.66E-01 | 7.52E-01 | | | RA-224 | 240.98 | | 3.95 | 3.21E+00 | 3.21E+00 | 1.55E+01 | 1.57E+00 | | | RA-225 | 40.00 | • | 31.00 | 1.19E+00 | 1.19E+00 | 3.67E-01 | 5.74E-01 | | + | RA-226 | 186.21 | * | 3.28 | 2.72E+00 | 2.72E+00 | 2.74E+00 | 1.33E+00 | | | TH-227 | 50.10 | | 8.40 | 8.62E-01 | 8.62E-01 | -1.57E-01 | 4.18E-01 | | | | 236.00 | | 11.50 | 9.01E-01 | • | 1.39E+00 | 4.40E-01 | | | | 256.20 | | 6.30 | 9.98E-01 | | -4.29E-01 | 4.78E-01 | | + | AC-228 | 338.32 | * | 11.40 | 8.37E-01 | 5.07E-01 | 9.08E-01 | 4.04E-01 | | ` | 110 220 | 911.07 | * | 27.70 | 5.07E-01 | | 9.33E-01 | 2.40E-01 | | | | 969.11 | * | 16.60 | 6.35E-01 | | 9.15E-01 | 2.92E-01 | | | TH-230 | 48.44 | | 16.90 | 5.03E-01 | 5.03E-01 | 4.19E-01 | 2.44E-01 | | | 111 230 | 62.85 | | 4.60 | 1.59E+00 | | 1.14E+00 | 7.74E-01 | | | | 67.67 | | 0.37 | 1.79E+01 | | 2.91E+00 | 8.72E+00 | | | PA-231 | 283.67 | | 1.60 | 3.93E+00 | 3.14E+00 | 2.42E-02 | 1.88E+00 | | | FR 231 | 302.67 | | 2.30 | 3.14E+00 | • | 1.09E+00 | 1.50E+00 | | | TH-231 | 25.64 | | 14.70 | 3.20E+00 | 9.29E-01 | 1.55E+00 | 1.55E+00 | | | 111 251 | 84.21 | | 6.40 | 9.29E-01 | | -4.50E-02 | 4.52E-01 | | | PA-233 | 311.98 | | 38.60 | 3.51E-01 | 3.51F-01 | 5.77E-02 | 1.67E-01 | | | PA-234 | 131.20 | | 20.40 | 2.52E-01 | 2.52E-01 | 2.16E-02 | 1.22E-01 | | | FA-234 | 733.99 | | 8.80 | 8.85E-01 | | 2.34E-01 | 4.06E-01 | | | | 946.00 | | 12.00 | 6.68E-01 | | -5.55E-01 | 3.00E-01 | | | PA-234M | 1001.03 | | 0.92 | 1.07E+01 | 1.07E+01 | -8.85E-01 | 4.87E+00 | | + | TH-234 | 63.29 | * | 3.80 | 2.83E+00 | 2.83E+00 | 2.01E+00 | 1.39E+00 | | 11" | U-235 | 143.76 | | 10.50 | 4.82E-01 | 4.82E-01 | -2.19E-01 | 2.33E-01 | | | 0 233 | 163.35 | | 4.70 | 1.02E+00 | | -3.37E-02 | 4.90E-01 | | | | 205.31 | | 4.70 | 1.49E+00 | | 2.78E-01 | 7.20E-01 | | | NP-237 | 86.50 | | 12.60 | 5.24E-01 | 5.24E-01 | 3.25E-01 | 2.56E-01 | | | NP-239 | 106.10 | | 22.70 | 7.60E+02 | 7.60E+02 | 1.65E+02 | 3.67E+02 | | | NF-239 | 228.18 | | 10.70 | 2.14E+03 | • | -3.86E+02 | 1.03E+03 | | | | 277.60 | | 14.10 | 1.80E+03 | | 9.78E+02 | 8.65E+02 | | | AM-241 | 59.54 | | 35.90 | 1.82E-01 | 1.82E-01 | -1.87E-01 | 8.82E-02 | | ı | AM-241
AM-243 | 74.67 | * | 66.00 | 1.84E-01 | 1.84E-01 | 2.24E-01 | 9.05E-02 | | + | AM-243
CM-243 | 209.75 | | 3.29 | 2.17E+00 | 4.98E-01 | 1.69E+00 | 1.05E+00 | | | CM-243 | 228.14 | | 10.60 | 5.92E-01 | | -1.07E-01 | 2.85E-01 | | | | 277.60 | | 14.00 | 4.98E-01 | | 2.70E-01 | 2.39E-01 | ^{+ =} Nuclide identified during the nuclide identification No Action Level results available for reporting purposes. ⁼ Energy line found in the spectrum > = MDA value not calculated ^{@ =} Half-life too short to be able to perform the decay correction 1603102-06 SEDIMENT 2016-03-16B DUP # DATA REVIEW COMMENTS REPORT Creation Date Comment User No Data Review Comments Entered. ***************** Sample Title: SEDIMENT 2016-03-16B DUP Elapsed Live time: Elapsed Real Time: 3600 3611 | ~: -: | | , | , | | ı | | 1 | | |--------------|----------|----------|------------------|----------|----------|-----------|------------|-----------| | Channel | | | | | 0 | 0 | 0 | 0 | | 1: | 0 | 0
134 | 0
1 59 | 0
124 | 85 | 92 | 7 <i>7</i> | 88 | | 9: | 4 | 66 | 48 | 69 | 50 | 77 | 74 | 72 | | 17: | 71
61 | 59 | 59 | 62 | 42 | 54 | 55 | 67 | | 25: | | 40 | 41 | 81 | 47 | 46 | 52 | 57 | | 33: | 50
58 | 61 | 52 | 68 | 54 | 65 | 151 | 72 | | 41: | 63 | 64 | 63 | 67 | 76 | 64 | 69 | 92 | | 49:
57: | 71 | 64 | 75 | 93 | 82 | 84 | 120 | 159 | | 57:
65: | 106 | 95 | 93 | 92 | 112 | 106 | 100 | 103 | | 73: | 103 | 131 | 224 | 246 | 249 | 384 | 120 | 87 | | 81: | 103 | 89 | 70 | 104 | 118 | 85 | 113 | 167 | | 89: | 98 | 108 | 117 | 82 | 162 | 143 | 81 | 71 | | 97; | 64 | 61 | 57 | 67 | 56 | 58 | 50 | 56 | | 105: | 61 | 60 | 52 | 54 | 57 | 48 | 53 | . 60 | | 113: | 61 | 68 | 46 | 62 | 44 | 55 | 58 | 59 | | 121: | 50 | 63 | 58 | 43 | 57 | 45 | 58 | 68 | | 129: | 73 | 59 | 53 | 50 | 55 | 55 | 38 | 47 | | 137: | 62 | 44 | 50 | 63 | 55 | 42 | 47 | 61 | | 145: | 63 | 44 | 65 | 51 | 57 | 49 | 45 | 46 | | 153: | 51 | 59 | 57 | 48 | 38 | 54 | 50 | 42 | | 161: | 43 | 40 | 49 | 30 | 34 | 45 | 51 | 54 | | 169: | 35 | 43 | 2.7 | 39 | 55 | 48 | 35 | 46 | | 177: | 44 | 41 | 50 | 40 | 42 | 33 | 55 | 33 | | 185: | 43 | 115 | 107 | 42 | 40 | 42 | 40 | 48 | | 193: | 37 | 34 | 37 | 47 | 39 | 57 | 47 | 47
r.r | | 201: | 37 | 50 | 29 | 43 | 40 | 52 | 45 | 55 | | 209: | 46 | 48 | 46 | 49 | 28 | 29 | 29
30 | 32
32 | | 217: | 42 | 33 | 36 | 31 | 23 | 31
37 | 30 | 32
34 | | 225: | 32 | 22 | 33 | 24 | 32 | 81 | 330 | 163 | | 233: | 32 | 27 | 39 | 25 | 34 | 21 | 21 | 25 | | 241: | 47 | 96 | 79 | 34 | 23
23 | 29 | 21 | 23
27 | | 249: | 29 | 25 | 31 | 32 | 23 | 23 | 26 | 34 | | 257 : | 22 | 28 | 27
20 | 32
22 | 30 | 2.3
37 | 48 | 23 | | 265: | 17 | 29
26 | 26 | 18 | 34 | 29 | 33 | 26 | | 273: | 21
25 | | | 22 | 13 | 20 | 27 | 22 | | 281:
289: | 18 | | | 21 | 15 | 31 | | 155 | | 209;
297; | 45 | | | | 46 | | | 22 | | 305: | | | | | 20 | | | 16 | | 313: | 18 | | | 17 | 18 | | | 16 | | 321: | 13 | | | 14 | 15 | | | 16 | | 329: | 24 | | | 17 | 25 | | | 15 | | 337: | 18 | | | | 19 | | | 17 | | 345: | 20 | | | | 18 | | | 203 | | 353: | 167 | | | | | | | 17 | | 361: | 11 | | | | | | 12 | 20 | | | | | | | | | | | 369: 15 13 19 15 11 18 19 14 Sample Title: SEDIMENT 2016-03-16B DUP 801: 2 7 6 10 7 8 8 4 Sample Title: SEDIMENT 2016-03-16B DUP | | | | | | | , | | | |--|-----------------------------|--------------------------------------|---|--|-------------------|---------------------------------|--------------------------------------|--| | Channel 809: |
3 |
4 | - - | 2 . | 4 | 8 | 5 | 6 | | 817: | 4 | 4 | 7 | 2
5 | 7 | 5 | 7 | 7 | | 825:
833: | 4
3 | 6
.1 | 7
7 | 5
4 | 7
9 | ິບ
ຊ | 7
3 | 5
9 | | 841: | 5
5 | 3 | 3 | 8 | 4 | 8
5 | 4 | 4 | | 849: | 4 | 5 | 3 | 4 | 2 | 7 | 7 | 7 | | 857:
865: | 5
7 | 5
. 5 | 3
4 | 13
6 | 11
6 | 8
9 | 7
7 | 3
2 | | 873 : | 3 | 9 | 2 | 5 | 2 | 7 | | 4 | | 881: | 7 | 9 | 4 | 6 | 4 | 7 | 9
5
5
5 | 1
5 | | 839:
897: | 5
5 | 4 | 6
4 | 11
10 | 9
6 | 7 | 5 | 7 | | 905: | 7 | 6 | 8 | 5 | 4 | 27 | 45 | 34 | | 913:
921: | 9 | 4
3 | 4
3 | 5
0 | ₫
3 | 7
4 | 1
4 | 3
4 | | 921 :
929: | 3 | 3 | 6 | 4 | 6 | 9 | 6 | 3
6 | | 937 : | 2 | 3 | 6 | 4 | 4 | 8 | 7
7 | 6
3 | | 945:
953: | 4
4 | 1
10 | 5
9 | 4
6 | 0
5 | 3 | 6 | 4 | | 961: | 7 | 5 | <u>4</u>
5 | 1.4 | 5
5
3 | 8
3
5
3 | 4 | 17 | | 969:
977: | 30
7 | 13
5 | 5
2 | 3
7 | 3
4 | 3
. 8 | 4
1 | 5
1 | | 985: | 3 | 4 | 3 | 7 | 2 | 6 | 7 | 4 | | 993: | 5 | 7 | 4 | 5
7 | 5
7 | 4
6 | 4
1 | 6 | | 1001:
1009: | 8
4. | 3
2 | 6
7 | /
4 | 2 | 3 | 6 | 4
5
2
2 | | 1017: | 3 | 4 | 2 | 3 | 535551342 | 6 | 2 | 2 | | 1025:
1033: | 3
2 | 6
4 | 4
3 | 3
6 | 3
5 | 4
4 | 5
3 | 6 | | 1041: | 4 | 6 | 1 | 7 | 5 | | 12 | 4 | | 1049:
1057: | 3
6 | 5
2 | 2
5 | 5
2 | 5
1 | 8
5
3 | 6
1 | 6
4 | | 1065; | 6 | 7 | 4 | 4 . | 3 | 4 | 4 | 4 | | 1073: | 2
6 | 1
5 | 5
2 | 4
1 | 4. | 4
1 | 4
2 | 3
4 | | 1081:
1089: | 3 | 5 | 7 | 7 | 6 | 5 | 3 | 2 | | 1097: | | | 3 | 2 | 5 | 4 | 4
6 | 6 | | 1105:
1113: | 2
8 | 9 | 6 | 3
3 | ა
8 | 5 | 9 | 25 | | 1121• | 22 | 7 | 8 | 2 | 4 | 4 | 9 | 5 | | 1129:
1137:
1145:
1153:
1161:
1169: | 8
2
8
22
5
2 | 6
4
9
7
5
7
5
4 | 3
6
6
8
3
8
2
8
4
2
4 | ა
2 | 6
3 | 4
5
4
3
3
2
4 | 3
8
9
6 | 1 | | 1145: | 4 | 5 | 2 | 7 | 3 | 2 | 9 | 0 | | 1153: | 6 | 4 | 8 | 2 | 2 | 4
⊿ | 6
1 | პ
ვ | | 1169: | 3 | 3 | 2 | 9 | 8 | 4 | $\frac{4}{4}$ | 7 | | 1 1 / / • | 3 | 3 | 4 | 3 | 5
1 | 6
4 | 6
6 | 4 | | 1185:
1193: | 4
3
3
3
3
4 | 4
3
3
3
7 | 4
3
6 | 2
3
3
2
5
4
7
2
9
9
3
2
4
4
5
1
1
2 | 53846332285454629 | 4 | 1
6
6
2
9
4
3
4 | 6
2
5
1
1
0
3
3
7
4
6
8
4
5
4
5 | | 1201: | | 0 | 6 | 4 | 4 | 7 | 9 | 4 | | 1209:
1217: | 9
4 | 7
10 | 4
8 | 5
11 | ნ
2 | 7
4 | 4
3 | 5
4 | | 1185:
1193:
1201:
1209:
1217:
1225: | 10 | 8 | 4 | 2 | Ġ, | 3 | 4 | 5 | 1233: 11 6 6 4 11 14 12 9 Sample Title: SEDIMENT 2016-03-16B DUP | | Sampre | TTCTE. | SHOTHER | 11 2010 0 | /J 10D D | . VI | | | |---|------------------|--|----------------------------|---------------------------------|---------------------------------|---|---------------------------------|--------| | Channel | | | i- | - | | | | | | 1241: | 3 | 3 ် | 4 | 7 | 4 | 6 | 5
7 | 4 | | 1249: | 4 | 5 | 3
2 |
3 | 4 | 2 | | 3
3 | | 1257: | 2 | 2 | 2 | 9 | 8 | 1 | 6 | 3 | | 1265: | 4 | 5 | 5 | 4 | 5 | 6 | 7 | 1 | | 1273: | 3 | 6 | 5
3
3 | 5 | 4 | .3 | 2
3 | 6 | | 1291: | 12 | 3 | 3 | 3 | . 3 | 4 | 3 | 4 | | 1289: | 12
6 | 2 | 1 | 5
3
5 | 1 | 5 | 4 | 3 | | 1297: | 2 | 2 | 1 | 5 | 4 | 4 | 1 | 3 | | 1305: | 1 | 3
5
2
5
3
2
2
2
2
1 | 3 | 5
3
3
3 | 5 | 1 | 2 | 4 | | 1313: | 4 | 2 | 3 | . 3 | 5
3
3 | 2 | 1 | 1 | | 1321: | 4 | 1 | 0 | 3 | | 4 | 3 | 1 | | 1329: | 2 | 3 | 1 | 3 | 4 | 2 | 0 | 1 | | 1337: | 4 | 4 | 1 | 1 | 2 | 2
3
1 | 3 | . 1 | | 1345: | 2 | 3 | 0 | 3 | 4 | | 3 | 2 | | 1353: | 2 | 3 | 4 | 1. | 2 | 1 | 3 | 2 | | 1361: | 0 | 3 | 6 | 2 | 1 | 5 | 3
0
3
3
3
2
1 | . 0 | | 1369: | 1 | 3
3
3
2
3 | 3
3
3
1 | 2 | 0 | 1 | 1 | 4 | | 1377: | 0 | 3 | 3 | 4 | 1 | 2 | 4 | . 4 | | 1385: | 1 | 1 | 3 | 1 | 3
2 | 3 | 2 | 0 | | 1393: | 1 | 4 | | 1 | | 2 | <u> </u> | 6 | | 1401: | 5 | 2 | 1 | 2 | 1 | 3 | 5 | 1 | | 1409: | 3 | 3 | 1 | 0 | 5 | 4 | 3 | 0 | | 1417: | 4 | 0 | 1 | 1 | ± . | 5 | Ţ | 0 | | 1425: | 2
2 | 0 | 1
3 | 0 | 2 1 | 7 | 2
3
5
3
1
5 | 3
1 | | 1433: | 2 | 3
3 | 1 | 0
0 | Ą | 5
1
2
3
2
3
4
5
1
2
1 | 0 | 1 | | 1441:
1449: | 2
1 | 2 | 1 | 2 | 1 | 3 | 0 | 0 | | 1457: | 1 | 7 | 48 | 128 | 125 | 49 | 4 | Ŏ | | 1465: | 1 | í | 1 | 1 120 | 3 | 0 | 2 | 5 | | 1473: | 1 | 0 | i | $\dot{\hat{2}}$ | 2. | 1 | 1 | Ö | | 1481: | 1 | 1 | 2 | 2 | 0 | 0 | Õ | | | 1489: | 2 | $\overset{\circ}{1}$ | ĩ | Õ | 2 | | 3 | 1
3 | | 1497: | 2
2
2
2 | 1 | 3 | 5 | 1 | 2
1
3 | 0 | | | 1505; | $\frac{1}{2}$ | 1 | ĺ | 4 | Zļ. | 3 | 4 | 1
2 | | 1513: | 2 | 6 | ī | Ō | 0 | 1 | 1 | 3 | | 1521: | 1 | | 2 | 2 | 1 | 1 | 4 | 0 | | 1521:
1529: | 0 | 2 | 4 | 3 | 1 | 0 | . 1 | 2 | | 1527・ | | 2
2
3
2 | 4
2
0 | 2
3
2
1
2
0 | 1
1
1
2
2
1
1 | 0
2
0
2
0 | 0 | 1 | | 1545:
1553:
1561:
1569:
1577: | 1
2
1 | 2 | 0 | 1 | 1 | 0 | 0 | 1 | | 1553: | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 1 | | 1561: | . 0 | 1 | 1 | O | 2 | 0 | 0 | 3 | | 1569: | 0 | 1
1
2
1 | 1
1
0
2 | 0 | 2 | 1
3
2
0 | 2 | 0 | | 1577: | € 0 | 1 | | 0 | 1 | 1 | 2 | 3 | | 1585 : | 1 | 2 | 4 | 6 | 1 | 3 | 4 | 1 | | 1593: | 7 | 1 | 4 | 1 | 0 | 2 | 0 | 0 | | 1601: | 1 | | Ō | 2 | 0 | | 1 | 2 | | 1609: | 0 | Ü | 0 | 2 | 1 | 0 | 3 | 5 | | 1617: | 1 | 1 | 3 | 1 | 1 | 1 | 0 | 7 | | 1625: | 0 | 3 | 1 | 0
6
1
2
2
1
2 | 3 | 1
5
1 | 1 | 2 | | 1633: | 0 | ī | Ü | | 2 | 1 | 0 | Ú | | 1641: | 0 | 1
3
1
1
0 | 0
3
0
2
1
4 | 0
2
3 | 1
3
2
1
0 | Ţ | 0 | | | 1649: | 0 | 1 | 1 | 2 | Ü | 0 | 0 | 2 | | 1657: | 2 | 0 | 4 | 3 | 4 | 1 | 1 | U | ō . C O 1. Ú. 1. 0 1 1 0 0 2073: 2081: 2089: $\bar{2}$ 0 C 0 0 ũ 0 0 | Channel | Data | Report | | | 4/13/2916 | 11:13:3 | 30 AM | | Page | |--|------|----------|--|---|--|---|--|--|--| | 2097: | | 1 | 1 | ñ | 0 | 1 | 2 | 7 | 1 | | | Samp | ple Titl | e: | SEDIMEN | T 2016-03- | 16B DUP | | | | | Chanel 2103: 21131: 2129: 211375: 211453: 211453: 21169: | | | -1101002100005100011202000011100112120001101001022000000 | 0100011022023120102202000100011000011020000100001000000 | 1001100121101200011002200211100000110000110000 | 01010100020101000000111022100110120001001 | 1110000002112000101301110011110010002100011010010200 | 0300100001002100010030220001002020000010130000010000 | 0000001013020012200111111010010010200300000103100011 | | Channel | Data Re | port | | 4/13/2019 | 3 11:13: | :30 AM | | Page |
--|---------|--------|---------|--|----------|---|---|------| | 2529: | 0 | 0 | 0 | 0 | Ó | 0 | 1 | 0 | | | Sample | Title: | SEDIMEN | IT 2016-03 | 3-16B DU | P | | | | Chane: 2537: 2545: 25561: 25577: 25569: 256097: 256097: 256097: 256097: 256097: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 266175: 2661775: 27745: 2 | | Title: | SEDIMEN | 1T 2916-01
111100105000000000000000000000000000 | 16B DU | 001000110600000000000000000000000000000 | 011000101400011001010000000000000000000 | | 4/13/2016 11:13:30 AM Page Channel Data Report 2961: 0 1 0 0 0 0 0 Sample Title: SEDIMENT 2016-03-16B DUP Channel | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | Channel | Data | Repo | ort | 4 | /13/2016 | 11:13:3 | 30 AM | | Page | | |---|------|---|---|---|--------------------------------------|--------------------------------------|--|---|------|--| | 3393: | | 0 | 0 | 0 | 0 | С | 0 | 0 | 0 | | | | Samp | ole T | Title: | SEDIMENT | 2016-03- | 16B DUP | la l | | | | | Channel 3401: 3409: 3409: 3417: 34253: 34419: 34457: 34457: 34457: 3465: 34657: 3569: 35600: 35600: 366577: 3769: 37769: | | 010000100011100100000100000000000000000 | 000000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 000000010000001000000000000000000000 | 000000001000100000100000000000000000 | | 020000000000000000000000000000000000000 | | | | Channel | Data Re | eport | | 4/13/20 | 016 11:1 | 13:30 AM | | Page 10 | |--|-------------|--|-------------|-------------
---|---|---|-------------| | 3825: | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | | - | Sample | e Title: | SEDIME | NT 2016 | -03-16B I | OUP. | | | | Channel 3833: 3841: 3849: 3857: 3865: 3873: 3889: 3897: 3905: 3913: 3929: 3929: 3945: 3969: 3969: 3969: 3969: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 4009: 40057: 4065: | | Title: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | SEDIME | NT 2016 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | | | | 4073:
4081:
4089: | 0
0
0 | 0
0
0 | 0
0
0 | 1
0
0 | Ō | 0 | 0 | 0
0
0 | 0000035710.CNF Live Time :3600.000 sec Real Time :3611.380 sec Start: 1: 0.7(keV) Stop : 4096:4097.0(keV) Acq. Start :Wed Apr 13 10:13:02 2016 105-AM-268-109 SN-126 Counts-log scale Channel ROI Type: 1 ROI Type: 2 **************************** ***** GENIE QUALITY ASSURANCE ******************* Last Results Report 4/11/16 5:51:27 AM OA File: \\OR-GAMMA1\ApexRoot\Countrocm\QA\D000000002B.QCK GE2 Detector: Geometry: <None> Certificate: <None> Sample ID: Sample Desc: Sample Quantity: Sample Date: 4/11/16 5:36:12 AM Measurement Date: 4/11/16 5:36:14 AM Elapsed Live Time: 900.0 seconds Elapsed Real Time: 900.1 seconds Parameter Description [Mean +/- Std. Dev.] Value Deviation/Flags < LU : SD : UD : BS > DAILY BKG CT RATE GE2 4.1300E+000 3.9193E-002 [SD:-2.6135E+035+/-*****] : : : 9 samples exhibit a bias trend. Trend Test: The last Flags Key: LU = Lower/Upper Bounds Test (Ab = Above, Be = Below) SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action) UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action) \\OR-GAMMA1\ApexRoot\Countroom\QA\D000000002GAS-1401C.QC ****************** ***** GENIE QUALITY ASSURANCE ******************* > Last Results Report 4/11/16 5:30:15 AM QA File: Detector: GE2 Geometry: <None> Certificate: GAS-1401 Sample ID: QA Calibration C Sample Desc: QA Count Sample Quantity: 1.0000E+000 Sample Date: 10/1/14 12:00:00 AM Measurement Date: 4/11/16 5:14:33 AM Flanced Live Time: 900 0 seconds Elapsed Live Time: 900.0 seconds Elapsed Real Time: 930.7 seconds Parameter Description Value Deviation/Flags (Mean +/- Std. Dev.] Value Control Peak centroid 59.54kev 5.9180E+001 Peak centroid 59.54kev 5.9180E+001 Boundary Limits: [5.800E+001, 6.100E+001] < : : Peak centroid 661.65 kev 6.6155E+002 Boundary Limits: [6.600E+002, 6.640E+002] < : : Peak centroid 1332.49 ke 1.3326E+003 Boundary Limits: [1.331E+003, 1.334E+003] < : : Peak centroid 1836.1 kev 1.8364E+003 Boundary Limits: [1.834E+003, 1.838E+003] < : : Trend Test: The last 9 samples exhibit a bias trend. 1.7284E+000 Peak FWHM Am-241 Boundary Limits: [5.000E-001, 3.000E+000] < : : Peak FWHM Cs-137 2.0175E+000 Boundary Limits: [5.000E-001, 3.000E+000] < : : 2.1448E+000 Peak FWHM Co-60 Boundary Limits: [5.000E-001, 3.000E+000] < : : Trend Test: The last 9 samples exhibit a bias trend. Peak FWHM Y-88 2.5054E+000 Peak FWHM Y-88 2.5064E+000 Boundary Limits: [5.000E-001, 3.000E+000] < : : Decay corrected activity 1.5304E+005 Boundary Limits: [1.224E-001, 1.836E-001] < : : Decay corrected activity 6.1745E+004 Boundary Limits: [4.971E-002, 7.457E-002] < : : Last Measurement Q.A. Report 4/11/16 5:30:15 AM Page 2 Decay corrected activity 9.8872E+004 Boundary Limits: [7.978E-002, 1.197E-001] < : : > Deviation/Flags Value Parameter Description < LU : SD : UD : BS > [Mean +/- Std. Dev.] Decay corrected activity 2.0127E+005 Boundary Limits: [1.714E-001, 2.571E-001] < : : > (Ab = Above, Be = Below)LU = Lower/Upper Bounds Test Flags Key: SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action) UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action) BS = Measurement Bias Test *************************** ***** GENIE OUALITY ASSÛRANCE ************************ Last Results Report 4/13/16 6:09:37 AM QA File: \\OR-GAMMA1\ApexRoot\Countroom\QA\D00000003B.QCK GE3 Detector: Geometry: <None> Certificate: <None> Sample ID: Sample Desc: Sample Quantity: Sample Date: A/13/16 S:54:22 AM Measurement Date: A/13/16 COORD A/13/16 A/13/16 COORD A/13/16 A/13/16 A/13/16 A/13/16 Elapsed Live Time: 900.0 seconds Elapsed Real Time: 902.8 seconds Parameter Description [Mean +/- Std. Dev.] Value Deviation/Flags < LU : SD : UD : BS > DATLY BKG CT RATE GE3 Flags Key: 2.5560E+003 2.0501E-001 : : : ISD 2.2684E+003+/-1402.6j LU = Lower/Upper Bounds Test (Ab = Above, Be = Below) SD = Sample Driven N-Sigma Test (In = Investigate, Ac = Action) UD = User Driven N-Sigma Test (In = Investigate, Ac = Action) BS = Measurement Bias Test (In = Investigate, Ac = Action) **************************** ***** GENIE QUALITY ASSURANCE ******************** > Last Results Report 4/13/16 6:56:20 AM QA File: \\OR-GAMMA1\ApexRoot\Countroom\QA\D000000003GAS-1402C.QC Detector: GE3 Geometry: <None> Certificate: GAS-1402 Sample ID: QA Calibration C Sample Desc: QA Count Sample Quantity: 1.0000E+000 Sample Date: 10/1/14 12:00:00 AM Measurement Date: 4/13/16 6:40:39 AM Elapsed Live Time: 900.0 seconds Elapsed Real Time: 928.7 seconds Parameter Description Value Deviation/Flags < LU : SD : UD : BS > [Mean +/- Std. Dev.] Peak centroid 59.54 kev 6.0000E+001 Boundary Limits: [5.800E+001, 6.100E+001] < : . : > Trend Test: The last 9 samples exhibit a bias trend. Peak centroid 661.65 kev 6.6162E+002 Boundary Limits: [6.600E+002, 6.640E+002] < : : Peak centroid 1332.49 ke 1.3321E-003 Boundary Limits: [1.331E+003, 1.334E+003] < : : Peak centroid 1836.1 kev 1.8353E+003 Boundary Limits: [1.833E+003, 1.838E+003] < : : 1.3999E+000 Peak FWHM Am-241 Boundary Limits: [5.000E-001, 3.000E+000] < : : Trend Test: The last 9 samples exhibit a bias trend. 1.9986E+000 Peak FWHM Cs-137 Boundary Limits: [5.000E-001, 3.000E+000] < : : 2.2064E+000 Peak FWHM Co-60 Boundary Limits: [5.000E-001, 3.000E+000] < : : Peak FWHM Y-88 2.5989E+000 Boundary Limits: [5.000E-001, 3.000E+000] < : : Decay corrected activity 1.7378E+005 Boundary Limits: [1.223E-001, 1.834E-001] < : : Decay corrected activity 6.4429E+004 Boundary Limits: [4.969E-002, 7.453E-002] < : : > | Last Measurem | ment Q.A. Report | 4/13/16 | 6:56:2 | MA 0 | | Page | 2 | | |--|---|------------------------------------|-------------|--------------|-------------------------------------|----------------|-------------|-------| | Decay correct
Boundary Lim | ed activity 9.
hits: [7.972E-002, | .7895E+004
1.120E-001] | < | : | : | : | > | | | Parameter Des
[Mean +/- St
Decay correct
Boundary Lin | | Value
.9927E+005
2.569E-001] | . < | LO: | iation
SD: | UD : E | 3S > | | | Flags Key: | LU = Lower/Upper Bo
SD = Sample Driven
UD = User Driven No
BS = Measurement Bo | N-Sigma Test
-Sigma Test | (In = (In = | Inve
Inve | e, Be
stigat
stigat
stigat | e, Ac
e, Ac | = Ac $= Ac$ | tion) |